
Differential and invertibility properties of BLAKE (full version)∗

Jean-Philippe Aumasson1,†, Jian Guo2,‡, Simon Knellwolf3,§, Krystian Matusiewicz4,¶, and Willi Meier3,‖

1 Nagravision SA, Switzerland
2 Nanyang Technological University, Singapore

3 FHNW, Switzerland
4 Technical University of Denmark, Denmark

Abstract. BLAKE is a hash function selected by NIST as one of the 14 second round candidates for
the SHA-3 Competition. In this paper, we follow a bottom-up approach to exhibit properties of BLAKE
and of its building blocks: based on differential properties of the internal function G, we show that a
round of BLAKE is a permutation on the message space, and present an efficient inversion algorithm.
For 1.5 rounds we present an algorithm that finds preimages faster than in previous attacks. Discovered
properties lead us to describe large classes of impossible differentials for two rounds of BLAKE’s internal
permutation, and particular impossible differentials for five and six rounds, respectively for BLAKE-
32 and BLAKE-64. Then, using a linear and rotation-free model, we describe near-collisions for four
rounds of the compression function. Finally, we discuss the problem of establishing upper bounds on
the probability of differential characteristics for BLAKE.

Keywords: BLAKE, cryptanalysis, hash functions, SHA-3

1 Introduction

BLAKE [1] is one of the 14 designs selected for the second round of the SHA-3 Competition organized by
the U.S. National Institute of Standards and Technology. BLAKE uses HAIFA as [2] operation mode, with
some simplifications. Its compression function is based on a keyed permutation that reuses internals of the
stream cipher ChaCha [3]. Wordwise operations are integer addition, XOR, and rotation (AXR). Depending
on the output length BLAKE works on 32-bit or 64-bit words. If necessary we refer to the specific instances
by BLAKE-32 and BLAKE-64 respectively.

In a previous work, Ji and Liangyu [4] presented a preimage attack on round-reduced versions of BLAKE-
32 and BLAKE-64 with up to 2.5 rounds (out of 10 and 14 respectively). In particular they described a
method with complexity 2192 to find preimages of BLAKE-32 reduced to 1.5 rounds.

Contribution of this paper. We establish differential properties of the permutation used in the com-
pression function of BLAKE and investigate invertibility of one and more rounds. Following a bottom-up
approach, we first state differential properties of the core function G. We exploit them to show injectivity of
one round of the permutation with respect to the message space. We derive explicit input-output equations
for G, which yield an efficient algorithm to invert one round and an improved algorithm to find a preimage

∗Full version of paper presented at FSE 2010. Supported in part by European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

†Work done while this author was with FHNW, Switzerland, and supported by the Swiss National Science Fun-
dation under project no. 113329.

‡The paper was partly done during the author’s visit to Technical University of Denmark and was partly supported
by a DCAMM grant there.

§Supported by Hasler Foundation http://www.haslerfoundation.ch under project number 08065.
¶Supported by the grant from the Danish Research Council for Technology and Production Sciences number

274-07-0246.
‖Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.

of 1.5 rounds (in 2128 for BLAKE-32). Then we exploit differential properties of G to find large classes of
impossible differentials for one and two rounds, and specific impossible differentials for five and six rounds of
BLAKE-32 and BLAKE-64 respectively. Using a linear and rotation-free model of G we find near-collisions
for the compression function with four specific rounds, in 256 trials. Finally we discuss the problem of finding
upper bounds on the probability of a differential characteristic for BLAKE, and more generally for AXR
algorithms. We give bounds on the probability of any type of characteristic for some given difference in a
message block.

2 Preliminaries

This section describes the compression function of BLAKE and then fixes notations used in the rest of this
paper. A complete specification of BLAKE can be found in [1].

2.1 The compression function of BLAKE

The compression function of BLAKE processes a 4×4 state of 16 words v0, . . . , v15. This state is initialized
by a chaining value h0, . . . , h7, a salt s0, . . . , s3, a counter t0, t1, and constants k0, . . . , k7 as depicted below:









v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15









←









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ k0 s1 ⊕ k1 s2 ⊕ k2 s3 ⊕ k3

t0 ⊕ k4 t0 ⊕ k5 t1 ⊕ k6 t1 ⊕ k7









The initial state is processed by 10 or 14 rounds for BLAKE-32 and BLAKE-64 respectively. A round is
composed of a column step:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)

followed by a diagonal step:

G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14).

The G function depends on a position index s ∈ {0, . . . , 7} (indicated as subscript), a round index r ≥ 0, a
message block m0, . . . ,m15, and constants k0, . . . , k15. At round r of BLAKE-32, Gs(a, b, c, d) computes

1 : a← (a + b) + (mi ⊕ kj) 5 : a← (a + b) + (mj ⊕ ki)
2 : d← (d⊕ a) ≫ 16 6 : d← (d⊕ a) ≫ 8
3 : c← (c + d) 7 : c← (c + d)
4 : b← (b⊕ c) ≫ 12 8 : b← (b⊕ c) ≫ 7

with i = σr(2s) and j = σr(2s + 1), where {σr} is a family of permutations of {0, . . . , 15} (see Appendix A).
In BLAKE-64, the only differences—besides the word size—are the rotation constants, respectively set to
32, 25, 16, and 11.

For a fixed message block m, G is invertible and so a series of rounds is a permutation of the state. One
may view the permutation as a block cipher with key m. After the 10 or 14 rounds the new chaining value
h′

0, . . . , h
′
7 is computed as

h′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8 h′

4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9 h′

5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10 h′

6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11 h′

7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

.

Observe that in the definition of G, we write the first line as “a ← (a + b) + (mi ⊕ kj)”, instead of
“a← a + b + (mi ⊕ kj)”. This is to avoid ordering ambiguities when computing probabilities of differential
characteristics. For instance, a difference in mi propagates through one addition in the former case, and
through two additions in the latter, when interpreted as “a ← a + (b + (mi ⊕ kj))”, idem for the fifth line.
Clearly, one can simultaneously use different characteristics in this model as being equivalent to a single
characteristic in a model that does not make any assumption on the order of the operations.

