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Abstract. Vortex is a hash function that was first presented at ISC’2008,
then submitted to the NIST SHA-3 competition after some modifica-
tions. This paper describes several attacks on both versions of Vortex, in-
cluding collisions, second preimages, preimages, and distinguishers. Our
attacks exploit flaws both in the high-level design and in the lower-level
algorithms.

1 Introduction

Vortex is the name of an AES-based hash function proposed by Gueron and
Kounavis [5] at ISC’2008, and is also the name of the modified version [8] sub-
mitted to the NIST Hash Competition1. To distinguish between the two, we call
them Vortex-0 and Vortex-1, respectively. We present attacks on both, making
the latter unsuitable for selection as SHA-3. Table 1 summarizes our results.

The paper is structured as follows: §2 briefly introduces the hash functions
Vortex-0 and Vortex-1; §3 shows that many digests cannot be produced by Vortex

(both versions); §4 and §5 present collision attacks for Vortex-0 and Vortex-1,
respectively; second preimage attacks on Vortex-1 are given in §6, and preimage
attacks in §7. Finally, §8 concludes, and Appendix A provides details on the
collision attack on Vortex-0.

2 Vortex-0 and Vortex-1

2.1 Vortex-0

Vortex-0 is a Merkle-Damg̊ard iterated hash function with 256-bit chaining value
and 256-bit digest. Given a 2×128-bit chaining value A‖B and a 4×128-bit
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Table 1. Summary of our results on Vortex-0 and Vortex-1 (256-bit digest).

Target Type Time Memory Section

Vortex-0 distinguisher 297 negl. 3
Vortex-1 distinguisher 297 negl. 3
Vortex-0 collision 262 negl. 4
Vortex-1 pseudo-collision 264 negl. 5.1
Vortex-1 free-start collision 264 negl. 5.2
Vortex-1 collision 2124.5 2124.5 5.3
Vortex-1 second-preimage⋆ 2129 negl. 6.1
Vortex-1 second-preimage⋆⋄ 233 2135 6.1
Vortex-1 second-preimage 2192 264 6.3
Vortex-1 preimage 2195 264 7

⋆: for a small class of weak messages
⋄: with 2135 precomputation time

message block W0‖W1‖W2‖W3, the compression function of Vortex-0 sequentially
computes

A‖B ← (A‖B)⊕ subblock(A,B,W0,W1)

A‖B ← (A‖B)⊕ subblock(A,B,W2,W3)

and returns the new A‖B as the new chaining value (or as the digest, if the
message block is the last one). The function subblock(A,B,Wi,Wj) returns the
256-bit value

V
(

CWi
(A),CWj

(B)
)

.

The block cipher C is a reduced version of AES with three rounds and a simplified
key schedule.

The merging function V : {0, 1}256 7→ {0, 1}256 takes two 128-bit inputs A
and B, which are parsed as four 64-bit words as A1‖A0 ← A and B1‖B0 ← B.
The function V updates these words as follows (“⊗” denotes carryless multipli-
cation2, and integer addition is modulo 264):

• L1‖L0 ← A1 ⊗B0

• O1‖O0 ← A0 ⊗B1

• A0 ← A0 ⊕ L0

• A1 ← A1 ⊕O1

• B0 ← B0 + O0

• B1 ← B1 + L1

Note that the new A1 has the same most significant bit (MSB) as the original
A1. This is because O1‖O0 is the 128-bit representation of a polynomial of degree

2The carryless multiplication used in Vortex corresponds to the new PCLMULQDQ
instruction in Intel processors, which multiplies two polynomials over GF(2) of degree
at most 63 and return a polynomial of degree at most 126.



at most 126 (A1 and B1 respresent polynomials of degree at most 63). Hence,
the MSB of O1 will always be zero since it encodes the coefficient of the term of
degree 127.

