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Abstract. Cube testers are a generic class of methods for building distinguishers, based on cube attacks
and on algebraic property-testers. In this paper, we report on an efficient FPGA implementation of
cube testers on the stream cipher Grain-128. Our best result (a distinguisher on Grain-128 reduced to
237 rounds, out of 256) was achieved after a computation involving 254 clockings of Grain-128, with a
256×32 parallelization. An extrapolation of our results with standard methods suggests the possibility
of a distinguishing attack on the full Grain-128 in time 283, which is well below the 2128 complexity
of exhaustive search. We also describe the method used for finding good cubes (a simple evolutionary
algorithm), and report preliminary results on Grain-v1 obtained with a bitsliced C implementation.
For instance, running a 30-dimensional cube tester on Grain-128 takes 10 seconds with our FPGA
machine, against about 45 minutes with our bitsliced C implementation, and more than a day with a
straightforward C implementation.

1 Introduction

The stream cipher Grain-128 was proposed by Hell, Johansson, Maximov, and Meier [16] as a variant of
Grain-v1 [17,18], to accept keys of up to 128 bits, instead of up to 80 bits. Grain-v1 has been selected in the
eSTREAM portfolio4 of promising stream ciphers for hardware, and Grain-128 was expected to retain the
merits of Grain-v1.

Grain-128 takes as input a 128-bit key and a 96-bit IV, and it produces a keystream after 256 rounds
of initialization. Each round corresponds to clocking two feedback registers (a linear one, and a nonlinear
one). Several attacks on Grain-128 were reported: [22] claims to detect nonrandomness on up to 313 rounds,
but these results were not documented, and not confirmed by [9], which used similar methods to find a
distinguisher on 192 rounds. Shortcut key-recovery attacks on 180 rounds were presented in [10], while [5]
exploited a sliding property to speed up exhaustive search by a factor two. More recently, [21] presented
related-key attacks on the full Grain-128. However, the relevance of related-key attacks is disputed, and no
attack significantly faster than bruteforce is known for Grain-128 in the standard attack model.

The generic class of methods known as cube testers [1], based on cube attacks [8] and on algebraic property-
testers, aims to detect non-randomness in cryptographic algorithms, via multiple queries with chosen values
for the IV bits (more generally, referred to as public variables). Both cube attacks and cube testers sum
the output of a cryptographic function over a subset of its inputs. Over GF(2), this summation can be
viewed as high-order differentiation with respect to the summed variables. This property was used in [20] to
suggest a general measurement for the strength of cryptographic functions of low algebraic degree. Similar
summation methods, along with more concrete cryptanalytic ideas, were later used to attack several stream
ciphers. For example, Englund, Johansson, and Turan [9] presented a framework to detect non-randomness
in stream ciphers, and in [23] Vielhaber developed a key-recovery attack (called AIDA) on reduced versions
of Trivium [6]—another cipher in the eSTREAM portfolio. More recently, generalizations of these attacks
were proposed: Cube attacks generalize AIDA as a key-recovery attack on a large variety of cryptographic
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schemes. Cube testers use similar techniques to those used in [9], but are more general. Cube testers were
previously applied to Trivium [1], and seem relevant to attack Grain-128, since it also builds on low-degree
and sparse algebraic equations.

This paper presents an FPGA implementation of cube testers on Grain-128. We ran 256 instances of
Grain-128 in parallel, each instance being itself parallelized by a factor 32. Our heaviest experiment involved
the computation of 254 clockings of the Grain-128 mechanism, and detected nonrandomness on up to 237
rounds (out of 256). As an aside, we describe some of the other tools we used: a bitsliced C implementation
of cube testers on Grain-128, and a simple evolutionary algorithm for searching “good cubes”.

Compared to previous works, our attacks are more robust and general. For example, [5] exploits a sliding
property that can easily be avoided, as [5, §3.4] explains: “to eliminate the self-similarity of the initialization
constant. If the last 16 bits of the LFSR would for example have been initialized with (0,...,0.1), then this
would already have significantly reduced the probability of the sliding property.”