2

2.2 Notations

The symbols ∧ and ∨ denote logical AND and OR. Numbers in hexadecimal basis are written in typewriter
(for example, ABCDEF01). A difference ∆ always means a difference with respect to XOR, that is, two words
m and m′ have the difference ∆ if m⊕∆ = m′. The Hamming weight of word m is denoted |m|, the Hamming
weight of (m ∧ 7FF · · · FF), that is, the Hamming weight of m excluding the most significant bit (MSB), is
denoted ‖m‖. A differential characteristic (DC) for BLAKE is the sequence of differences followed through
application of addition, XOR, and rotation. In contrast a differential only consists in a pair of input and
output differences.

When analyzing the differential behavior of the G function, we use the following notation:

∆a : initial difference in a
∆â : difference in the intermediate value of a set at line 1
∆a′: final difference in a
∆i : difference in mi

Analogous notations are used for differences in b, c, d, and mj . For instance, if ∆a = ∆i = 0 and ∆b =
80 · · · 00, then ∆â = 80 · · · 00.

3 Differential properties of the G function

This section enumerates properties of the G function. We first consider the case of differences in mi and mj

only, and then consider the general case with input differences in the state. Finally we briefly look at the
inverse of G.

3.1 Differences in the message words only

All statements below assume zero input difference in the state words, that is, ∆a = ∆b = ∆c = ∆d = 0.

Proposition 1. If (∆i = 0) ∧ (∆j 6= 0), then (∆a′ 6= 0) ∧ (∆b′ 6= 0) ∧ (∆c′ 6= 0) ∧ (∆d′ 6= 0).

Proof. If there is no difference in mi then there is no difference in a, b, c, and d after the first four lines
of G. Thus a difference ∆ in mj always gives a nonzero difference ∆′ in a. Then, d always has a difference
(∆′

≫ 8), which propagates to a nonzero difference ∆′′ to c, and finally b has difference (∆′′
≫ 7). ⊓⊔

Proposition 2. If ∆i 6= 0, then

(∆a′ = 0)⇒ (∆d′ 6= 0) (∆c′ = 0)⇒ (∆b′ 6= 0) ∧ (∆d′ 6= 0)
(∆b′ = 0)⇒ (∆c′ 6= 0) (∆d′ = 0)⇒ (∆a′ 6= 0) ∧ (∆c′ 6= 0)

Proof. We show that in the output, a and d cannot be both free of difference, idem for d and c, and for b
and c. By a similar argument as in the proof of Proposition 1, after the first four lines of G the four state
words have nonzero differences. In particular, the state has differences (∆′,∆′′

≫ 12,∆′′,∆′
≫ 16), for

some nonzero ∆′ and ∆′′. Suppose that we obtain ∆a′ = 0. Then we must have ∆d′ = (∆′
≫ 24). Hence a

and d cannot be both free of difference. Similarly, cancelling the difference ∆′′ in c requires a difference in d,
thus c and d cannot be both free of difference. Finally, to cancel the difference in b, c must have a difference,
thus b and c cannot be both free of difference. ⊓⊔

Two corollaries immediately follow from Proposition 1 and Proposition 2.

Corollary 1. If (∆i ∨∆j) 6= 0, then there are differences in at least two output words.

3

Corollary 2. All differentials with an output difference of one of the following forms are impossible:

(∆, 0, 0, 0) (0,∆, 0, 0) (∆, 0, 0,∆′) (∆, 0,∆′, 0)

(0, 0,∆, 0) (0, 0, 0,∆) (∆,∆′, 0, 0) (0,∆,∆′, 0)

for some nonzero ∆ and ∆′, and for any ∆i and ∆j.

Note that output differences of the form (0,∆, 0,∆′) are possible. For instance, if ∆i = (∆i ≫ 4), then the
output difference obtained by linearization is (0,∆i ≫ 3, 0,∆i). For such a ∆i, highest probability 2−28 is
achieved for ∆ = 88888888.

A consequence of Corollary 2 is that a difference in at least one word of m7, . . . ,m15 gives differences in
at least two output words after the first round. This yields the following upper bounds on the probabilities
of DCs.

Proposition 3. A DC with input difference ∆i, ∆j has probability at most 2−1 if (∆i = 0) ∧ (∆j 6= 0), at
most 2−6 if (∆i 6= 0) ∧ (∆j = 0) and at most 2−5 if (∆i 6= 0) ∧ (∆j 6= 0).

See Appendix B for a proof.

3.2 General case

Statements below no longer assume zero input difference in the state words.

Proposition 4. If ∆a′ = ∆b′ = ∆c′ = ∆d′ = 0, then ∆b = ∆c = 0.

Proof. First, when ∆i = ∆j = 0, collisions do not exist since G is a permutation for fixed mi and mj . So we
must have differences in mi and/or mj . By Proposition 6, in G−1 a difference in mi and/or mj cannot affect
b and c, hence a collision for G needs no difference in b and c. ⊓⊔

In other words, a collision for G requires zero difference in the initial b and c. For instance, collisions can
be obtained for certain differences ∆a, ∆i, and zero differences in the other input words. Indeed at line 1
of the description of G, ∆a propagates to (a + b) with probability 2−‖∆a‖, ∆i propagates to (mi ⊕ kj) with
probability one, and finally ∆a eventually cancels ∆i. Note that a collision for G with difference 88888888

in both m11 and a is used in §6 to find near-collisions for a modified version of BLAKE-32 with four rounds.
The following result directly follows from Proposition 4.

Corollary 3. The following classes of differentials for G are impossible:

(∆,∆′,∆′′,∆′′′) 7→ (0, 0, 0, 0)

(∆, 0,∆′′,∆′′′) 7→ (0, 0, 0, 0)

(∆,∆′, 0,∆′′′) 7→ (0, 0, 0, 0)

for nonzero ∆′ and ∆′′, possibly zero ∆ and ∆′′′, and any ∆i and ∆j.

Many other classes of impossible differentials for G exist. For example, if ∆a′ 6= 0 and ∆b′ = ∆c′ = ∆d′ = 0,
then ∆b = 0.

Proposition 5. The only DCs with probability one give ∆a′ = ∆b′ = ∆c′ = ∆d′ = 0 and have either

– ∆i = ∆a = 800 · · · 00 and ∆b = ∆c = ∆d = ∆j = 0;
– ∆j = ∆a = ∆d = 800 · · · 00 and ∆b = ∆c = ∆i = 0;
– ∆i = ∆j = ∆d = 800 · · · 00 and ∆a = ∆b = ∆c = 0.