Another observation on the structure of V was given by Ferguson [4]: he
observed that the least significant bit (LSB) of the new A0 and of the new B0

are equal with probability 5/8, leading to a distinguisher for both versions of
Vortex.

2.2 Vortex-1

Vortex-1 is very similar to Vortex-0 but it has a different compression function,
which computes

A‖B ← subblock(A,B,W0,W1)

A‖B ← subblock(A,B,W2,W3)

Note that, compared to the original version, Vortex-1 omits the feedforward of
the chaining value A‖B. Furthermore, subblock(A,B,Wi,Wj) now computes

A‖B ← V (CA(Wi)⊕Wi,CB(Wi)⊕Wi)

A‖B ← V (CA(Wj)⊕Wj ,CB(Wj)⊕Wj) ,

where, in the 256-bit version, A, B, Wi, and Wj are 128-bit words (see also
Fig. 1). The AES-like cipher C still makes three rounds, and the V function is
the same as in Vortex-0. Note that the compression function of Vortex-1 is similar
to MDC-2 [10], except that the final transform V is not a permutation (see §3).

The iteration mode of Vortex-1 slightly differs from the classical Merkle-
Damg̊ard: the last message block is 256-bit, instead of 512-bit for the previous
blocks, and is processed differently. A detailed description of this mode is not
necessary to the understanding of our attacks.

A 512-bit version of Vortex-1 is described in [8]; instead of 128-bit Rijndael
rounds, 512-bit Vortex-1 uses 256-bit Rijndael rounds. The merging function V is
similar but with words which are twice as large, and the message blocks are twice
as large as well. The attacks in this paper are mainly described on the 256-bit
version, but apply to the 512-bit version as well (with higher complexities).

3 On impossible images of V

We show that both versions of Vortex have impossible images. That is, the range
of Vortex-0 and Vortex-1 does not span their codomain {0, 1}256. This observation
allows slightly faster preimage and collision search, and can be used to mount
distinguishers on function ensembles based on Vortex (e.g. HMAC [2]).

Both Vortex-0 and Vortex-1 use the V function after each evaluation of C.
In particular, their final output is an output of V . But V is non-surjective.
Hence, there exist impossible images by the Vortex hash functions. Experiments
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Fig. 1. Schematical view of Vortex-1’s subblock function (a hatch marks the key input).

on reduced versions suggest that V behaves more like a random function than
like a random permutation: for example, with 12-bit A and B, about 66% of
the outputs are reachable (against 1 − 1/e ≈ 63% for a random function)3. It
appears that the longer A and B, the closer V is to a random permutation.

We let hereafter RV be the range of V ; we thus have RV ( {0, 1}256.

3.1 Fixed points

Any input of the form (A1‖A0, B1‖B0) = (0‖x, 0‖y) or (z‖0, w‖0) is a fixed point
for V . Indeed, we then get

L1‖L0 = O1‖O0 = 0‖0

and thus the input is unchanged by the V transform. There are 2129 − 1 such
fixed points.

3.2 Multicollisions for V

Recall that a multicollision for a hash function is a set of distinct messages that
map to the same digest; when there are r messages, we talk of an r-collision (a
collision is thus a 2-collision).

3Note that a random function {0, 1}n 7→ {0, 1}n has in average about 63% of its
outputs reachable, but a random function {0, 1}m 7→ {0, 1}n, m > n + log n, has the
space {0, 1}n as range with high probability.



We present a simple method to find multicollisions for V : set A1 = B1 = 1,
and choose a A0 and a B0 that have no bit “1” at the same position; that
is, A0 ∧ B0 = 0, where ∧ is logical AND (for example, A0 = FF00 . . . 00 and
B0 = 00FF . . .). The V function then sets:

• L1‖L0 ← 0‖B0

• O1‖O0 ← 0‖A0

• A0 ← A0 ⊕ L0 = A0 ⊕B0

• A1 ← A1 ⊕O1 = 1
• B0 ← B0 + O0 = B0 + A0 = B0 ⊕A0

• B1 ← B1 + L1 = 1

The equality B0 + A0 = B0 ⊕A0 holds because A0 and B0 were chosen with no
bit “1” at the same position, thus avoiding carries in the modulo 264 addition.

