
A Note on Vortex’ Security

Jean-Philippe Aumasson1 and Orr Dunkelman2

1 FHNW, Windisch, Switzerland
2 École Normale Supérieure, Paris, France

Abstract. Vortex is a hash function based on the AES that was presented at
ISC’2008, and submitted to the NIST SHA-3 competition after some modifications
that aim to strengthen it. This note first shows that the original Vortex is not
collision-resistant, by describing an attack running in about 258 compressions, in-
stead of 2128 ideally. In the new version submitted to NIST, we present several prop-
erties that seem to render it unsuitable for the new hash standard. In particular,
both versions of Vortex have the undesirable property of impossible images, which
gives distinguishers for a HMAC based on Vortex and slightly speeds up preimage
search.

1 Introduction

Vortex is the name of a AES-based hash function proposed by Gueron and Kounavis [2]
at ISC’2008, and is also the name of the modified version [3] submitted to the NIST Hash
Competition3 We call these two functions Vortex-0 and Vortex-1, respectively, and present
attacks on both versions, making the latter unoptimal as the SHA-3.

The attack on Vortex-0 exploits the independence between processed message words,
which allows collision search on a smaller space, reducing the complexity from 2128 to 264.
We then present several attacks on Vortex-1: first, a pseudo-collision attack in time 264;
then, a free-start collision attack in 264 as well, which gives a standard collision attack with
2128 precomputation and 264 online computations. We identify a weak class of messages,
for which second preimages can be found in time 2128, or with an additional preprocessing
and storage using about 233 time. Finally, we show that both versions of Vortex have many
impossibles images: we describe techniques to find collisions through the output function
V , and to detect impossible images (which gives a distinguisher for PRF’s based on Vortex,
like HMAC); we conclude that the use of Vortex as a PRF is to be avoided.

2 Vortex-0

Vortex-0 is a Merkle-Damg̊ard iterated hash with 256-bit chain values and 256-bit digest.
Given a 2×128-bit chain value A‖B and a 4×128-bit message block W0‖W1‖W2‖W3, the
compression function of Vortex-0 sequentially computes

A‖B ← (A‖B)⊕ subblock(A,B, W0,W1)
A‖B ← (A‖B)⊕ subblock(A,B, W2,W3)

and returns A‖B as the new chain value (or as the digest, if the message block is the last
one). The function subblock(A,B, Wi,Wj) returns the 256-bit value

V (CWi
(A),CWj

(B)) .

3See http://www.nist.gov/hash-competition.

The block cipher C is a reduced version of AES with three rounds, where a round (unlike
in AES) is the sequence AddRoundKey, SubBytes, ShiftRows, and MixColumns.

The function V : {0, 1}256 7→ {0, 1}256 takes two 128-bit inputs A and B, which are
parsed as four 64-bit words as A1‖A0 ← A and B1‖B0 ← B. The computation of V (A,B)
goes as follows (“⊗” denotes carryless multiplication, and addition is modulo 264)

• L1‖L0 ← A1 ⊗B0

• O1‖O0 ← A0 ⊗B1

• A0 ← A0 ⊕ L0

• A1 ← A1 ⊕O1

• B0 ← B0 + O0

• B1 ← B1 + L1

2.1 Black-box collisions

We present a collision attack that exploits structural properties of the subblock function,
assuming that the main component (the block cipher) is perfect, i.e. we work under the
ideal cipher model. We then prove that the actual C cipher in Vortex-0 is close enough (sic)
to an ideal cipher to be vulnerable to our attack.

The attack goes as follows: given the IV A‖B, choose arbitrary W1,W2,W3, and compute
CW0(A) for 264 distinct values of W0; in the ideal cipher model, one thus gets 264 random
values, each uniformly distributed over {0, 1}128, hence a collision

CW0(A) = CW ′
0
(A)

occurs with probability 1− 1/e2 ≈ 0.39, which directly gives a collision for the compression
function. The cost of this attack is 264 evaluations of C (which is equivalent to 262 of the
compression function of Vortex-0), whereas 2128 compressions was conjectured in [2] to be
a minimum.

The attack would not work if the map key-to-ciphertext induced by C were significantly
more injective than a random function. In the following we prove that, under reasonable
assumptions, we have, for any x ∈ {0, 1}128

Pr
K,K′

[CK(x) = CK′(x)] ≈ 1
2128

.