Proof. The difference (800 · · · 00) is the only difference whose differential probability is one. Hence probability-
1 DCs must only have differences active in additions. By enumerating all combinations of MSB differences
in the input, one observes that the only valid ones have either MSB difference in ∆i and ∆a, in ∆j and ∆a
and ∆d, or in ∆i and ∆j and ∆d.

For constants ki equal to zero, more probability-1 differentials can be obtained using differences with respect
to integer addition. However, in this case simple attacks exist (see Appendix C).

4

3.3 Properties of G−1

At round r, the inverse of Gs of BLAKE-32 computes

1 : b← c⊕ (b ≪ 7) 5 : b← c⊕ (b ≪ 12)
2 : c← c− d 6 : c← c− d
3 : d← a⊕ (d ≪ 8) 7 : d← a⊕ (d ≪ 16)
4 : a← a− b− (mj ⊕ ki) 8 : a← a− b− (mi ⊕ kj)

,

where i = σr(2s) and j = σr(2s + 1). Unlike G, G−1 has low flow dependency: two consecutive lines can be
computed simultaneously and independently, with concurrent access to one variable.

Many properties of G−1 can be deduced from the properties of G. For example, probability-1 DCs for
G−1 can be directly obtained from Proposition 5. We report two particular properties of G−1. The first one
follows directly from the description of G−1.

Proposition 6. In G−1, the final values of b and c do not depend on the message words mi and mj. In
particular, b depends only on the initial b, c, and d.

That is, when inverting G, initial b and c depend only on the choice of the image (a, b, c, d), not on the
message.

The following property follows from the observation in Proposition 3.

Proposition 7. There exists no DC that gives collisions with probability one.

Properties of G−1 are exploited in §4 to find impossible differentials.

4 Impossible differentials

An impossible differential (ID) is a pair of input and output differences that cannot occur. This section
studies IDs for several rounds of the permutation of BLAKE. First we exploit properties of the G function
to describe IDs for one and two rounds. Then we apply a miss-in-the-middle strategy to reach up to five and
six rounds.

To illustrate IDs we use the following color code:

absence of difference

undetermined (possibly zero) difference

undetermined or partially determined nonzero difference

totally determined nonzero difference

4.1 Impossible differentials for one round

The following statement describes many IDs for one round of BLAKE’s permutation.

Proposition 8. All differentials for one round (of any index) with no input difference in the initial state,
any difference in the message block, and an output with difference in a single diagonal of one of the forms
in Corollary 2, are impossible.

Proof. We give a general proof for the central diagonal (v0, v5, v10, v15); the proof directly generalizes to the
other diagonals of the state. We distinguish two cases:

1. No differences are introduced in the column step: the result directly follows from Proposition 4 and
Corollary 2.

5

2. Differences are introduced in the column step: recall that if ∆b 6= 0 or ∆c 6= 0, then one cannot obtain a
collision for G (see Proposition 4); in particular, if there is a difference in one of the two middle rows of
the state before the diagonal step, then the corresponding diagonal cannot be free of difference after.

We reason ad absurdum: if a difference was introduced in the column step in the first or in the fourth
column, then there must be a difference in the corresponding b or c (for output differences with ∆b′ =
∆c′ = 0 are impossible after the column step, see Corollary 2). That is, one diagonal distinct from the
central diagonal must have differences.

We deduce that any state after one round with difference only in the central diagonal must be derived
from a state with differences only in the second or in the third column. In particular, when applying G to
the central diagonal, we have ∆a = ∆d = 0. From Proposition 2, we must thus have ∆a′ 6= 0, ∆c′ 6= 0,
and ∆d′ 6= 0. In particular, the output differences in Corollary 2 cannot be reached.

We have shown that after one round of BLAKE, differences in the message block cannot lead to a state with
only differences in the central diagonal, such that the difference is one of the differences in Corollary 2. The
proof directly extends to any of the three other diagonals. ⊓⊔

To illustrate Proposition 8, which is quite general and covers a large set of differentials, Fig. 1 presents two
examples corresponding to the two cases in the proof. Appendix D gives examples of output differences that
are impossible to reach after one round.

column step
−−−−−−−−−→

prob.= 1

diagonal step
−−−−−−−−−−→

prob.= 0

column step
−−−−−−−−−→

prob.= 0

diagonal step
←−−−−−−−−−−

prob.= 1

Fig. 1. Illustration of IDs after one round: when there is no difference introduced in the column step (top), and when
there is one or more (bottom).

Note that our finding of IDs with zero difference in the initial and in the final state is another way to
prove Proposition 9.

4.2 Extension to two rounds

We can directly extend the IDs identified above to two rounds, by prepending a probability-1 DC leading
to a zero difference in the state after one round. For example, differences 800 · · · 00 in m0 and in v0 always
lead to zero-difference state after the first round:

1 round
−−−−−−−→
prob.= 1

By Proposition 8, a state with differences only in v0 and v10 cannot be reached after one round when starting
from zero-difference states. Therefore, differences 800 · · · 00 in m0 and v0 cannot lead to differences only in
v0 and v10 after two rounds. This example is illustrated in Fig. 2.

6

2 rounds
−−−−−−−→
prob.= 0

2 rounds
−−−−−−−→
prob.= 0

Fig. 2. Examples of IDs for two rounds: given difference 800 · · · 00 in m0 and v0 (top), or in m2, m6, v1, v3 (bottom).

4.3 Miss in the middle

The technique called miss-in-the-middle [5] was first applied to identify IDs in block ciphers (for instance,
DEAL [6] and AES [7, 8]). Let Π = Π0 ◦ Π1 be a permutation. A miss-in-the-middle approach consists in
finding a differential (α 7→ β) of probability one for Π1 and a differential (γ 7→ δ) of probability one for Π−1

0 ,
such that β 6= δ. The differential (α 7→ δ) thus has probability zero and so is an ID for Π. The technique
can be generalized to truncated differentials, that is, to differentials β and δ that only concern a subset of
the state. Below we apply such a generalized miss-in-the-middle to the permutation of BLAKE. We expose
separately the application to BLAKE-32 and to BLAKE-64. The strategy is similar for both:

1. Start with a probability-1 differential with difference in the state and in the message so that difference
vanish until the second round.

2. Look for bits that are changed (or not) with probability one after a few more rounds, given this difference.
3. Do same as step 2 in the backwards direction, starting from the final difference.