Now one can modify the initial A0 and B0 such that A0 ⊕ B0 remains un-
changed (and still have no bit “1” at the same position), which does not affect
the output. Note that this even allows multicollisions, since for a given pair
(A0, B0) there exist many colliding modified pairs.

One can easily derive an upper bound on |RV | from the above technique: all
images obtained have the form (A1‖A0, B1‖B0) = (1‖x, 1‖x), and we can find
preimages for any choice of x. In particular, for a x of weight i, 0 ≤ i ≤ 64,
we can find 2i preimages, and deduce that there are 2i − 1 256-bit values that
are impossible images by V . In total there are

(

64
i

)

weight-i images, so we have
about

64
∑

i=0

(

64

i

)

· 2i ≈ 2101

impossible images, i.e. |RV | < 2256−2101. It follows that search for preimages and
collisions is slightly faster than expected. Note that this remark also applies to
the new (third) version of Vortex, as presented at the First SHA-3 Conference [7].

3.3 Inverting V

Given a random element y of {0, 1}256, the best generic algorithm to decide
whether y lies in RV is to try all the 2256 inputs. Below we describe an algorithm
that solves this problem much faster, and finds a preimage of y when y ∈ RV .

• Let y = C‖D = C1‖C0‖D1‖D0 be the given 256-bit output value.
• Guess the 43 LSBs of A0 and B1 (286 choices).
• From the 43 LSBs of A0 and C0, deduce the 43 LSBs of L0.
• From the 43 LSBs of B1 and D1, deduce the 43 LSBs of L1.
• From the 43 LSBs of A0 and of B1, deduce the 43 LSBs of O0.
• From the 43 LSBs of O0 and D0, deduce the 43 LSBs of B0.
• From the 43 LSBs of B0 and of L0, deduce the 43 LSBs of A1.
• From the 43 LSBs of L1, of A1, and of B0, find the 20 + 21 unknown

bits of A1 and B0 by solving a linear system of equations.
• From the 43 LSBs of A1 and C1, deduce the 43 LSBs of O1.



• From the 43 LSBs of O1, of A0, and of B1, find the 21 + 21 unknown
bits of A0 and B1 by solving a linear system of equations.

• If no solution for A and B is found (which happens when the systems
of equations contain contradictions), return “y /∈ RV ”, else return “y ∈
RV ” and the preimage found.

The running time of the algorithm is dominated by the solving of two sets of 42
GF(2) equations for each guess, i.e., in total finding 286 solutions (we guess 86
bits) to a set of 42 equations in 42 unknowns over GF(2). These systems have
to be solve only once, thus a rough estimate yields complexity 422 × 286 ≈ 297.
Note that parallelism provides a linear speedup to this algorithm.

We can now distinguish the output of Vortex from a random string by running
the above algorithm (if the algorithm fails to find a preimage of the output, then
the string was not produced by Vortex).

Note that similar claims may be made about a Merkle-Damg̊ard hash func-
tion based on a Davies-Meyer compression function (e.g. SHA-1), when the last
block is a full padding block. In such a case, the output space is indeed only 63%
of the possible values. However, unlike the case of Vortex, this space changes
when the padding changes (i.e., a different number of bits is hashed). Moreover,
in the case of a Merkle-Damg̊ard construction with a Davies-Meyer compres-
sion function, the adversary has to try all possible input chaining values before
deducing that the output is indeed not in the range of the specific case of the
function, which is clearly not the case for Vortex.

4 Collision attack on Vortex-0

We present a collision attack on Vortex-0 that exploits structural properties of
the subblock function, assuming that the block cipher C is ideal. In Appendix A,
we prove that the actual C cipher in Vortex-0 is close enough to an ideal cipher
to be vulnerable to our attack.