More precisely, we show that for C with two rounds (denoted C2), instead of three, we have

Pr
K,K′

[C2
K(x) = C2

K′(x)] =
2128 − 2

(2128 − 1)2
≈ 1

2128
,

which means that our collision attack works with the actual C. A proof of the above formula
goes as follows:

In Vortex-0 a round consists in the AddRoundKey operation (which xors the 128-bit round
key with the 128-bit state), followed by a permutation defined by the sequence SubBytes,
ShiftRows, and MixColumns. The key schedule of C is much simpler than that of Rijndael;
given a 128-bit key K, it computes the 128-bit rounds keys

RK1 ← π1(K)
RK2 ← π2(RK1)
RK3 ← π3(RK2)

where the πi’s are permutations defined by S-boxes, bit permutations and addition with
constants. We denote RKK

i a round key derived from K.

Observe that
K 6= K ′ ⇒ RKK

i 6= RKK′

i , i = 1, 2, 3.

Assume that the permutations πi’s satisfy the properties expected for a random permuta-
tion, i.e. they are “random-looking” enough. Denote ΠK

i the permutation corresponding to
the i-th round of C; Πi depends of the RKi derived from K. Observe that for any state x
and any distinct keys K, K ′, we have K ⊕ x 6= K ′ ⊕ x, therefore for any x

ΠK
i (x) 6= ΠK′

i (x).

In other words, a 1-round C mapping a key to a ciphertext, for any fixed plaintext, is a
permutation. In the following we show that for 2 rounds it is not a permutation. That is,
composition breaks the “disjointness” property.

From the above observation, we have, for any K 6= K ′, and for any x1, x2,

ΠK
1 (x1) 6= ΠK′

1 (x1)

ΠK
2 (x2) 6= ΠK′

2 (x2).

We show that, however, the probability over K, K ′, x that

ΠK
2 ◦ΠK

1 (x) = ΠK′

2 ◦ΠK′

1 (x)

is nonzero, and is even close to what one would expect if Π2◦Π1 were a random permutation;
in the latter, for clarity, we write Πi = ΠK

i , Π ′
i = ΠK′

i , and Π = {Π1,Π2}, Π ′ = {Π ′
1,Π

′
2}.

Recall that Πi, Π ′
i are permutations such that: @x,Πi(x) = Π ′

i(x), for i = 1, 2.

We now compute the probability of a collision after two rounds. First, observe that

Pr
Π,Π′,x

[Π1 ◦Π2(x) = Π ′
1 ◦Π ′

2(x)] = Pr
y 6=y′,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)] .

The probability holds over random distinct 128-bit y and y′. We have (with N = 2128):

Pr
y 6=y′,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)] =
1
N

N−1∑
y=0

Pr
y′ 6=y,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)]

=
1
N

N−1∑
y=0

1
N − 1

N−1∑
Π1(y)=0,Π1(y) 6=y

Pr[Π1(y) = Π ′
1(y

′)]

=
1
N

N−1∑
y=0

1
N − 1

N−1∑
Π1(y)=0,Π1(y) 6=y

(0 + (N − 2)× 1
N − 1

)

=
1
N

N−1∑
y=0

N − 2
(N − 1)2

=
N − 2

(N − 1)2
=

2128 − 2
(2128 − 1)2

≈ 1
2128

.

The above result shows that the 2-round C seen as a key-to-ciphertext mapping, for any
fixed plaintext, has a distribution close to that of a random function. With 3 rounds, the
distribution is much closer to that of a random function. Therefore, the birthday paradox
is applicable, and so our attack works on the real Vortex-0 algorithm.

2.2 Faster collisions

We improve the previous collision attack by exploiting properties of the algorithm inside
the block cipher C. More precisely, the attack exploits the low number of AES-like rounds
(3, instead of at least 10 in AES), and the special form of a round in C.

A key observation is that AddRoundKey is not performed after the last (third) round of
C. It thus suffices to find a collision right after the third AddRoundKey to have a collision
on CW (A).

Let’s denote the rounds keys (RK1, RK2, RK3) and (RK ′
1, RK ′

2, RK ′
3) of our two in-

stances. Denoting T the permutation made of SubBytes, ShiftRows, and MixColumns, and
starting from a same plaintext x, we want a collision

y = T (T (x⊕RK1)⊕RK2)⊕RK3 = T (T (x⊕RK ′
1)⊕RK ′

2)⊕RK ′
3 ,

that is,

z = T (x⊕RK1)⊕RK2 ⊕ T−1(RK3) = T (x⊕RK ′
1)⊕RK ′

2 ⊕ T−1(RK ′
3) .