Good choices of differences are those that maximize the delay before the input of the first difference, more
precisely, those such that the message word with the difference appears in the second position of a diagonal
step forwards, and in the first position of a column step backwards. The goal is to minimize diffusion so as
to maximize the chance of probability-1 truncated differentials.

2.5 rounds
−−−−−−−−→
prob.= 1

6=
2.5 rounds
←−−−−−−−−

prob.= 1

Fig. 3. Miss-in-the-middle for BLAKE-32, given the input differences 80000000 in m2 and v1. The two differences in
dark gray are incompatible, thus the impossibility. In the forward direction, 2.5 rounds are two rounds plus a column
step; backwards, 2 inverse rounds plus an inverse diagonal step.

3 rounds
−−−−−−−→
prob.= 1

6=
3 rounds
←−−−−−−−
prob.= 1

Fig. 4. Miss-in-the-middle for BLAKE-64, given the input difference 80 · · · 00 in m2 and v1. The two differences in
dark gray are incompatible, thus the impossibility.

7

Application to BLAKE-32. We consider a difference 80000000 in the initial state in v1, and in the
message block word m2; we have that

– Forwards, differences in v1 and m2 cancel each other at the beginning of the column step and no difference
is introduced until the diagonal step of the second round in which m2 appears as mj in G5; after the
column step of the third round (that is, after 2.5 rounds), we observe that bits5 35, 355, 439, and 443
are always changed in the state.

– Backwards, we start from a state free of difference, and m2 introduces a difference at the end of the first
inverse round, as it appears as mi in the column step’s G2; after 2.5 inverse rounds, we observe that bits
35, 355, 439, and 433 are always unchanged.

The probability-1 differentials reported above were first discovered empirically, and could be verified analyt-
ically by tracking differences, distinguishing bits with probability-1 (non-) difference, and other bits.

We deduce from the observations above that difference 80000000 in v1 and m2 cannot lead to a state
free of difference after five rounds. We thus identified a 5-round ID for the permutation of BLAKE-32. Fig. 3
gives a graphical description of the ID.

Application to BLAKE-64. For BLAKE-64, we follow a similar approach as for BLAKE-32, with MSB
difference in m2 and v1. We could detect contradictious probability-1 differentials over three instead of 2.5
rounds, both forwards and backwards. For example, we detected probability-1 inconsistencies for bits 450,
453, 457, 462, and 463 of the state. As shown on Fig. 4, we obtain an ID for six rounds of the permutation
of BLAKE-64.

Remarks.

1. The probability-1 truncated differentials used above were empirically discovered, but one can easily verify
them analytically. For instance, for bit 35 forward (fourth bit of v1), we observe that the state is free of
difference until the input of m2 in the second round in G5, which sets a difference ∆ = 80000000 in v1,
and other differences in v6, v11, v12. At the next (third) round, when computing G1 the only difference

occurs in the MSB of v1, which gives difference ∆â = ∆, ∆d̂ = ∆ ≫ 16, ∆ĉ with no difference in the
first 15 bits and a difference in the 16th, ∆b̂ with no difference in the first three bits and a difference in
the fourth; thus we have ∆a′ with no difference in the first three bits and a difference in the fourth, that
is, the bit 35 of the state is always flipped after 2 rounds plus a column step. Similar verification can be
realized for the backwards differentials.

2. The IDs presented in this section do not lead to IDs for the compression function. This is because a
given difference in the output of the compression function can be caused by 2256 distinct differences in
the final value of the permutation (for BLAKE-32).

5 Invertibility of a round

Let fr be the function {0, 1}512×{0, 1}512 → {0, 1}512, that for initial state v and message block m outputs
the state after r rounds of the permutation of BLAKE-32. Non-integer round indices (for example r = 1.5)
mean the application of ⌊r⌋ rounds and the following column step. We write fr

v = fr(v, ·) when considering
fr for a fixed initial state and respectively fr

m when the message block is fixed. As noted above, fr
m is a

permutation for any message block m and any r ≥ 0. In this section we use the differential properties of G

to show that f1
v is also a permutation for any initial state v. Then we derive an efficient algorithm for the

inverse of f1
v and an algorithm with complexity 2128 to compute a preimage of f1.5

v for BLAKE-32 (a similar
method applies to BLAKE-64 in 2256). This improves the round-reduced preimage attack presented in [4]
(whose complexity was respectively 2192 and 2384 for BLAKE-32 and BLAKE-64)

5Here, bit 35 is the fourth most significant bit of the second state word v1, bit 355 is the fourth most significant
bit of v11, etc.

8

5.1 A round is a permutation on the message space

Proposition 9. For any fixed state v, one round of BLAKE (for any index of the round) is a permutation
on the message space. In particular, f1

v is a permutation.

Proof. We show that if there is no difference in the state, any difference in the message block implies a
difference in the state after one round of BLAKE. Suppose that there is a difference in at least one message
word. We distinguish two cases:

1. No differences are introduced in the column step: there is thus no difference in the state after the column
step. At least one of the message words used in the diagonal step has a difference; from Corollary 1,
there will be differences in at least two words of the state after the diagonal step.

2. Differences are introduced in the column step: from Corollary 2, output differences of the form (0, 0, 0, 0),
(∆, 0, 0, 0), (0, 0, 0,∆), or (∆, 0, 0,∆′) are impossible. Thus, after the first column step, there will be a
difference in at least one word of the two middle rows (that is, in v4, . . . , v11). These words are exactly
the words used as b and c in the calls to G in the diagonal step; from Proposition 4, we deduce that
differences will exist in the state after the diagonal step, since ∆b = ∆c = 0 is a necessary condition to
make differences vanish (see Proposition 4).

We conclude that whenever a difference is set in the message, there is a difference in the state after one
round. ⊓⊔

The fact that a round is a permutation with respect to the message block indicates that no information
of the message is lost through a round and thus can be considered a strength of the algorithm. The same
property also holds for AES-128.

Note that Proposition 9 says nothing about the injectivity of fr
v for r 6= 1.

5.2 Inverting one round and more

Without loss of generality, we assume the constants equal to zero, that is, ki = 0 for i = 0, . . . , 7 in the
description of G. We use explicit input-output equations of G to derive our algorithms.