The attack goes as follows: given the IV A‖B, choose arbitrary W1,W2,W3,
and compute CW0

(A) for 264 distinct values of W0; in the ideal cipher model, one
thus gets 264 random values, each uniformly distributed over {0, 1}128, hence a
collision

CW0
(A) = CW ′

0
(A)

occurs with probability 1 − 1/e2 ≈ 0.39 (by the birthday paradox), which di-
rectly gives a collision for the compression function. The cost of this attack is
264 evaluations of C (which is equivalent to 262 evaluations of the compression
function of Vortex-0), whereas 2128 compressions was conjectured in [5] to be a
minimum.

The attack would not work if the map key-to-ciphertext induced by C were
significantly more injective than a random function. In Appendix A, we prove
that, under reasonable assumptions, we have, for any x ∈ {0, 1}128

Pr
K,K′

[CK(x) = CK′(x)] ≈
1

2128
.



More precisely, we show that for C with two rounds (denoted C2), instead of
three, we have

Pr
K,K′

[C2
K(x) = C2

K′(x)] =
2128 − 2

(2128 − 1)2
≈

1

2128
,

which means that our collision attack works with the actual C.

5 Collision attacks on Vortex-1

5.1 Pseudo-collisions

We now show how to find a pair of colliding messages for Vortex-1 with two
distinct IV’s, of the form A‖B and A′‖B, respectively, for any fixed B and
random A and A′. Observe that for an IV A‖B, the 128-bit A is used only once
in the compression function, to compute CA(W0). One can thus find a collision
on the compression function by finding a collision for CA(W0)⊕W0: fix W0 and
cycle through 264 distinct A’s to find a collision with high probability. One can
thus find a pseudo-collision for two IV’s A‖B and A′‖B in 265 evaluations of C

(264 for A and 264 for A′), instead of 2128 compressions ideally.

5.2 Free-start collisions

We show how to find a pair of colliding messages for Vortex-1 with any IV of the
form A‖B = A‖A, which we call a symmetric IV. It suffices to find W0,W

′
0 such

that

CA(W0)⊕W0 = CA(W ′
0)⊕W ′

0

to get two colliding messages with the same random IV. When the IV is fixed
(and not symmetric) one can precompute a message block that leads to an IV
A‖A within 2128 trials, and then find collisions in 264.

5.3 Full collisions

As mentioned in §2.2, Vortex-1’s construction is very similar to MDC-2 [10]; a
recently discovered collision attack on MDC-2 [6] applies to Vortex-1 as well.
In the following, n denotes the size of C’s block (128 and 256 for the 256- and
512-bit versions of Vortex-1, respectively).

For ease of exposition, we introduce the notation halfsubblock(h‖h̃,Wi) to
denote, in subblock, the result of the operations

1. a← Ch(Wi)⊕Wi

2. ã← Ch̃(Wi)⊕Wi

3. h‖h̃← V (a‖ã)



We write mmo(x, y) = Cx(y)⊕y. The function halfsubblock can then be written:

halfsubblock(h‖h̃,m) = V
(

mmo(h,m)‖mmo(h̃,m)
)

.

Let A‖Ã = halfsubblock(h‖h̃,m), where |A| = |Ã| = n. The idea of the collision
attack is to first find (by brute force) an r-collision in the variable A, resulting in
r different values Ã1, . . . , Ãr of Ã. The n-bit message sub-blocks producing the
r-collision are denoted by W i

0, i = 1, . . . , r. Then, one finds a message sub-block
W1 such that mmo(Ãi,W1) = mmo(Ãj ,W1) for some i 6= j. Since Ai = Aj , we
know that mmo(Ai,W1) = mmo(Aj ,W1), and hence we have found a two-block
collision.

More precisely, given an arbitrary chaining value h‖h̃, one proceeds as follows
(see also Fig. 2).

