
1 / 54

Quo vadis BLAKE?

Outline of this talk:

Specification

Design rationale

Security

Software performance

Hardware performance

Conclusion

2 / 54

3 / 54

Find all info on

http://131002.net/blake/

http://en.wikipedia.org/wiki/BLAKE (hash function)

http://www.nist.gov/hash-competition

http://bench.cr.yp.to/results-sha3.html

http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

http://xbx.das-labor.org

http://cryptography.gmu.edu/athenadb/table view

First and Second SHA3 Conference presentations

Next talks of today and tomorrow

Etc.

4 / 54

The single most asked question. . .

Why “BLAKE”?
Why BLAKE?
Why for SHA3?

5 / 54

The single most asked question. . .

Why “BLAKE”?

Why BLAKE?
Why for SHA3?

5 / 54

The single most asked question. . .

Why “BLAKE”?
Why BLAKE?

Why for SHA3?

5 / 54

The single most asked question. . .

Why “BLAKE”?
Why BLAKE?
Why for SHA3?

5 / 54

6 / 54

PART 1: From LAKE to BLAKE

It all started with LAKE. . .

“LAKE” is the name I proposed in 2006 for what became

’was refused. . . (but the paper was accepted to ACISP’07)

Since worked hard to find this name, determined to put it
on a future design. . .

7 / 54

It all started with LAKE. . .

“LAKE” is the name I proposed in 2006 for what became

’was refused. . . (but the paper was accepted to ACISP’07)

Since worked hard to find this name, determined to put it
on a future design. . .

7 / 54

It all started with LAKE. . .

“LAKE” is the name I proposed in 2006 for what became

’was refused. . . (but the paper was accepted to ACISP’07)

Since worked hard to find this name, determined to put it
on a future design. . .

7 / 54

2007 Oct: we submit the hash function LAKE to FSE 2008

2007 Nov: NIST announces the SHA3 competition

LAKE innovations: HAIFA, built-in salt, local wide-pipe

8 / 54

LAKE wasn’t good enough

Flaws in the compression, though hash unattacked

Starting the development of BLAKE after FSE (Feb ’08)

9 / 54

From LAKE to BLAKE. . .

Keep HAIFA: counter & salt, avoids length extension

Keep the local wide-pipe and global narrow-pipe
I Straightforward no-collision proof for fixed block
I Larger state allows to add redundancy, counter, salt
I Narrow-pipe attacks not a concern in practice

Keep the compression algorithm, NOT
I Complete redesign needed

10 / 54

General design philosophy:
I KISS
I Think to users and implementers
I Don’t optimize
I Don’t reinvent the wheel

Understand the needs of SHA3
I Who will be the SHA3 users?
I Properties that are mandatory/desirable/superfluous?

Remember that SHA3 is an engineering competition, and
not the place for experimental, untested, and inefficient
designs (however interesting and technically deep)

11 / 54

BLAKE’s core: a robust, previously-analyzed design

ChaCha’s core is a strong well-analyzed 4-word map

After several prototype designs, decided to extend the
ChaCha permutation to form BLAKE’s core

12 / 54

Previous project (FSE’08)

Amazed at ChaCha/Salsa20’s simplicity and efficiency

Intrinsic 4× parallelism, faster diffusion in ChaCha

Motivations for ARX:
I Performance tradeoff HW/SW
I Easy to implement
I Fast confusion/diffusion

13 / 54

ChaCha’s simplistic “quarterround” function

Bijective transform of four 32-bit words (a,b,c,d)

a += b d = (a ⊕ d) ≪ 16
c += d b = (b ⊕ c) ≪ 12

a += b d = (a ⊕ d) ≪ 8
c += d b = (b ⊕ c) ≪ 7

14 / 54

BLAKE-256’s G function

Repeated 112 times in BLAKE-256 (32-bit words)

a += mi ⊕ ki

a += b d = (a ⊕ d) ≫ 16
c += d b = (b ⊕ c) ≫ 12
a += mj ⊕ kj

a += b d = (a ⊕ d) ≫ 8
c += d b = (b ⊕ c) ≫ 7

15 / 54

BLAKE-512’s G function

Repeated 128 times in BLAKE-512 (64-bit words)

a += mi ⊕ ki

a += b d = (a ⊕ d) ≫ 32
c += d b = (b ⊕ c) ≫ 25
a += mj ⊕ kj

a += b d = (a ⊕ d) ≫ 16
c += d b = (b ⊕ c) ≫ 11

16 / 54

Counting ARX ops:

BLAKE-256 BLAKE-512

Word 32-bit 64-bit
+ 672 768
⊕ 672 768
≪ 448 512

Total 1792 2048
Ops/word 112 128
Ops/byte 3.5 2.0

17 / 54

BLAKE’s 4×4 internal state

Initialized with chaining value, salt, counter, constants

18 / 54

A BLAKE round:

Apply the G function to each column

19 / 54

A BLAKE round:

Apply the G function to each column

20 / 54

A BLAKE round:

Apply the G function to each column

21 / 54

A BLAKE round:

Apply the G function to each column

22 / 54

A BLAKE round:

Apply the G function to each column (in parallel)

23 / 54

A BLAKE round:

Apply the G function to each diagonal

24 / 54

A BLAKE round:

Apply the G function to each diagonal

25 / 54

A BLAKE round:

Apply the G function to each diagonal

26 / 54

A BLAKE round:

Apply the G function to each diagonal

27 / 54

A BLAKE round:

Apply the G function to each diagonal (in parallel)

28 / 54

Why the name “BLAKE”?

I Expresses the LAKE legacy
I Can be understood as “Better LAKE” (unintentional)
I Short, simple to write and to correctly pronounce
I No negative meaning or translation
I Reference to William Blake

29 / 54

More popular Blake’s (according to Google):

30 / 54

31 / 54

PART 2: BLAKE’s unique qualities

32 / 54

Simplicity

Versatility

Security

Easy-to-understand specs
I Simplified HAIFA mode
I Familiar 4×4 state representation
I A single core function: G
I Only ops used are standard +, ⊕, ≪
I Repetition of just 3 lines of code

33 / 54

Simplicity

Easy-to-implement
I Clean version in 185 lines of C
I Small “attack surface” for coding errors
I Only need implement G, plus administrative code
I Reduces production costs (debug time, etc.)

“simple and clear design”, in NIST 2nd Round Report

34 / 54

Simplicity

void blake256 compress(state *S, const u8 *block) {

u32 v[16], m[16], i;

#define ROT(x,n) (((x)<<(32-n))|((x)>>(n)))

#define G(a,b,c,d,e) \
v[a] += (m[sigma[i][e]] ˆ cst[sigma[i][e+1]]) + v[b]; \
v[d] = ROT(v[d] ˆ v[a],16); \
v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c],12); \
v[a] += (m[sigma[i][e+1]] ˆ cst[sigma[i][e]])+v[b]; \
v[d] = ROT(v[d] ˆ v[a], 8); \
v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c], 7);

for(i=0; i<16;++i) m[i] = U8TO32(block + i*4);

for(i=0; i< 8;++i) v[i] = S->h[i];

v[8] = S->s[0] ˆ 0x243F6A88; v[12] = 0xA4093822;

v[9] = S->s[1] ˆ 0x85A308D3; v[13] = 0x299F31D0;

v[10] = S->s[2] ˆ 0x13198A2E; v[14] = 0x082EFA98;

v[11] = S->s[3] ˆ 0x03707344; v[15] = 0xEC4E6C89;

if (S->nullt == 0) {
v[12] =̂ S->t[0]; v[13] =̂ S->t[0];

v[14] =̂ S->t[1]; v[15] =̂ S->t[1];