2 Brief Description of Grain-128

The mechanism of Grain-128 consists of a 128-bit LFSR, a 128-bit NFSR (both over GF(2)), and a Boolean
function h. The feedback polynomial of the NFSR has algebraic degree two, and h has degree three (see
Fig. 1).

Given a 128-bit key and a 96-bit IV, one initializes Grain-128 by filling the NFSR with the key, and the
LFSR with the IV padded with 1 bits. The mechanism is then clocked 256 times without producing output,
and feeding the output of h back into both registers. Details can be found in [16].
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Fig. 1. Schematic view of Grain-128’s keystream generation mechanism (numbers designate arities). During initial-
ization, the output bit is fed back into both registers, i.e., added to the output of f and g.

3 Cube Testers

In this section, we briefly explain the principles behind cube testers, and describe the type of cube testers
used for attacking Grain-128. More details can be found in [1], and in the article introducing (key-recovery)
cube attacks [8].

An important observation regarding cube testers is that for any function f : {0, 1}n 7→ {0, 1}, the sum
(XOR) of all entries in the truth table ∑

x∈{0,1}n

f(x)
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equals the coefficient of the highest degree monomial x1 · · ·xn in the algebraic normal form (ANF) of f . This
observation has been used by Englund, Johansson, and Turan [9] for building distinguishers.

For a stream cipher, one may consider as f the function mapping the key and the IV bits to the first
bit of keystream. Obviously, evaluating f for each possible key/IV and xoring the values obtained yields the
coefficient of the highest degree monomial in the implicit algebraic description of the cipher.

Instead, cube attacks work by summing f(x) over a subset of its inputs. For example, if n = 4 and

f(x) = f(x1, x2, x3, x4) = x1 + x1x2x3 + x1x2x4 + x3 ,

then summing over the four possible values of (x1, x2) yields

∑

(x1,x2)∈{0,1}2

f(x1, x2, x3, x4) = 4x1 + 4x3 + (x3 + x4) ≡ x3 + x4 ,

where (x3 + x4) is the factor of x1x2 in f :

f(x1, x2, x3, x4) = x1 + x1x2(x3 + x4) + x3 .

Indeed, when x3 and x4 are fixed, then the maximum degree monomial becomes x1x2 and its coefficient equals
the value (x3 + x4). In the terminology of cube attacks, the polynomial (x3 + x4) is called the superpoly of
the cube x1x2. Cube attacks work by detecting linear superpolys, and then explicitly reconstructing them
via probabilistic linearity tests [3].

Now, assume that we have a function f(k0, . . . , k127, v0, . . . , v95) that, given a key k and an IV v, returns
the first keystream bit produced by Grain-128. For a fixed key k0, . . . , k127, the sum

∑

(v0,...,v95)∈{0,1}96

f(k0, . . . , k127, v0, v95)

gives the evaluation of the superpoly of the cube v0v1 · · · v95. More generally, one can fix some IV bits, and
evaluate the superpoly of the cube formed by the other IV bits (then called the cube variables, or CV).
Ideally, for a random key, this superpoly should be a uniformly distributed random polynomial. However,
when the cipher is constructed with components of low degree, and sparse algebraically, this polynomial is
likely to have some property which is efficiently detectable. More details about cube attacks and cube testers
can be found in [1, 8].

In our tests below, we measure the balance of the superpoly, over 64 instances with distinct random keys.

4 Software Implementation

Since we need to run many independent instances of Grain-128 that operate on bits (rather than bytes or
words), a bitsliced implementation in software is a natural choice. This technique was originally presented
by Biham [2], and can speed up the preprocessing phase of cube attacks (and cube testers) as suggested by
Crowley in [7].

To test small cubes, and to perform the search described in §6, we used a bitsliced implementation of
Grain-128 that runs 64 instances of Grain-128 in parallel, each with (potentially) different keys and different
IV’s. We stored the internal states of the 64 instances in two arrays of 128 words of 64 bits, where each bit
slice corresponds to an instance of Grain-128, and the i-th word of each array contains the i-th bit in the
LFSR (or NFSR) of each instance.