1. Find r different message blocks W i
0, i = 1, . . . , r, such that

Ai‖Ãi = V (mmo(h,W i
0)‖mmo(h̃,W i

0)),

for 1 ≤ i ≤ r, and Ai = Aj for all i, j.

2. Choose an arbitrary message block W1, and compute B̃i = mmo(Ãi,W1)
for all i, 1 ≤ i ≤ r. If B̃i = B̃j for some i, j, i 6= j, then the two messages

W i
0‖W1 and W j

0 ‖W1, collide, since mmo(Ai,W1) = mmo(Aj ,W1). If no such
pair exists, repeat this step with a different choice of W1.

h h̃

W i

0

? ?

mmo mmo

?

? ?

?

V

W1

??

mmo

?

??

mmo

?

V

? ?

Fig. 2. The collision attack on Vortex-1. Thick lines mean that there are r different
values of this variable. Thin lines mean that there is only one.



Finding the r-collision in step 1 requires the equivalent of about (r!×2(r−1)n)1/r

evaluations of halfsubblock [12]. In the second step, mmo is evaluated r times.
Assuming that V takes negligible time compared to mmo, the r evaluations of
mmo correspond to about r/2 applications of halfsubblock. If evaluating V is less
efficient than assumed here, then the complexity of step 2 in terms of evaluations
of halfsubblock is lower. For each choice of W1 in step 2, the probability that a
collision is found is about

(

r
2

)

× 2−n = r(r − 1)/2 × 2−n. Hence, the expected
time spent in step 2 is about 2n/(r − 1).

For the optimal r (14), our attack on 256-bit Vortex-1 runs in 2124.5, and
requires as much memory. For the 512-bit version, the optimal r is 24, and the
attack runs in time 2251.7. These attacks work as well on the latest version of
Vortex, as presented in [7].

6 Second-preimage attacks on Vortex-1

6.1 Second preimages for weak messages

We now show how to find second preimages of messages that produce a symmet-
ric chaining value (that is, of the form A‖A) during the digest computation. A
key observation is that if A = B and is of the form (x‖0) or (0‖y), then V (A,B)
maintains the equality of A and B.

The attack works as follows: given a message that produces the chaining
value Ã‖Ã, find a message that leads after V to a symmetric chaining value
A‖B = A‖A. Then find message blocks that preserve the symmetry and that
eventually give A = Ã (after as many blocks as in the original message). One
then fills the new message with the blocks of the original message to get a
second preimage of it. Reaching the first symmetric chaining value costs about
2128, preserving the property for each step costs 264, and the connection costs
2128. The total complexity is thus about 2129. Note that the computation of a
message that leads to a symmetric chaining value is message-independent, hence
can be precomputed.

This attack, however, applies with low probability to a random message of
reasonable size: for a random m-bit message, there are about ⌊m/128⌋−1 “chain-
ing values” (note that we can connect inside the compression function as well),
thus the probability that a random message is weak is

1− (1− 2−128)⌊m/128−1⌋,

which approximately equals 2−128 × ⌊m/128− 1⌋ for short messages.

6.2 Time-memory tradeoff

We show that a variant of the above attack with precomputation 2135 and mem-
ory 2135 for bits runs in only 233 trials, using the tree-construction technique
in [1].



Consider a set of special chaining values

S =
{

(x||0)‖(x||0), x ∈ {0, 1}64
}

∪
{

(0||y)‖(0||y), y ∈ {0, 1}64
}

.

As noted earlier, these chaining values are maintained under the V transforma-
tion. The preprocessing phase is composed of three phases:

1. Find a message block W such that A‖A← V (CIV0
(W )⊕W,CIV1

(W )⊕W )
where the IV is treated as IV = IV0‖IV1.

2. For each B, find a special chaining value s and a message word W ′ such that

Cs(W
′)⊕W ′ = B ,

and store it in a table for each possible B.
3. For each s ∈ S, find two message blocks W1 and W2 such that

Cs(W1)⊕W1,Cs(W2)⊕W2 ∈ S .