Now consider a specific byte of z seen as the 4×4 inner state of C (for example the byte
at coordinates (0, 0)); clearly, this byte is affected by only byte of RK2, and because of the
ShiftRows and MixColumns operations in T or (T−1), this byte is also affected by 4 bytes
from RK1 and 4 bytes from RK3.

One can exploit the fact that not all key bytes affect a specific z byte: for example, given
a RK1 and a RK ′

1, one can immediately modify a byte of RK ′
1 to get a colliding byte in z.

One thus gets a collision over 8 bits “for free”, and so seeks a collision over 120 bits only.
The cost of the attacks thus drops from 264 to 260 evaluations of C, compared to the attack
in §2.1.

3 Vortex-1

Vortex-1 is similar to Vortex-0 but with a different compression function, which computes

A‖B ← subblock(A,B, W0,W1)
A‖B ← subblock(A,B, W2,W3)

Note that, compared to Vortex-0, this new version omits the feedforward of the chain value
A‖B. Furthermore, subblock(A,B, Wi,Wj) now computes

A‖B ← V (CA(Wi)⊕Wi,CB(Wi)⊕Wi)
A‖B ← V (CA(Wj)⊕Wj ,CB(Wj)⊕Wj) ,

where A, B, Wi, and Wj are 128-bit words. The AES-like cipher C still makes 3 rounds,
and the V function is the same as in Vortex-0. Note that Vortex-1 is not vulnerable to the
attacks in §2.1 and §2.2.

3.1 Pseudo-collisions

We show how to find a pair of colliding messages for Vortex-1 with two distinct IV’s, of the
form A‖B and A′‖B, respectively, for any fixed B and random A, A′.

Observe that for an IV A‖B, the 128-bit A is input only once in the compression function,
to compute CA(W0). One can thus find a collision on the compression function by finding a
collision for CA(W0)⊕W0: fix W0 and cycle through 264 distinct A’s to find a collision with
high probability. One can thus find collisions for two IV’s A‖B and A′‖B in 264 evaluations
of C (instead of 2128 compressions ideally).

A B

? ?

C C
∨ ∨

? ?

V

�

�i
W0 -

- i

? ?

C C
∨ ∨

? ?

V

�

�i
W1 -

- i

? ?
· · · · · ·

Fig. 1. Schematical view of Vortex-1’s computation of a message digest (a hatch marks the key
input).

3.2 Free-start collisions

We show how to find a pair colliding messages for Vortex-1 with any IV of the form A‖B =
A‖A—call this a symmetric IV.

To find a collision for Vortex-1 with a symmetric IV, it suffices to find W0,W
′
0 such that

CA(W0)⊕W0 = CA(W ′
0)⊕W ′

0

to get two colliding messages with a same random IV. Note that when the IV is fixed (and
not symmetric)), one can precompute a message block that leads to an IV A‖A within 2128

trials, and then find collisions in 264; for example, finding 10 000 000 collisions costs about
2128 trials with our attack, against 2151 ideally.

3.3 Second preimages for weak messages

We show how to find second preimages of messages that produce a symmetric chain value
(that is, of the form A‖A) during the digest computation. A key observation is that if
A = B and A is of the form (x‖0) or (0‖y), then V (A,B) maintains the equality of A and
B.

The attack works as follows: Given a message that produce the chain value Ã‖Ã, find
a message that leads to a symmetric chain value A‖B = A‖A. Then find message blocks
that preserve the symmetry and that eventually give A = Ã (after as many blocks as in the
original message). One then fills the new message with the blocks of the original message
to get a preimage of it.

Reaching the first symmetric chain value costs about 2128, preserving the property for
each step costs 264, and the connection costs 2128. The total complexity is thus about

2129. Note that the computation of a message that leads to a symmetric chaining value is
message-independent, hence can be precomputed.

This attack, however, applies with low probability to a random message of reasonable
size: for a random m-bit message, there are about bm/128c − 1 “chaining values” (note
that we can connect inside the compression function as well), thus the probability that a
random message is weak is approximately 2−127 × (m/128− 1).

Time-memory tradeoff variant. We show that a variant of the above attack with pre-
computation 2128 and as much memory runs in only 233 trials, using the tree-construction
technique in [1].