Input–output equations for G. Consider the function Gs operating at round r on a column or diagonal
of the state respectively. Let (a, b, c, d) be the initial state words and (a′, b′, c′, d′) the corresponding output
state words. For shorter notation let i = σr(2s) and j = σr(2s + 1). Let â = a + b + mi be the intermediate

value of a set at line 1 of the description of G. From line 2 we get â = (d̂ ≪ 16) ⊕ d, where d̂ is the

intermediate value of d set at line 2. From line 7 we get d̂ = (d′ ≪ 8)⊕ a′ and derive

a = (((d′ ≪ 8)⊕ a′) ≪ 16)⊕ d− b−mi. (1)

Below we use the following equations that can be derived in a similar way:

a = (((((((b′ ≪ 7)⊕ c′) ≪ 12)⊕ b)− c) ≪ 16)⊕ d)−mi − b (2)

= a′ − ((b′ ≪ 7)⊕ c′)−mj − b−mi (3)

b = (((b′ ≪ 7)⊕ c′) ≪ 12)⊕ (c′ − d′) (4)

c = c′ − d′ − ((d′ ≪ 8)⊕ a′) (5)

= c′ − d′ − ((d⊕ (a + b + mi)) ≫ 16) (6)

d = (((d′ ≪ 8)⊕ a′) ≪ 16)⊕ (a′ − ((b′ ≪ 7)⊕ c′)−mj) (7)

a′ = (((((((b′ ≪ 7)⊕ c′) ≪ 12)⊕ b)− c) ≪ 16)⊕ d) + ((b′ ≪ 7)⊕ c′) + mj (8)

b′ = ((((b⊕ (c′ − d′)) ≫ 12)⊕ c′) ≫ 7) (9)

d′ = c′ − c− ((d⊕ (a + b + mi)) ≫ 16) (10)

9

Observe that (1), (2) and (8) allow to determine mi and mj from (a, b, c, d) and (a′, b′, c′, d′). Further, (4)
and (5) imply Proposition 6.

We now apply these equations to invert f1
v and to find a preimage of f1.5

v (m) for arbitrary m and v. Denote
vi = vi

0, . . . , v
i
15 the internal state after i rounds. Again, non-integer round indices refer to intermediate states

after a column step but before the corresponding diagonal step. The state vr is the output of fr
v0 .

Inverting f1

v
. Given v0 and v1, the message block m = (m0, . . . ,m15) with f1

v0(m) = v1 can be determined
as follows:

1. Determine v0.5
4 , . . . , v0.5

7 using (4) and v0.5
8 , . . . , v0.5

11 using (5).
2. Determine m0, . . . ,m7 using (2), (8), and (10).
3. Determine v0.5

0 , . . . , v0.5
3 , v0.5

12 , . . . , v0.5
15 using G0, . . . ,G3.

4. Determine m8, . . . ,m15 using (2), (8), and (10).

This algorithm always succeeds, as it is deterministic. Although slightly more complex than the forward
computation of f1

v , it can be executed efficiently.

Preimage of f1.5

v
(m). Given some v0, and v1.5 in the codomain of f1.5

v0 (thus, a preimage of v1.5 exists),
a message block m with f1.5

v0 (m) = v1.5 can be determined as follows:

1. Guess m8,m10,m11 and v0.5
10 .

2. Determine v1
4 , . . . , v1

7 using (4) and v1
8 , . . . , v1

11 using (5), v1
12, v1

13 using (7).
3. Determine v0.5

6 , v0.5
7 using (4), m4 (2), v1

1 (2), v0.5
14 (6), v0.5

1 (3), v0.5
11 (5), v0.5

12 (2).
4. Determine v0.5

2 (5), m5 (8), m6 (2), v1
15 (7), v0.5

15 (6), v0.5
5 (4), v1

0 (5), m9 (8), m14 (2).
5. Determine v0.5

3 (5), m7 (8), v0.5
0 (2), v0.5

8 (5), m0 (1), v1
2 (5), v1

14 (2), m15 (8).
6. Determine v0.5

4 (9), m1 (8), v0.5
9 (6), v1

3 (8), m13 (2), m2 (2), m3 (8), v0.5
13 (7), m12 (2).

7. If f1.5
v0 (m) = v1.5 output m, otherwise make a new guess.

This algorithm yields a preimage of f1.5
v (m) for BLAKE-32 after 2128 guesses in the worst case. It directly

applies to find a preimage of the compression function of BLAKE reduced to 1.5 rounds and thus greatly
improves the round-reduced preimage attack of [4] which has complexity 2192. The method also applies to
BLAKE-64, giving an algorithm of complexity 2256, improving on [4]’s 2384 algorithm.

There are other possibilities to guess words of m and the intermediate states. But exhaustive search
showed that at least four words are necessary to determine the full message block m by explicit input-output
equations.

5.3 On the resistance to recent preimage attacks

An attack strategy based on a meet-in-the-middle approach was recently used to devise preimage attacks, in
particular against MD5 [9–11]. Since these attacks partially rely on the fact that MD5 uses a permutation
of the message words, like BLAKE, one may wonder whether they also apply to BLAKE.

The idea of the recent preimage attack is to find two independent chunks of the message block, in order
to obtain degrees of freedom to perform a birthday-like matching.

For BLAKE, since every message word is used in every round, we cannot find any independent chunks.
One can make use of the “initial structure” [11], which can essentially relocate the positions of some message
words without affecting the final output of the hash. As argued in the BLAKE submission [1], diffusion is
fully done in two rounds. Hence initial structure cannot be carried out for more than three rounds. Similarly
the “partial matching” technique can only extend the attack for at most two rounds.

There are two additional difficulties to overcome: First, one has to take care of v12, . . . , v15, where v12 ⊕
v13 = k4 ⊕ k5 and v14 ⊕ v15 = k6 ⊕ k7. When the preimage attack is carried out, it computes backwards,
which is supposed to give random values (it satisfies the above with probability 2−n/4). One can overcome
this difficulty by splitting the compression function near initial state. Second, the partial matching has to
be carried out at (or very close to) the finalization step since internal states are of length 2n.

Based on our observations, we conjecture that a meet-in-the-middle strategy for a preimage attack on
BLAKE cannot apply on more than five rounds.

10

6 Near collisions

In this section, we exploit linearization of the G function, that is, approximation of addition by XOR. This
enables us to find near collisions for a variant of BLAKE-32 with four rounds identical to rounds 3 to 6 in
the original function.