It is easy to see that the first precomputation phase takes 2128 calls to V (C(·)||C(·)),
and outputs one message word of 128 bits to memorize. The second phase can be
done by picking s ∈ S and message words W at random, until all outputs B are
covered. Assuming that the process is random (i.e., by picking s and W randomly
and independently from previous calls) we can model the problem as the coupon
collector (see e.g. [11, p.57]), which means that about ln(2128) · 2128 < 2135 com-
putations are performed, and about 2128 memory cells are needed. Finally, the
third phase can be done in means of exhaustive search for each special chaining
value s, and we expect about 264 computations for each of the 265 − 1 special
values. The memory needed for the output of the last precomputation is about
266 memory cells. With respect to the precomputation we note that it is entirely
parallelizable, and can enjoy a speed up of a factor N given N processors.

The online phase of the attack is as follows. Given the weak message that
has a chaining value Ã‖Ã, we find in the first table the special chaining value
s ∈ S and the message block W that lead to Ã‖Ã. We then start from the IV ,
and using the precomputed message blocks, reach a state s′ ∈ S. Now we have
to find a path of message blocks from s′ to s. This is done by randomly picking
message blocks from s′ which maintain the chaining value in the special set, until
the distance between the reached state s′′ and s is 65 message blocks.

To connect s′′ and s we use the tree-construction technique described in [1]:
from s′′ one constructs a tree with all the 233 possible special chaining values
reachable after 33 blocks; similarly, one constructs a tree with the (expected)
232 possible chaining values that may arrive to s after 32 blocks. As the size of
the space is about 265, we expect a collision, and a path from s′′ to s.

The preprocessing of this phase costs 2128 trials, storage is 264, and the on-
line complexity is composed of performing a birthday on space of about 265

values—which we expect to take about 233 operations. So given about 2128 pre-
computation, storage for 2135 bits that needs to be accessed once (store it on
DVDs and put them in the closet), storage for 271 bits that is going to be accessed
randomly, the online complexity of the attack is only 233.



6.3 A second preimage attack

This attack is based on a partial meet-in-the-middle attack, and finds a second
preimage for any message. The attack applies to messages of three partial blocks
or more (i.e., 384 bits or more), and replaces the first three blocks. We denote
the consecutive chaining values of these partial blocks by IV = A0‖B0, A1‖B1,
A2‖B2, A3‖B3, etc., and write

W ⊕ CW (A2)||W ⊕ CW (B2) = X2‖Y2 ,

so that A3‖B3 = V (X2, Y2).
The attack goes as follows:

1. For every A2 = 0||x (where x is 64-bit), the attacker tries all W ’s, until he
finds Wx such that Wx⊕CWx

(0||x) = X2. On average, there is one such Wx

for each x. The attacker stores the pairs (x,Wx) in a table.
2. The attacker takes 2192 two partial block messages, and computes for them

A2||B2. If A2 is not of the form 0||x, the attacker discards the message;
otherwise (i.e., A2 = 0‖y), the attacker retrieves Wy from the table, and
checks whether Y2 equals CWy

(B2)⊕Wy. If yes, the two partial blocks along
with Wy, can replace the first three message blocks of the original message.

As we start with 2192 messages, we expect about 2128 messages which generate
the required pattern for A2. For each of these messages, the probability that
indeed Y2 = CWy

(B2) ⊕Wy, is 2−128, and thus we expect one second preimage
to be found.

We note that if multiple computing devices are available, they can be used
efficiently. By picking the special structure of A2, it is possible to “discard”
many wrong trials, and access the memory very rarely. It is also possible to
route the queries in the second phase between the various devices if each device
is allocated a different segment of the special A2’s. Once one of the devices finds
a message block which leads to a special A2, it can send the message block to
the computing device.

Finally, note that the attacks presented in this section apply as well to the
most recent version of Vortex, as presented in [7].