}

35 / 54

#define G(a,b,c,d,e) \
v[a] += (m[sigma[i][e]] ˆ cst[sigma[i][e+1]]) + v[b]; \
v[d] = ROT(v[d] ˆ v[a],16); \
v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c],12); \
v[a] += (m[sigma[i][e+1]] ˆ cst[sigma[i][e]])+v[b]; \
v[d] = ROT(v[d] ˆ v[a], 8); \
v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c], 7);

for(i=0; i<16;++i) m[i] = U8TO32(block + i*4);

for(i=0; i< 8;++i) v[i] = S->h[i];

v[8] = S->s[0] ˆ 0x243F6A88; v[12] = 0xA4093822;

v[9] = S->s[1] ˆ 0x85A308D3; v[13] = 0x299F31D0;

v[10] = S->s[2] ˆ 0x13198A2E; v[14] = 0x082EFA98;

v[11] = S->s[3] ˆ 0x03707344; v[15] = 0xEC4E6C89;

if (S->nullt == 0) {
v[12] =̂ S->t[0]; v[13] =̂ S->t[0];

v[14] =̂ S->t[1]; v[15] =̂ S->t[1];

}
for(i=0; i<14; ++i) {

G(0, 4, 8,12, 0);

G(1, 5, 9,13, 2);

G(2, 6,10,14, 4);

36 / 54

v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c],12); \
v[a] += (m[sigma[i][e+1]] ˆ cst[sigma[i][e]])+v[b]; \
v[d] = ROT(v[d] ˆ v[a], 8); \
v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c], 7);

for(i=0; i<16;++i) m[i] = U8TO32(block + i*4);

for(i=0; i< 8;++i) v[i] = S->h[i];

v[8] = S->s[0] ˆ 0x243F6A88; v[12] = 0xA4093822;

v[9] = S->s[1] ˆ 0x85A308D3; v[13] = 0x299F31D0;

v[10] = S->s[2] ˆ 0x13198A2E; v[14] = 0x082EFA98;

v[11] = S->s[3] ˆ 0x03707344; v[15] = 0xEC4E6C89;

if (S->nullt == 0) {
v[12] =̂ S->t[0]; v[13] =̂ S->t[0];

v[14] =̂ S->t[1]; v[15] =̂ S->t[1];

}
for(i=0; i<14; ++i) {

G(0, 4, 8,12, 0);

G(1, 5, 9,13, 2);

G(2, 6,10,14, 4);

G(3, 7,11,15, 6);

G(3, 4, 9,14,14);

G(2, 7, 8,13,12);

37 / 54

v[d] = ROT(v[d] ˆ v[a], 8); \
v[c] += v[d]; \
v[b] = ROT(v[b] ˆ v[c], 7);

for(i=0; i<16;++i) m[i] = U8TO32(block + i*4);

for(i=0; i< 8;++i) v[i] = S->h[i];

v[8] = S->s[0] ˆ 0x243F6A88; v[12] = 0xA4093822;

v[9] = S->s[1] ˆ 0x85A308D3; v[13] = 0x299F31D0;

v[10] = S->s[2] ˆ 0x13198A2E; v[14] = 0x082EFA98;

v[11] = S->s[3] ˆ 0x03707344; v[15] = 0xEC4E6C89;

if (S->nullt == 0) {
v[12] =̂ S->t[0]; v[13] =̂ S->t[0];

v[14] =̂ S->t[1]; v[15] =̂ S->t[1];

}
for(i=0; i<14; ++i) {

G(0, 4, 8,12, 0);

G(1, 5, 9,13, 2);

G(2, 6,10,14, 4);

G(3, 7,11,15, 6);

G(3, 4, 9,14,14);

G(2, 7, 8,13,12);

G(0, 5,10,15, 8);

G(1, 6,11,12,10);

}

38 / 54

for(i=0; i<16;++i) m[i] = U8TO32(block + i*4);

for(i=0; i< 8;++i) v[i] = S->h[i];

v[8] = S->s[0] ˆ 0x243F6A88; v[12] = 0xA4093822;

v[9] = S->s[1] ˆ 0x85A308D3; v[13] = 0x299F31D0;

v[10] = S->s[2] ˆ 0x13198A2E; v[14] = 0x082EFA98;

v[11] = S->s[3] ˆ 0x03707344; v[15] = 0xEC4E6C89;

if (S->nullt == 0) {
v[12] =̂ S->t[0]; v[13] =̂ S->t[0];

v[14] =̂ S->t[1]; v[15] =̂ S->t[1];

}

for(i=0; i<14; ++i) {
G(0, 4, 8,12, 0);

G(1, 5, 9,13, 2);