6.1 Linearizing G

Observe that in G, the number of bits rotated are 16, 12, 8 and 7. Only 7 is not a multiple of 4.
The idea of our attack is to use differences that are invariant by rotation of 4 bits (and thus by any

rotation multiple of 4), as 88888888, and try to avoid differences pass through the rotation by 7. We model
the compression function in GF(2), where a 1 denotes a difference in the register and 0 means no difference. We
linearize the G function by replacing addition with XOR. Further we remove the rotations as the differences
we choose are rotation invariant (see Figure 5).

mi ⊕ kj mj ⊕ ki

a

b

c

d

a

b

c

d

Fig. 5. Linearized G function

6.2 Differential characteristic for near collisions

In our linearized model, we have 16 bits of message and 16 bits of chaining values, hence the search space
is 232, which can be explored exhaustively. We can further reduce the search space by the condition that no
difference passes through rotation by 7 over four rounds of the compression function.

As the model is linear, the whole compression function can be expressed by a bit vector consisting of
message and chaining value multiplied by a matrix. We used the program MAGMA to efficiently reduce the
search space to 24 for a 4-round reduced compression function.

Linearizing a difference pattern 8888888 costs 27 for each addition. We aim to find those configurations
which linearize the addition operation as little as possible. Note that by choosing proper chaining values and
messages, we can get the first 1.5 rounds “for free”. We did the search, and the configuration with differences
in m0 and v0, v3, v7, v8, v14, v15 with starting point at round 3 gives count 8 only. This gives complexity 256,
with no memory requirements. This configuration gives after feedforward final differences in h′

3, h
′
4, and h′

5.
We thus obtain a near collision on (256− 24) = 232 bits. Figure 6 shows how differences propagate from

round 3 to 6. We expect similar methods to apply to any sequence of four rounds, though with different
complexities.

6.3 On the extension to more rounds

Consider the linearized model of G, in which we approximate addition by xor, and use the special difference
88888888 (so that differences do not propagate to the final b).

Consider a linearized round, as in §6.1. Since there are 16 chaining variables and 16 message words, hence
we have 216+16 different configurations. When we restrict “no difference in output b of G”, the number of

11

Fig. 6. Tracing the differences for near collisions on rounds 3 to 6. Inputs with difference are h0, h3, h7, s0 and t0.
Gray cells denote states with differences.

good configurations is reduced by a factor 2 when passing each G. Each round function has eight G’s. Hence
each round reduces the “good configurations” by a factor 28. Thus, N rounds reduce the number of good
configurations to 232/28N ≥ 1. Hence four seems to be the maximum possible number of rounds for which
our method applies, which was verified by our program.

This is also why we need to seek non-linear connectors to give collisions for more rounds.

7 Bounding the probability of differential characteristics

Bounds on the probability of DCs have been proposed as a measure to quantify security, mostly in the context
of block ciphers [12, 13]. For most designs such bounds are established by counting the minimum number
of active S-boxes (see for example SHA-3 submissions LANE [14], ECHO [15] or SIMD [16]). However, to
the best of our knowledge, the problem of establishing bounds for AXR designs has never been studied. A
difficulty seems to stem from the following facts:

– Addition behaves as XOR with relatively high probability (compared to an S-box); in particular, it
admits probability-1 differentials and lacks uniformity (except for the MSB, the more significant is the
bit with a difference, the fewer output differences are expected).

– Chains of AXR operations are complex to analyze (compared to substitution-permutation constructions
of block ciphers), which complicates the finding of bounds based on combinatorial arguments.

Although some previous AXR algorithms underwent differential attacks [17], recent designs seem impres-
sively resistant to differential cryptanalysis [3,18]. Search for bounds on DCs is thus of interest, in particular
to evaluate and compare the security of AXR SHA-3 candidates (BLAKE, Blue Midnight Wish [19], Cube-
Hash [20], Skein [18]).

This section proposes assumptions for a security analysis of AXR algorithms and establishes bounds for
the permutation of BLAKE.

7.1 Assumptions and trivial bound

We make the following assumptions
To compute bounds on the probabilities of DCs, we make the assumptions that the initial state and the

message block are selected uniformly at random, and that for each modular addition, summands are selected
uniformly as well. These assumptions allow to use the results from [21].

If we only consider modular additions at line 1 and at line 5 in the description of G we get the following
trivial upper bound for any DC for r permutation rounds corresponding to input differences ∆i, i = 0, . . . , 15
in the message block:

(

15
∏

i=0

DP+
2max

(∆i)

)r

.

12

Where the notation DP+
2max

(∆i) is borrowed from Lipmaa and Moriai’s work on the probabilities of differential
of addition [21]. Appendix E summarizes the notations that we reuse.

In the following, we first present bounds local to G, and then deduce bounds for the permutation of
BLAKE. These bounds should be considered as indicative, and not as “proofs of security”; indeed, attacks
use advanced message modification techniques to fulfill the conditions of a characteristics.

7.2 Local bounds for G

For a given (∆i,∆j), we give below the (∆a,∆b,∆c,∆d) and the differentials that maximize probability of
the DC. Note that the probabilities obtained give upper bounds on the probability of a characteristic for a
given (∆i,∆j), not on the probability of a differential.

The bounds are based on the following observation: given a nonzero difference in the message, the optimal
choice of a difference in (a, b, c, d) is one that cancels ∆i and ∆j . We further observe, based on results in [21],
that if one of the summands has no difference, then the differential obtained by linearization of addition to
XOR is optimal. Note indeed that for all ∆’s, we have

DP+(∆, 0 7→ ∆) = DP+
max

(∆, 0) = 2−‖∆‖ .

Below we present bounds for each particular case.

When ∆i 6= 0 and ∆j = 0, the highest-probability DC, over all possible differences in (a, b, c, d), has
∆a 6= 0 that gives ∆â = 0, and ∆b = ∆c = ∆d = 0. Thus highest probability 2−2‖∆i‖ is achieved when
∆a = ∆i. There are two active additions.

When ∆i = 0 and ∆j 6= 0, the highest-probability DC has ∆a = ∆d = ∆j and ∆b = ∆c = 0. It has
probability 2−4‖∆j‖, and four active additions.

∆i = ∆j 6= 0, the highest-probability DC has ∆d′ = ∆i, giving probability 2−3‖∆i‖. There are three
active additions.