7 Preimage attacks on Vortex-1

A preimage attack on MDC-2 having complexity below the brute force complex-
ity of 22n (where, again, n is the size of the underlying block cipher) has been
known for many years [9]. The attack has time complexity about 23n/2. The
attack applies to Vortex-1 as well, but is slightly more complicated due to the
finalization process, and due to V not being efficiently invertible.

Consider first a second preimage attack, where the chaining value after pro-
cessing the first t− 1 message blocks of the first preimage is known. That is, we
can ignore the EMD extension [3] for now. Let this chaining value be hT‖h̃T.
We may find a second preimage by the following meet-in-the-middle method,



similar to the attack described in [9] (mmo is defined as in the collision attack
described in §5.3).

1. Compute Z‖Z̃ = V −1(hT‖h̃T) by inverting V as described in §3.3.
2. Pick a W3 and search for a such that mmo(a,W3) = Z.
3. Likewise, compute mmo(ã,W3) for many different values of ã, until mmo(ã,W3) =

Z̃.
4. Repeat 2n/2 times the above two steps with different choices of W3. This

yields 2n/2 values of a‖ã and W3 such that halfsubblock(a‖ã,W3) = hT‖h̃T.
5. Compute

halfsubblock(halfsubblock(halfsubblock(h0‖h̃0,W0),W1),W2)

for different choices of W0,W1,W2, until a triple is found such that

halfsubblock(halfsubblock(halfsubblock(h0‖h̃0,W0),W1),W2) = a‖ã

for some a‖ã computed in the previous step.

Here we produce a preimage W0‖W1‖W2‖W3 of hT‖h̃T, ignoring padding and
the EMD extension. Step 1 takes expected time 297 (see §3.3), and Steps 2 and 3
can be done combined in time about 2n each, which means that when repeated
2n/2 times, the time complexity is about 23n/2. Step 5 takes expected time about
23n/2 in terms of evaluations of halfsubblock. Hence, the total time complexity is
roughly 23n/2+1. Taking length padding into account is not a problem in Step 5.
One may simply partially hash a message of the appropriate length, and carry
out Step 5 starting from the resulting intermediate hash value.

In a preimage attack we do not know the chaining value before the EMD
extension. However, we can invert the hash function through the EMD extension
as follows. Let the target image be hT‖h̃T. First, we note that the EMD extension
can be seen as a short Merkle-Damg̊ard iteration by itself, using a single 512-bit
message block (in the 256-bit case), or equivalently, four 128-bit message blocks
W0,W1,W2,W3. The initial value of this Merkle-Damg̊ard iteration is T‖T̃ ; the
first two sub-blocks, W0 and W1, form the chaining value from the processing of
the first t− 1 message blocks, and the last two sub-blocks, W2 and W3, contain
at least 65 bits of padding. W2 and W3 are treated specially, since the subblock

function is applied to them five times.

1. Choose a final message length, and construct 2n/2 different versions of W2‖W3,
e.g., varying bits in W2 only (at least 65 bits in W3 are fixed by the choice
of message length and one bit of padding).

2. For each version of W2‖W3, invert five times the function subblock using the
same technique as in steps 1–3 above. Now we have 2n/2 values of a‖ã and
W2‖W3 such that subblock5(a‖ã,W2,W3) = hT‖h̃T.

3. Compute halfsubblock(halfsubblock(T‖T̃ ,W0),W1) for different choices of W0,W1,
until a pair is found such that

halfsubblock(halfsubblock(T‖T̃ ,W0),W1) = a‖ã

for some a‖ã computed in the previous step.



The attack yields a chaining value W0‖W1 that may be used in place of hT‖h̃T

in the second preimage attack described above. Hence, one may now carry out
this attack, keeping in mind that the message length has been fixed.

The time required to invert through the EMD extension is about 21× 23n/2

(two inversions of each of mmo and V are needed per application of the subblock

function). The different phases of the attack can be scaled differently to reduce
the time complexity by a factor about four. Of course, the attack also fixes the
padded version of the t-th message block W2‖W3.