Our bitsliced implementation provides a considerable speedup, compared to the reference implementation
of Grain-128. For example, on a PC with an Intel Core 2 Duo processor, evaluating the superpoly of a cube
of dimension 30 for 64 distinct instances of Grain-128 with a bitsliced implementation takes approximately
45 minutes, against more than a day with the designers’ C implementation. Appendix A gives our C code.
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5 Hardware Implementation

Field-programmable gate arrays (FPGA’s) are reconfigurable hardware devices widely used in the implemen-
tation of cryptographic systems for high-speed or area-constrained applications. The possibility to reprogram
the designed core makes FPGA’s an attractive evaluation platform to test the hardware performances of
selected algorithms. During the eSTREAM competition, many of the candidate stream ciphers were imple-
mented and evaluated, on various FPGA’s [4,11,13]. Especially for Profile 1 (HW), the FPGA performance
in terms of speed, area, and flexibility was a crucial criterion to identify the most efficient candidates.

To attack Grain-128, we used a Xilinx Virtex-5 LX330 FPGA to run the first reported implementation
of cube testers in hardware. This FPGA offers a large number of embedded programmable logic blocks,
memories and clock managers, and is an excellent platform for large scale parallel computations.

Note that FPGA’s have already been used for cryptanalytic purposes, most remarkably with COPA-
COBANA [15,19], a machine with 120 FPGA’s that can be programmed for exhaustive search of small keys,
or for parallel computation of discrete logarithms.

5.1 Implementation of Grain-128

The Grain ciphers (Grain-128 and Grain-v1) are particularly suitable for resource-limited hardware envi-
ronments. Low-area implementations of Grain-v1 are indeed able to fill just a few slices in various types of
FPGA’s [14]. Using only shift registers combined with XOR and AND gates, the simplicity of the Grain’s
construction could also be easily translated into high-speed architectures. Throughput and circuit’s efficiency
(area/speed ratio) are indeed the two main characteristics that have been used as guidelines to design our
Grain-128 module for the Virtex-5 chip. The relatively small degree of optimization for Grain allows the
choice of different datapath widths, resulting in the possibility of a speedup by a factor 32 (see [16]).

We selected a 32-bit datapath to get the fastest and most efficient design in terms of area and speed.
Fig. 2 depicts our module, where both sides of the diagram contain four 32-bit register blocks. During the
setup cycle, the key and the IV are stored inside these memory blocks. In normal functioning, they behave
like shift register units, i.e., at each clock cycle the 32-bit vectors stored in the lower blocks are sent to the
upper blocks. For the two lowest register blocks (indices between 96 and 127), the input vectors are generated
by specific functions, according to the algorithm definition. The g′ module executes the same computations
of the function g plus the addition of the smallest index coming from the LFSR, while the output bits
are entirely computed inside the h′ module. Table 1 summarizes the overall structure of our 32×Grain-128
architecture.

Table 1. Performance results of our Grain-128 implementation.

Frequency Throughput Size Available area
[MHz] [Mbps] [Slices] [Slices]

Grain-128 module 200 6,400 180 51,840

5.2 Implementation of Cube Testers

Besides the intrinsic speed improvement from software to hardware implementations of Grain-128, the main
benefit resides in the possibility to parallelize the computations of the IV queries necessary for the cube
tester. With 2m instances of Grain-128 in parallel, running a cube tester with a (n + m)-dimensional cube
will be as fast as with an n-dimensional cube on a single instance.