G(2, 6,10,14, 4);

G(3, 7,11,15, 6);

G(3, 4, 9,14,14);

G(2, 7, 8,13,12);

G(0, 5,10,15, 8);

G(1, 6,11,12,10);

}

for(i=0; i<16;++i) S->h[i%8] =̂ v[i];

for(i=0; i<8 ;++i) S->h[i] =̂ S->s[i%4];

}

39 / 54

BLAKE is not optimized for any specific platform
I 32- and 64-bit versions
I 256-bit digest may be produced by truncation of

BLAKE-512
I Rotations multiple of 8 to simplify 8- and 16-bit

implementations
I HW-friendly structure

I Single building block G allows compact impl
I Straightforward parallelism

40 / 54

Versatility

BLAKE can be compact in FPGA
A few days ago at the ECRYPT2 Hash 2011 Workshop:

Kerckhof et al., Compact FPGA Implementations of the
Five SHA-3 Finalists:

On Virtex 6:

41 / 54

BLAKE is hardware-friendly
A few days ago at the ECRYPT2 Hash 2011 Workshop:

Homsirikamol, Rogawski, Gaj, Comparing Hardware
Performance of Round 3 SHA-3 Candidates using
Multiple Hardware Architecture in Xilinx and Altera
FPGAs:

“BLAKE is the algorithm with the highest flexibility, and the largest
number of potential architectures. It can be easily folded horizontally
and vertically by factors of two and four. It can also be easily
pipelined even in the folded architectures. It is also the only algorithm
that has a relatively efficient architecture that is smaller than the basic
iterative architecture of SHA-2. Finally, BLAKE is the only algorithm
that can benefit substantially from using embedded block memories
of both Xilinx and Altera FPGAs.”

42 / 54

BLAKE is often faster than SHA2 in SW

Speedup from SSE (2 – 4.1) and XOP instructions, but
very fast without (cf. SPHLIB code)

43 / 54

BLAKE is low-memory on microcontrollers
On 8-bit ATmega1281, from Wenzel-Benner 2010 slides

44 / 54

NIST does not disagree
In the 2nd Round Report:

“BLAKE is among the top performers in software across
most platforms for long messages. BLAKE-32 is the best
performer on software platforms for very short message”

“This flexibility allows cost-effective tradeoffs in area
usage, with limited impact on the throughput-to-area ratio”

45 / 54

Plenty of cryptanalysis:
Dunkelman, Khovratovich (Hash 2011)
A. Leurent, Meier, Mendel, Mouha, Phan, Sasaki, Susil (Hash 2011)
Biryukov, Nikolic, Roy (FSE 2011)
Ming, Qiang, Zeng (ICCIS 2010)
Turan, Uyan (2nd SHA3 Conf)
Vidali, Nose, Pasalic (IPL 110(14-15))
Su, Wu, Dong (ePrint 2010/355)
A. Guo, Knellwolf, Mtusiewicz, Meier (FSE 2010)
Guo, Matusiewicz (WEWoRC 2009)
Ji, Liangyu (ePrint 2009/238)

46 / 54

Security

Best attack on the compression function:
I Boomerang distinguisher by Biryukov/Nikolic/Roy
I 7 rounds in 2232 (BLAKE-256)

Best attack on the hash function:
I Preimage attack by Ji/Liangyu
I 2.5 rounds in 2241, 2481

14 rounds in BLAKE-256

Security margin compares favorably with other finalists

47 / 54

Security

48 / 54

CONCLUSION

Why BLAKE for SHA3?

49 / 54

Why BLAKE for SHA3?

50 / 54

High security margin

User-oriented design

Often faster than SHA2

Why BLAKE for SHA3?

51 / 54

High security margin

User-oriented design

Often faster than SHA2

Performance versatile

Fastest on small messages

Fast portable C code

Even Schneier’s blog commenters like BLAKE!

52 / 54

Advertisement

Recent implementations of BLAKE

53 / 54

Python (by Larry Bugbee)
http://tinyurl.com/pyblake

PHP (by Danniel Correa)
http://tinyurl.com/phpblake1

http://tinyurl.com/phpblake2

54 / 54

BLAKE