Our attack runs in 2195 on the 256-bit version, and in 2387 on the 512-bit
version, with memory requirements about 264 and 2128, respectively.

8 Conclusion

We presented several attacks on the hash function Vortex as submitted to NIST,
and on its original version. The new version of Vortex appears to be stronger
than the original, but fails to provide ideal security against collision attacks and
(second) preimage attacks, and suffers from impossible images, which slightly
reduces the entropy of a digest. These results seem to make Vortex unsuitable
as a new hash standard. As a response to our attacks, another new version of
Vortex was presented at the First SHA-3 Conference [7].
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A Why the collision attack on Vortex-0 works

In Vortex-0 a round consists of the AddRoundKey operation (which xors the 128-
bit round key with the 128-bit state), followed by a permutation defined by the
sequence SubBytes, ShiftRows, and MixColumns. The key schedule of C is much
simpler than that of Rijndael: given a 128-bit key K, it computes the 128-bit
rounds keys

RK1 ← π1(K)

RK2 ← π2(RK1)

RK3 ← π3(RK2)

where the πi’s are permutations defined by S-boxes, bit permutations and addi-
tion with constants. We denote RKK

i a round key derived from K.

Denote ΠK
i the permutation corresponding to the i-th round of C; Πi depends

of the RKi derived from K. Observe that for any state x and any distinct keys
K,K ′, we have K ⊕ x 6= K ′ ⊕ x, therefore for any x

ΠK
i (x) 6= ΠK′

i (x).

In other words, a 1-round C mapping a key to a ciphertext, for any fixed plain-
text, is a permutation. In the following we show that for 2 rounds it is not a
permutation.

From the above observation, we have, for any K 6= K ′, and for any x1, x2,

ΠK
1 (x1) 6= ΠK′

1 (x1)

ΠK
2 (x2) 6= ΠK′

2 (x2)
.



We show that, however, the probability over K,K ′, x that

ΠK
2 ◦ΠK

1 (x) = ΠK′

2 ◦ΠK′

1 (x)

is nonzero, and is even close to what one would expect if Π2 ◦Π1 were a random
permutation; in the latter, for clarity, we write Πi = ΠK

i , Π ′
i = ΠK′

i , and
Π = {Π1,Π2}, Π ′ = {Π ′

1,Π
′
2}. Recall that Πi, Π ′

i are permutations such that:
∄x,Πi(x) = Π ′

i(x), for i = 1, 2.

We now compute the probability of a collision after two rounds. First, observe
that

Pr
Π,Π′,x

[Π1 ◦Π2(x) = Π ′
1 ◦Π ′

2(x)] = Pr
y 6=y′,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)] .

The probability holds over random distinct 128-bit y and y′. We have (with
N = 2128):

Pr
y 6=y′,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)] =
1

N

N−1
∑

y=0

Pr
y′ 6=y,Π1,Π′

1

[Π1(y) = Π ′
1(y

′)]

=
1

N

N−1
∑

y=0

1

N − 1

N−1
∑

Π1(y)=0,Π1(y) 6=y

Pr[Π1(y) = Π ′
1(y

′)]

=
1

N

N−1
∑

y=0

1

N − 1

N−1
∑

Π1(y)=0,Π1(y) 6=y

(0 + (N − 2)×
1

N − 1
)

=
1

N

N−1
∑

y=0

N − 2

(N − 1)2

=
N − 2

(N − 1)2
=

2128 − 2

(2128 − 1)2
≈

1

2128
.

The above result suggests that the 2-round C seen as a key-to-ciphertext
mapping, for any fixed plaintext, has a distribution close to that of a random
function. With three rounds, the distribution is much closer to that of a random
function. Therefore, the birthday paradox is applicable, and so our attack works
on the real Vortex-0 algorithm.