In addition to the array of Grain-128 modules, we designed three other components: the first provides the
pseudorandom key and the 2n IV’s for each instance, the second collects and sums the outputs, and the last
component is a controller unit. Fig. 3 illustrates the architecture of our cube tester implementation fitted in
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Fig. 2. Overview of our Grain-128 architecture. At the beginning of the simulation, the key and the IV are directly
stored in the NFSR and LFSR register blocks. All connections are 32-bit wide.

a Virtex-5 chip. No special macro blocks has been used, we just tried to exploit all the available space to fit
the largest Grain-128 array. Below we describe the mode of operation of each component:

• Simulation controller: This unit manages the IO interface to control the cube tester core. Through
the signal s inst, a new instance is started. After the complete evaluation of the cube over the Grain-
128 array, the u inst signal is asserted and later a new instantiation with a different key is started.
This operation mode works differently from the software implementation, where the 256 instances
run in parallel.

• Input generator: After each run of the cipher array, the (n-m)-bit partial IV is incremented by
one. This vector is then combined with different m-bit offset vectors to generate the 2m IVs. The
key distribution is also managed here. A single key is given to the parallel Grain-128 modules and is
updated only when the partial IV is equal to zero.

• Output collector: The outcoming 32-bit vectors from the parallel Grain-128 modules are xored, and
the result is xored again with the intermediate results of the previous runs. The updated intermediate
results are then stored until the u inst signal is asserted. This causes a reset of the 32-bit intermediate
vector and an update of an internal counter.

The m-bit binary representations of the numbers in 0, . . . , 2m − 1 are stored in offset vectors. These
vectors are given to the Grain-128 modules as the last cube bits inside the IV. The correct allocation of the
CV bits inside the IV is performed by the CV routers. These blocks take the partial IV and the offset vectors
to form a 96-bit IV, where the remaining bits are set to zero. When the cube is updated, the offset bits are
reallocated, varying the composition of the IV’s.

In the input generator, the key is also provided by a LSFR with (primitive) feedback polynomial x128 +
x29 + x27 + x2 + 1. This guarantees a period of 2128 − 1, thus ensuring that no key is repeated.

The evaluation of the superpoly for all 256 instances with different pseudorandom keys is performed inside
the output collection module. After the 2n−m queries, the intermediate vector contains the final evaluation
of the superpoly for a single instance. The implementation of a modified Grain-128 architecture with ×32
speedup allows us to evaluate the same cube for 32 subsequent rounds. That is, after the exhaustive simulation
of all possible values of the superpoly, we get the results for the same simulation done with an increasing
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Fig. 3. Architecture of the FPGA cube module. The width of all signals is written out, except for the control signals
in grey.

number of initialization rounds r, 32i ≤ r < 32(i + 1) and i ∈ [1, 7]. This is particularly useful to test the
maximal number of rounds attackable with a specific cube (we don’t have to run the same initialization
rounds 32 times to test 32 distinct round numbers).

Finally, 32 dedicated counters are incremented if the values of the according bit inside the intermediate
result vector is zero or one, respectively. At the end of the repetitions, the counters indicate the proportion
between zeros and ones for 32 different values of increasing rounds. This proportion vector can be constantly
monitored using an IO logic analyzer.

Since the required size of a single Grain-128 core is 180 slices, up to 256 parallel ciphers can be implemented
inside a Virtex-5 LX330 chip (cf. Table 1). This gives m = 8, hence decreasing the number of queries to
2n−8. Table 2 presents the evaluation time for cubes up to dimension 50. The critical path has been kept
inside the Grain-128 modules, so the working frequency of the cube machine is 200 MHz.

Estimate for an ASIC Implementation The utilization of an application-specific integrated circuit
(ASIC) is a further solution to enhance the performances of cube testers on Grain-128. Like in the FPGA,
several parallel cipher modules should run at the same time, decreasing the evaluation period of a cube. Using
the ASIC results presented in [11,14], we could estimate a speed increase up to 400 MHz for a 90 nm CMOS
technology. Evaluating a related area cost of about 10 kGE for a single Grain-128 module (broad estimate),
we could take into account a single chip design of 4 mm×4 mm size, hosting the same number of Grain-128
elements of 256. This leads to a similar ASIC cube tester implementation, which is able to compute a cube
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Table 2. FPGA evaluation time for cubes of different dimension with 2m = 28 parallel Grain-128 modules. Note
that detecting nonrandomness requires the calculation of statistics on several trials, e.g., our experiments involved
64 trials with a 40-bit cube.