When ∆i 6= ∆j and are both nonzero, we assume ∆d = ∆i to avoid active addition at line 3. At
line 5 the first active addition (a + b) has optimal probability DP+

max
(∆i, 0) = DP+(∆i, 0 7→ ∆i) = 2−‖∆i‖.

The second active addition thus has optimal probability DP+
max

(∆i,∆j). We thus consider the local bound
2−2‖∆i‖−‖α≫8‖ ×DP+

max
(∆i,∆j), where α is the difference that maximizes DP+(∆i,∆j).

Unlike the three previous cases, for which the output difference was (∆a′,∆b′,∆c′,∆d′) = (0, 0, 0, 0),
here only ∆a′ is zero.

7.3 Bound for the permutation

Based on observations in §7.2, we give the following refined bound:

Proposition 10. Any DC over r rounds of BLAKE-n’s permutation induced by differences ∆i in the mes-
sage word mi, i = 0, . . . , 15, has probability at most

r−1
∏

i=0

(colcosti × diagcosti)

where colcosti and diagcosti are computed as described in Algorithms 1 and 2, respectively.

In Proposition 10, colcosti is a bound on the probability of a DC for the column step of round i, derived
from local bounds in §7.2; diagcosti is an upper bound on the probability of a DC for the column step of
round i. Note that a different choice of σ may affect the bound obtained.
We illustrate the improvement from the trivial bound to that of Proposition 10 with two examples:

1. If for BLAKE-32 ∆0 = 08040001, ∆4 = 00101000, ∆10 = 10105000, then the trivial bound gives bound
2−90 and Proposition 10 gives 2−253.

13

Algorithm 1 colcosti
1. colcosti ← 1
2. for j = 0, . . . , 3
3. x← ‖∆σi(2j)‖
4. y ← ‖∆σi(2j+1)‖
5. z ← − log2 DP+

max(∆σi(2j), ∆σi(2j+1))
6. if (x = 0)
7. colcosti ← colcosti × 2−4y

8. if (y = 0)
9. colcosti ← colcosti × 2−2x

10. if ((x 6= 0) ∧ (y 6= 0))
11. colcosti ← colcosti × 2−2x+z

Algorithm 2 diagcosti
1. diagcosti ← 1
2. for j = 4, . . . , 7
3. x← ‖∆σi(2j)‖
4. y ← ‖∆σi(2j+1)‖
5. z ← − log2 DP+

max(∆σi(2j), ∆σi(2j+1))
6. if (x = 0)
7. diagcosti ← diagcosti × 2−4y

8. if (y = 0)
9. diagcosti ← diagcosti × 2−2x

10. if ((x 6= 0) ∧ (y 6= 0))
11. diagcosti ← diagcosti × 2−2x+z

2. If for BLAKE-64 ∆0 = 000002010000010, ∆4 = 001010008008401, ∆10 = 001050000040002, then the
trivial bound gives bound 2−140 and Proposition 10 gives 2−560.

Bounds from Proposition 10 are arguably loose, for they do not count differences in the state. In particular:
they assume that “(c + d)” additions are never active, and that ∆b and ∆c are always zero; both are very
unlikely.

Proposition 10 is very general, however. It gives bounds for any number of rounds, for any permutation σ,
and even for any rotation values. We hope that tighter bounds can be obtained by exploiting combinatorial
arguments for a specific number of rounds, structural properties of the σ permutations (see Appendix A),
or the actual values of the rotations.

In particular, and contrary to block cipher SPN’s, the worst-case assumption (for the attacker) is not
enough: even if we know that N additions are active, if we have no insight on the actual input difference we
need count probability equal to one. Insights based on rotations are likely to assist for (say) the first round,
but for subsequent rounds it becomes more difficult.

8 Conclusion

We studied differential properties of the SHA-3 candidate BLAKE, and our main findings are

– Differential properties of BLAKE’s permutation and of its core function G.
– Inversion algorithms for one and 1.5 rounds of BLAKE’s round function for a fixed initial value.
– Impossible differentials for five (resp. six) rounds of BLAKE-32’s (resp. BLAKE-64’s) permutation.
– Near-collisions on four intermediate rounds of the compression function of BLAKE-32.
– Nontrivial bounds on the probability of DCs.

14

None of our observations seems to be a threat to the security of BLAKE.

Future work may address properties related to additive differences, instead of XOR differences. Our
results may also assist cryptanalysis of the stream ciphers Salsa20 and ChaCha, on which BLAKE is based.

Acknowledgments

Jian Guo is supported by the Singapore Ministry of Education under Research Grant T206B2204

References

1. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to the SHA-3
Competition (2008)

2. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA. Cryptology ePrint Archive,
Report 2007/278 (2007)

3. Bernstein, D.J.: ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html

4. Ji, L., Liangyu, X.: Attacks on round-reduced BLAKE. Cryptology ePrint Archive, Report 2009/238 (2009)

5. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and Khufu. In Knudsen, L.R., ed.:
FSE. Volume 1636 of LNCS., Springer (1999) 124–138

6. Knudsen, L.R.: DEAL - a 128-bit block cipher. Technical Report 151, University of Bergen (1998) Submitted as
an AES candidate.

7. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key AES variants. In Matsui, M.,
Zuccherato, R.J., eds.: Selected Areas in Cryptography. Volume 3006 of LNCS., Springer (2003) 208–221

8. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks on 8-round aes-192. In
Pointcheval, D., ed.: CT-RSA. Volume 3860 of LNCS., Springer (2006) 21–33

9. Aumasson, J.P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and step-reduced MD5. [22] 120–135

10. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more. [22] 103–119

11. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search. In Joux, A., ed.: EUROCRYPT.
Volume 5479 of LNCS., Springer (2009) 134–152

12. Daemen, J., Rijmen, V.: The wide trail design strategy. In Honary, B., ed.: IMA Int. Conf. Volume 2260 of
LNCS., Springer (2001) 222–238

13. Vaudenay, S.: Decorrelation: A theory for block cipher security. J. Cryptology 16(4) (2003) 249–286

14. Indesteege, S.: The LANE hash function. Submission to the SHA-3 Competition (2008)

15. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 proposal:
ECHO. Submission to the SHA-3 Competition (2008)

16. Leurent, G., Bouillaguet, C., Fouque, P.A.: SIMD is a message digest. Submission to the SHA-3 Competition
(2008)

17. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix - fast encryption and authentication in a single crypto-
graphic primitive. Submission to eSTREAM (2005)

18. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein hash
function family. Submission to the SHA-3 Competition (2008)

19. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjolsnes, S.F.: Cryptographic hash
function Blue Midnight Wish. Submission to the SHA-3 Competition (2008)

20. Bernstein, D.J.: Cubehash specification (2.B.1). Submission to the SHA-3 Competition (2008)

21. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In Matsui, M., ed.:
FSE. Volume 2355 of LNCS., Springer (2001) 336–350

22. Avanzi, R.M., Keliher, L., Sica, F., eds.: Selected Areas in Cryptography, 15th International Workshop, SAC
2008, Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers. In Avanzi, R.M., Keliher, L.,
Sica, F., eds.: Selected Areas in Cryptography. Volume 5381 of LNCS., Springer (2009)

23. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: Toy versions of BLAKE.
http://131002.net/blake/toyblake.pdf

15

A Permutation family σ

The permutations σ0, . . . , σ9 defined in Table 1 have the following properties:

1. No message word is input twice at the same point.
2. Each message word appears 5 times in a column step and 5 times in a diagonal step.
3. Each message word appears 5 times in first position in G and 5 times in second position.

Table 1. Permutations σi: value at round i in column j ∈ {0, . . . , 15} equals σi(j).

Round G0 G1 G2 G3 G4 G5 G6 G7

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

B Proof of Proposition 3

A possible DC (when linearizing additions) with |∆i| = 0 and w = |∆j | 6= 0 has output differences

(∆j ,∆j ≫ 15,∆j ≫ 8,∆j ≫ 8)

for BLAKE-32. If (∆j ∧ 80 · · · 0080) equals zero, then the DC is followed with probability 2−2w; if it equals
800 · · · 00 or 00 · · · 0080, with probability 2−2w+1; if it equals 80 · · · 0080, with probability 2−2w+2. Clearly,
probability is maximized for w = 1 and ∆j either 80 · · · 00 or 00 · · · 0080, giving probability 1/2. Since at
least one non-MSB difference must be active for any difference, probability is at most 1/2, a bound which
we could match.

Suppose all additions behave as XOR’s. Summands of the four additions then have the following differ-
ences:

0 + ∆i

0 + (∆i ≫ 16)

∆ + (∆i ≫ 28)

(∆i ≫ 16) + ((∆i ≫ 4)⊕ (∆i ≫ 8)⊕ (∆i ≫ 24))

for BLAKE-32. When w = 1: the OR of the summands is respectively 1, 1, 2, and 4, so 8 in total. Rotation
by zero and by 16 appear twice each, thus if ∆i equals 80000000 or 00008000, then two of the eight bits are
MSB’s. This DC is thus followed with probability 2−6 when ∆i equals 80000000 or 00008000.

It is easy to see that a higher probability cannot be obtained when w > 1: indeed, the probability cannot
be less than 2−4w+4; when w = 2 weights excluding MSB are at least 1, 1, 3, and 3, which gives a probability
2−8. Hence 2−6 is the highest probability. ⊓⊔

First observe that if w = ∆i > 1, then after the first four lines, a, b, and c have at least w− 1 differences,
excluding the MSB. Hence the DC for second part of G is followed with probability at least 22×(w−1)+w−1 =

16

23w−3, because a, b, and c appear in the two additions. This bound is maximized to 2−3 for w = 2. A refined
analysis shows that when w = 2 a DC cannot have probability greater than 2−6, even considering non-linear
differentials.

Suppose that w = ∆i = 1 and that the first part of G is crossed with probability 1/2. That is, mi has
difference ∆ ∈ {80000000, 00008000}, and intermediate values of (a, b, c, d) have differences

(∆,∆ ≫ 16,∆ ≫ 16,∆ ≫ 28)

which is the one of the following differences:

(80000000, 00000008, 00008000, 00008000)

(00008000, 00080000, 80000000, 80000000).

When ∆ = 80000000, there are two optimal choices of a difference in mj (80008008 and 80000008), which
both give total probability 2−5. When ∆ = 00008000, the optimal choices of a difference in mj is 80088000,
which also gives total probability 2−5. ⊓⊔

C Attack on a variant with identical constants

We present a simple method to find collisions in 2n/4 for the compression function when constants are all
identical, that is, ki = kj for all i, j.

Set m = mi for all i, and choose the chaining value, salt, and counter such that all four columns of the
initial v are identical, that is, vi = vi+1 = vi+2 = vi+3 for i = 0, 4, 8, 12. Observe that G takes one input
from each row, and then always uses m ⊕ k as input. Thus, all output of the four G functions in each step
are indentical, and so the columns remain identical through iteration of any number of rounds.

This essentially reduces the output space of the hash from 2n to 2n/2, thus collisions can be found in 2n/4

due to the birthday paradox. However, to find a collision, we only have control over m, and it is not enough
to give enough candidates (2n/8 only) to carry out the birthday attack (2n/4 required). We can resolve this
problem by trying different (same for the collision pair) chaining values. For instance, we can set t0 = t1 = 1,
and try different message values for the first 2n/8 + 1 bits, then carry out the collision attack.

Note that this attack does not break the variants BLAZE and BRAKE from [23]. Indeed, these variants
use no constant within G, but constants are used to initialize v. It is thus impossible to have four identical
columns in the initial state.

D Impossible output differences after one round

Fig. 7 gives examples of output differences impossible to reach after one round, given differences only in
the message block (see Proposition 8). Recall that a dark grey cell symbolizes a word with some nonzero
undetermined difference.

E Notations for differential probabilities

We describe below the notations borrowed from [21].
To express the probability that addition conforms to a particular differential (α, β 7→ γ), we use the

notation
DP+(α, β 7→ γ) = Pr

x,y
[(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ] .

Given the differences α, β in the two summands, the maximal differential probability over all differences in
the sum is denoted

DP+
max

(α, β) = max
γ

DP+(α, β 7→ γ) .

17

Fig. 7. Examples of classes of differences impossible to reach after one round.

Given only the difference in one of the summands, the maximal differential probability over all differences
in the second summand and in the sum is denoted

DP+
2max

(α) = max
β,γ

DP+(α, β 7→ γ) .

Efficient algorithms for computing DP+, DP+
max

, and DP+
2max

are given in [21].

18