Consider a set of special chaining values

S =
{
(x||0)‖(x||0), x ∈ {0, 1}64

}
∪

{
(0||y)‖(0||y), y ∈ {0, 1}64

}
.

As noted earlier, these chaining values are maintained under the V (·) transformation. The
preprocessing phase is composed of three phases:

1. finding a message block W such that A‖A ← V (CIV0(W) ⊕W,CIV1(W) ⊕W) where
the IV is treated as IV = IV0‖IV1

2. for each A‖A finding a special chaining value s = s‖s and a message word W ′ such that

Cs(W ′)⊕W ′ = A ,

and store it in a table for each possible A
3. for each s ∈ S, find two message blocks W1 and W2 such that

Cs(W1)⊕W1,Cs(W2)⊕W2 ∈ S

It is easy to see that the first precomputation phase takes 2128 calls to V (C(·)||C(·)), and
outputs one message word of 128 bits to memorize. The second phase can be done by picking
s ∈ S and message words W at random, until all outputs A are covered. Assuming that
the process is random (i.e., by picking s and W randomly and independently from previous
calls) we can model the problem as the coupon collector (see e.g. [4, p.57]), which means
that about ln(2128) · 2128 < 2135 computations are performed, and about 2128 memory cells
are needed. Finally, the third phase can be done in means of exhaustive search for each
special chaining value s, and we expect about 264 computations for each of the 265 − 1
special values. The memory needed for the output of the last precomputation is about 266

memory cells. With respect to the precomputation we note that it is entirely parallelizable,
and can enjoy a speed up of a factor x given x processors.

The online phase of the attack is as follows. Given the weak message that has a chaining
value Ã‖Ã, we find in the first table the special chaining value s ∈ S and the message
block W that lead to Ã‖Ã. We then start from the IV , and using the precomputed message
blocks, reach a state s′ ∈ S. Now we have to find a path of message blocks from s′ to s. This
is done by randomly picking message blocks from s′ which maintain the chaining value in
the special set, until the distance between the reached state s′′ and s is 65 message blocks.

To connect s′′ and s we use the tree-construction technique described in [1]: from s′′ one
constructs a tree with all the 233 possible special chaining values reachable after 33 blocks;
similarly, one constructs a tree with the (expected) 232 possible chaining values that may
arrive to s after 32 blocks. As the size of the space is about 265, we expect a collision, and
a path from s′′ to s.

The preprocessing of this phase costs 2128 trials, storage is 264, and the online complexity
is composed of performing a birthday on space of about 265 values—which we expect to
take about 233 operations. So given about 2128 precomputation, 2128 storage that needs to
be accessed once (store it on DVDs and put them in the closet), 264 storage that is going
to be accessed randomly, the online complexity of the attack is only 233.

4 Impossible images

We show that both versions of Vortex have impossible images. That is, the range of Vortex-0
and Vortex-1 doesn’t span the whole {0, 1}256, but is a proper subset of it. This observation
allows slightly faster preimage and collision search, and can be used to mount distinguishers
on PRF’s based on Vortex (e.g. HMAC).

Both Vortex-0 and Vortex-1 use the V function (see §2 for its definition) after each C
evaluation. In particular, the final output of both Vortex-0 and Vortex-1 is an output of V .
We investigated V , which maps an element of {0, 1}256 to an element of {0, 1}256, and found
that it is not surjective, i.e. there exists impossible images. Experiments on reduced version
suggest that V behaves more like a random function than like a permutation: for example,
with the version of V with 12-bit A and B, about 66% of the outputs are reachable (against
1 − 1/e ≈ 63% for a random function4). In the remainder we denote RV the range of V ,
and thus have RV ({0, 1}256.

4.1 Multicollisions for V

We present a simple method to find two distinct inputs that map to the same value through
V : set A1 = B1 = 1, and choose a A0 and a B0 that have not bit “1” at a same position
(for example, A0 = FF00 . . . 00 and B0 = 00FF . . .). The V function then sets:

• L1‖L0 ← 0‖B0

• O1‖O0 ← 0‖A0

• A0 ← A0 ⊕ L0 = A0 ⊕B0

• A1 ← A1 ⊕O1 = 1
• B0 ← B0 ⊕O0 = B0 ⊕A0

• B1 ← B1 ⊕ L1 = 1

Now one can modify the initial A0 and B0 such that A0 ⊕ B0 remains unchanged (and
still have no bit “1” at a same position), which won’t modify the output. Note that this
even allows multicollisions, since for a given pair (A0, B0) there exists many colliding mod-
ified pairs. Interestingly, it is easy to find a colliding pair (A‖B,A′‖B′) such that second
preimages of C‖ ← V (A‖B) are easy to find; this is because the property A1 = B1 = 1 is
preserved.