Cube dimension 30 35 37 40 44 46 50

Nb. of queries 222 227 229 232 236 238 242

Time 0.17 sec 5.4 sec 21 sec 3 min 45 min 3 h 2 days

in half the time of the FPGA. However, in this rough estimate we omitted several problematics related to
ASIC design, like the expensive fabrication costs or the development of an interface to communicate the
cube indices inside the chip.

6 Search for Good Cubes

To search for cubes that maximize the number of rounds after which the superpoly is still not balanced,
we programmed a simple evolutionary algorithm (EA). Metaheuristic optimization methods like EA’s seem
relevant for searching good cubes, since they are generic, highly parametrizable, and are often the best choice
when the topology of the search space is unknown. In short, EA’s aim to maximize a fitness function, by
updating a set of points in the search space according to some evolutionary operators, the goal being to
converge towards a (local) optimum in the search space.

We implemented in C a simple EA that adapts the evolutionary notions of selection, reproduction, and
mutation to cubes, which are then seen as individuals of a population. Our EA returns a set of cubes, and
is parametrized by

• σ, the cube dimension, in bits.
• µ, the maximal number of mutations.
• π, the (constant) population size.
• χ, the number of individuals in the offspring.
• γ, the number of generations.

Algorithm 1 gives the pseudocode of our EA, where lines 3 to 5 correspond to the reproduction, lines 6 and 7
correspond to the mutation, while lines 8 and 9 correspond to the selection.

Algorithm 1 uses as fitness function a procedure that returns the highest number of rounds for which
it yields a constant superpoly. We chose to evaluate the constantness rather than the balance because it
reduces the number of parameters, thus simplifying the configuration of the search.

Algorithm 1 Evolutionary algorithm for searching good cubes.

1. initialize a population of π random σ-bit cubes
2. repeat γ times
3. repeat χ times
4. pick two random cubes �1 and �2 in the population of π cubes
5. create a new cube with each index chosen randomly from �1 or �2

6. choose a random number i in {1, . . . , µ}
7. choose i random indices in the new cube, replace them by random indices
8. evaluate the fitness of the population and of the offspring
9. replace population by the π best-ranking individuals

10. return the π cubes in the population

In practice, we optimized Algorithm 1 with ad hoc tweaks, like initializing cubes with particular “weak”
indices, e.g., 33, 66, and 68; we indeed observed that these indices appeared frequently in the cubes found by
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a vanilla version of our EA, which suggests that the distribution of monomials containing the corresponding
bits tends to be lesser than that of random monomials. We later initialized the population by forcing the use
of alleged weak indices in certain individuals, and experimental results did not contradict our conjecture.

Note that EA’s can be significantly more complex, notably by using more complicated selection and
mutation rules (see [12] for an overview of the topic).

The choice of parameters depends on the cube dimension considered. In our algorithm, the quality of the
final result is determined by the population size, the offspring size, the number of generations, and the type
of mutation. In particular, increasing the number of mutations favors the exploration of the search space,
but too much mutation slows down the convergence to a local optimum. The population size, offspring size,
and number of generations are always better when higher, but too large values make the search too slow.

For example, we could find our best 6-dimensional cubes (σ = 6) by setting µ = 3, π = 40, χ = 80, and
γ = 100. The search then takes a few minutes. Slower searches did not give significantly better results.

7 Experimental Results

Table 3 summarizes the maximum number of initialization rounds after which we could detect imbalance
in the superpoly corresponding to the first keystream bit. It follows that one can mount a distinguisher for
195-round Grain-128 in time 210, and for 237-round Grain-128 in time 240. The cubes used are given in
Appendix B.

Table 3. Best results for various cube dimensions on Grain-128.

Cube dimension 6 10 14 18 22 26 30 37 40

Rounds 180 195 203 208 215 222 227 233 237

8 Discussion

8.1 Extrapolation

We used standard methods to extrapolate our results, using the generalized linear model fitting of the
Matlab tool. We selected the Poisson regression in the ”log” value, i.e. logarithm as canonical function and
the Poisson distribution, since the achieved results suggested a logarithmic behavior between cube size and
number of round. The obtained extrapolation, depicted on Fig. 4, suggests that cubes of dimension 77 may
be sufficient to construct successful cube testers on the full Grain-128, i.e., with 256 initialization rounds.

If this extrapolation is correct, then a cube tester making 64×277 = 283 chosen-IV queries can distinguish
the full Grain-128 from an ideal stream cipher, against 2128 ideally. We add the factor 64 because our
extrapolation is done with respect to results obtained with statistic over 64 random keys. That complexity
excludes the precomputation required for finding a good cube; based on our experiments with 40-dimensional
cubes, less than 25 trials would be sufficient to find a good cube (based on the finding of good small cubes,
e.g., using our evolutionary algorithm). That is, precomputation would be less than 288 initializations of
Grain-128.

8.2 The Possibility of Key-Recovery Attacks

To apply key-recovery cube attacks on Grain-128, one must find IV terms with a linear superpoly in the
key bits (or maxterms). In general, it is more difficult to find maxterms than terms with a biased superpoly,
since one searches for a very specific structure in the superpoly. Moreover, the internal structure of Grain-128
seems to make the search for maxterms particularly difficult for reduced variants of the cipher: Initially, the
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Fig. 4. Extrapolation of our cube testers on Grain-128, obtained by general linear regression using the Matlab
software, in the “poisson-log” model. The required dimension for the full Grain-128 version is 77 (see zoom on the
right).

key and IV are placed in different registers, and the key bits mix together extensively and non-linearly before
mixing with the IV bits. Thus, the output bit polynomials of Grain-128 in the key and IV variables contain
very few IV terms whose superpoly is linear in the key bits. A natural way to deal with these polynomials
is to apply linearization by replacing non-linear products of key bits with new variables. The linearization
techniques are more complicated than the basic cube attack techniques and thus we leave key-recovery
attacks on Grain-128 as future work.

8.3 Observations on Grain-v1

Grain-v1 is the predecessor of Grain-128. Its structure is similar to that of Grain-128, but the registers are
80-bit instead of 128-bit, the keys are 80-bit, the IV’s are 64-bit, and the initialization clocks the mechanism
160 times (see Appendix C).

The feedback polynomial of Grain-v1’s NFSR has degree six, instead of two for Grain-128, and is also less
sparse. The filter function h has degree three for both versions of Grain, but that of Grain-v1 is denser than
that of Grain-128. These observations suggest that Grain-v1 may have a better resistance than Grain-128 to
cube testers, because its algebraic degree and density are likely to converge much faster towards ideal ones.

To support the above hypothesis, we used a bitsliced implementation of Grain-v1 to search for good
cubes with the EA presented in §6, and we ran cube testers (still in software) similar to those on Grain-128.
Table 4 summarizes our results, showing that one can mount a distinguisher on Grain-v1 with 81 rounds
of initialization in 224. However, even an optimistic (for the attacker) extrapolation of these observations
suggests that the full version of Grain-v1 resists cube testers, and the basic cube attack techniques.

Table 4. Best results for various cube dimensions on Grain-v1.

Cube dimension 6 10 14 20 24

Rounds 64 70 73 79 81
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9 Conclusion

We developed and implemented a hardware cryptanalytical device for attacking the stream cipher Grain-128
with cube testers (which give distinguishers rather than key recovery). We were able to run our tests on
256 instances of Grain-128 in parallel, each instance being itself parallelized by a factor 32. The heaviest
experiment run involved about 254 clockings of the Grain-128 mechanism.