One can easily derive an upper bound on |RV | from the above technique: observe that
there are

(
64
32

)
≈ 260.5 possible weight-32 choices for A0, and as much choices for B0 given

any fixed A0; this gives 2120 colliding pairs, which means that more than 2120 elements
of {0, 1}256 are impossible images, that is, |RV | < 2256 − 2120. It follows that search for
preimages and collisions is slightly faster than expected.

4Note that a random function {0, 1}n 7→ {0, 1}n has in average about 63% of its outputs
reachable, but a random function {0, 1}m 7→ {0, 1}n, m � n, has actual range {0, 1}n with high
probability.

4.2 Detecting impossible images

Given a random element y of {0, 1}256, the best generic algorithm to decide whether y lies in
RV is to try all the 2256 inputs. Below we describe an algorithm that solves this problem for
V much faster than the generic algorithm (we use the notations of §2, and writing “LOH”
for “low-order half” and “HOH” for “high-order half”):

• let y = C‖D = C1‖C0‖D1‖D0 be the given 128-bit value
• for each choice of O0:

• from O0 and D0 compute B0.
• from B0 and the LOH of A1, compute the LOH of L0

• from C0 and the LOH of L0, compute the LOH of A0

• from O0 and the LOH of A0, compute the LOH of B1 (by solving a linear
system of 32 equations)

• from D1 and the LOH of B1, compute the LOH of L1

• from B0, the LOH of A1, and the LOH of L1, compute the HOH of A1

(solve a linear system of 32 equations)
• from A1 and C1, compute O1

• from A1 and B0, compute the HOH of L0

• from C0 and the HOH of L0, compute the HOH of A0

• from O0 and the HOH of A0, compute the HOH of B1 (by solving a linear
system of 32 equations)

• if no solution for A and B is found, return “y /∈ RV ”, else return “y ∈ RV ”

The running time of the algorithm is mostly dominated by solving two sets of 32 equations
over GF(2) for each guess, i.e., in total finding 297 solutions (we guess 96 bits) to a set of
32 equations in 32 unknowns over GF(2). This algorithm can enjoy parallelism (i.e., given
n CPUs the running time is divided by n).

Now, this allows us to distinguish the output of Vortex from a random string by solving
297 operations (because if the algorithm fails to find a preimage of the output, then the
string was not produced by a Vortex). Hence, given about 10 outputs of Vortex, we can
almost surely identify that the string was indeed produced by Vortex calls.

Note that similar claims may be made about a Merkle-Damg̊ard hash function, when
the last block is a full padding block. In such a case, the output space is indeed only
63% of the possible values. However, unlike the case of Vortex, this space changes when
the padding changes (i.e., a different number of bits is hashed). Moreover, in the case of
a Merkle-Damg̊ard construction with a random function as the compression function, the
adversary has to try all possible input chaining values before deducing that the output is
indeed not in the range of the specific case of the function, which is clearly not the case for
Vortex.

5 Conclusion

Our analysis suggests that the new version of Vortex is indeed stronger than the original
one. Although our findings on Vortex-1 do not directly invalidate the security claims made
by its designers, it seems that Vortex-1 (especially in MAC constructions such as HMAC or
in key derivation scheme) may offer less than optimal security.

References

1. Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John Kelsey, Adi
Shamir, and Sébastien Zimmer. Second preimage attacks on dithered hash functions. In Nigel P.
Smart, editor, EUROCRYPT, volume 4965 of LNCS, pages 270–288. Springer, 2008.

2. Shay Gueron and Michael E. Kounavis. Vortex: A new family of one-way hash functions based
on AES rounds and carry-less multiplication. In Tzong-Chen Wu, Chin-Laung Lei, Vincent
Rijmen, and Der-Tsai Lee, editors, ISC, volume 5222 of LNCS, pages 331–340. Springer, 2008.

3. Michael Kounavis and Shay Gueron. Vortex: A new family of one way hash func-
tions based on Rijndael rounds and carry-less multiplication. Submission to NIST, 2008.
http://eprint.iacr.org/2008/464.pdf.

4. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