To find good parameters for our experiments in hardware, we first ran light experiments in software with
a dedicated bitsliced implementation of Grain-128, using a simple evolutionary algorithm. We were then able
to attack reduced versions of Grain with up to 237 rounds. An extrapolation of our results suggests that the
full Grain-128 can be attacked in time 283 instead of 2128 ideally. Therefore, Grain-128 may not provide full
protection when 128-bit security is required.
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A Bitsliced Implementation of Grain-128

We present the C code of a function that, given 64 keys and 64 IV’s (already bitsliced), returns the first
keystream bit produced by Grain-128 with rounds initialization rounds.

typedef unsigned long long u64;

u64 grain128 bitsliced64( u64 * key, u64 * iv, int rounds ) {

u64 l[128+rounds], n[128+rounds], z=0;

int i,j;

for(i=0; i<96; i++){
n[i]= key[i];

l[i]= iv[i];

}
for(i=96; i<128; i++){

n[i]= key[i];

l[i]= 0xFFFFFFFFFFFFFFFFULL;

}
for(i=0; i<rounds; i++){

l[i+128] = l[i] ˆ l[i+7] ˆ l[i+38] ˆ l[i+70] ˆ l[i+81] ˆ l[i+96];

n[i+128] = l[i] ˆ n[i] ˆ n[i+26] ˆ n[i+56] ˆ n[i+91] ˆ n[i+96] ˆ
(n[i+ 3] & n[i+67]) ˆ (n[i+11] & n[i+13]) ˆ (n[i+17] & n[i+18]) ˆ
(n[i+27] & n[i+59]) ˆ (n[i+40] & n[i+48]) ˆ (n[i+61] & n[i+65]) ˆ
(n[i+68] & n[i+84]);

z = (n[i+12] & l[i+8]) ˆ (l[i+13] & l[i+20]) ˆ
(n[i+95] & l[i+42]) ˆ (l[i+60] & l[i+79]) ˆ
(n[i+12] & n[i+95] & l[i+95]);

z = n[i + 2] ˆ n[i + 15] ˆ n[i + 36] ˆ n[i + 45] ˆ n[i + 64] ˆ
n[i + 73] ˆ n[i + 89] ˆ z ˆ l[i + 93];

l[i+128] =̂ z;

n[i+128] =̂ z;

}

z = (n[i+12] & l[i+8]) ˆ (l[i+13] & l[i+20]) ˆ
(n[i+95] & l[i+42]) ˆ (l[i+60] & l[i+79]) ˆ
(n[i+12] & n[i+95] & l[i+95]);

z = n[i + 2] ˆ n[i + 15] ˆ n[i + 36] ˆ n[i + 45] ˆ n[i + 64] ˆ
n[i + 73] ˆ n[i + 89] ˆ z ˆ l[i + 93];

return z;

}
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B Cubes for Grain-128

Table 5 gives the indices of the cubes used for finding the results in Table 3.

Table 5. Cubes used for Grain-128.

Cube dimension Indices

6 33, 36, 61, 64, 67, 69
10 5, 28, 34, 36, 37, 66, 68, 71, 74, 79
14 5, 28, 34, 36, 37, 51, 53, 54, 56, 63, 66, 68, 71, 74
18 5, 28, 30, 32, 34, 36, 37, 62, 63, 64, 65, 66, 67, 68, 69, 71,

73, 74
22 4, 5, 28, 30, 32, 34, 36, 37, 51, 62, 63, 64, 65, 66, 67, 68,

69, 71, 73, 74, 79, 89
26 4, 7, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51, 53, 54,

56, 57, 61, 62, 63, 64, 65, 66, 67, 68
30 4, 7, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51, 53, 54,

56, 57, 59, 62, 65, 66, 69, 72, 75, 78, 79, 80, 83, 86
37 4, 7, 12, 14, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51,

53, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 74, 75, 76, 77,
78, 79, 89, 90, 91

40 4, 7, 12, 14, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51,
53, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 74, 75, 76, 77,
78, 79, 86, 87, 88, 89, 90, 91

C Grain-v1

Fig. 5 presents the structure of Grain-v1.
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Fig. 5. Schematic view of Grain-v1’s keystream generation mechanism (numbers designate arities). During initializa-
tion, the output bit is fed back into both registers, i.e., added to the output of f and g.
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