NORX: Parallel and Scalable AEAD

Jean-Philippe Aumasson', Philipp Jovanovic?, and Samuel Neves®

! Kudelski Security, Switzerland
jeanphilippe.aumasson@gmail.com
2 University of Passau, Germany
jovanovic@fim.uni-passau.de
3 University of Coimbra, Portugal
sneves@dei.uc.pt

Abstract. This paper introduces NORX, a novel authenticated encryp-
tion scheme supporting arbitrary parallelism degree and based on ARX
primitives, yet not using modular additions. NORX has a unique parallel
architecture based on the monkeyDuplex construction, with an original
domain separation scheme for a simple processing of header/payload-
/trailer data. Furthermore, NORX specifies a dedicated datagram to
facilitate interoperability and avoid users the trouble of defining cus-
tom encoding and signalling. NORX was optimized for efficiency in both
software and hardware, with a SIMD-friendly core, almost byte-aligned
rotations, no secret-dependent memory lookups, and only bitwise oper-
ations. On a Haswell processor, a serial version of NORX runs at 2.51
cycles per byte. Simulations of a hardware architecture for 180 nm UMC
ASIC give a throughput of approximately 10 Gbps at 125 MHz.

Keywords: authenticated encryption, stream cipher, cryptographic sponges

1 Introduction

We introduce the NORX* family of authenticated ciphers, a candidate in the
CAESAR competition. NORX uses a parallel and scalable architecture based
on the monkeyDuplex construction [7,10], where the parallelism degree and tag
size can be tuned arbitrarily. The NORX core is inspired by the ARX primitive
ChaCha [5], however it replaces integer addition with the approximation (a®b)®
((a Ab) < 1)°, with the aim to simplify differential cryptanalysis and improve
hardware efficiency. Although, bitwise logic operations are frequently used in
cryptographic primitives, we are not aware of any other algorithm using the
above approximation of integer addition.

On a Haswell processor (Intel’s latest microarchitecture), a serial version of
NORX achieves 2.51 cycles per byte. For long messages (> 4KiB), our 4-wise
parallel version is expected to be four times as fast when run on four cores (that
is, more than 5 GiBps at 3.5 GHz).

4 The name stems from “NO(T A)RX” and is pronounced like “norcks”.
® Derived from the well-known identity a + b= (a @ b) 4+ (a Ab) < 1 [18].

In ASIC, NORX’s fastest serial architecture is expected to achieve a through-
put of about 10 Gbps at 125 MHz on a 180 nm technology. As for software imple-
mentations, the tunable parallelism allows NORX to reach even higher speeds.

We have not filed and are not aware of patents, patent applications, or other
intellectual-property constraints relevant to use of the cipher. The source code
of the reference implementation is published under a public domain-like licence
(CC0), see [1].

Outline. Section 2 specifies the NORX family of AEAD schemes, as well as
a datagram structure aiming to improve interoperability of NORX implementa-
tions. Section 3 describes the expected strength of NORX. Section 4 motivates the
design decisions. Section 5 reports on software performance measurements and
on preliminary results of a hardware performance evaluation. Finally, Section 6
presents preliminary cryptanalysis results.

2 Specification

2.1 Notations

Hexadecimal numbers are denoted in typewriter style, for example ab = 171. A
word is either a 32-bit or 64-bit string, depending on the context. Data streams
(as byte arrays) are parsed to word arrays in little-endian order. We denote by
a || b the concatenation of strings a and b, by |z| the bit length of x, and by
hw(z) its Hamming weight. We use the standard notations —, A, V and @ for
bitwise negation, AND, OR and XOR; x < n and x > n for left- and right-shift;
T <& n, x 3> n for left- and right-rotation of x by n bits.

2.2 Generalities

NORX is parameterised by a word size of W € {32, 64} bits, a number of rounds
1 < R < 63, a parallelism degree 0 < D < 255, and a tag size |A| < 10W bits.
We denote a NORX instance by NORXW-R-D-|A.

By default NORXW-R-D uses |A| = 4W. For example, NORX64-6-1 has
(W,R,D,|A|) = (64,6, 1,256).

Encryption Interface. NORX encryption takes as input a key K of 4W bits,
anonce N of 2W bits, and a message M = H || P || T where, H is a header, P a
payload, and T a trailer. |H|, |P|, and |T| are allowed to be 0. NORX encryption
produces a ciphertext C, with |C| = | P|, and an authentication tag A.

Decryption Interface. NORX decryption is similar to encryption: Besides K
and N, it takes as input a message M = H || C || T, where H and T denote
header and trailer, and C' the encrypted payload, with |H|, |C|, and |T'| are again
allowed to be 0. The last component of the input is an authentication tag A.
Decryption either returns failure, upon failed verification of the tag, or produces
a plaintext P of the same size as C if the tag verification succeeds.

2.3 Layout Overview

NORX relies on the monkeyDuplex construction [7,10], enhanced by the capabil-
ity of parallel payload processing. The number of parallel encryption lanes L; is
defined by the parameter 0 < D < 255. For the value D = 1, the NORX layout
is similar to a standard sequential duplex construction, see Figure 1. For D > 1,
the number of lanes is bounded by the latter value, e.g. for D = 2 see Figure 2.
If D =0 (“infinite” parallelism), the number of lanes L; is bounded by the size
of the payload.

init[K, &, D, R, |A]) i

1 lplallalinlolas.
[4 8870 08 0 0

g

m ’:l‘[
T
2l gl
oY

Fig. 2. Layout of NORX with parallelism D = 2.

The round function F is a permutation of b = r + ¢ bits, where b is called the
width, r the rate (or block length), and ¢ the capacity. We call F a round and FF
denotes its R-fold iteration. The internal state S of NORX64 has b = 640+384 =
1024 bits and that of NORX32 has b = 3204 192 = 512 bits. The state is viewed

as a concatenation of 16 words, i.e. S = sqg || --- || s15, which are conceptually
arranged in a 4x4 matrix, where sg, ..., sg are called the rate words, used for
data block injection, and s1q, ..., s15 are called the capacity words, which remain

untouched during absorbing/squeezing.

2.4 The Round Function F

F processes a state S by first transforming its columns with
G(s0, 54, 58, 512) G(51, 55, 89, 513) G(S2, 56, 510, 514) G(83, 57, 511, 515)

and then transforming its diagonals with

G(80785,810a815) G(8135678117812) G(82,87,$8,813) G(83,84,89,814)

Those two operations are called column step and diagonal step, as in BLAKE2 [4],
and will be denoted by col and diag. The permutation G transforms four words
a, b, ¢, d by computing (top-down, left-to-right):

a+— (a®b)® ((aAb) < 1) a®b) @ ((anb) < 1)

a<+— (
d+— (a®d)>>rg d— (a®d) > ro
c+— (cad)a ((chnd) < 1) c+— (cad)a ((chnd) < 1)
b+— (bdc)>>r b+— (b®c)>r;

The rotation offsets (rg, 71,72, r3) are (8,19, 40, 63) for NORX64, and (8, 11, 16, 31)
for NORX32. They were chosen as described in Section 4.

2.5 Encryption and Tag Generation

NORX encryption can be divided into three main phases: initialisation, message
processing, and tag generation. Processing of a message M = H || P || T is done
in one to five steps: header processing, branching (for D # 1 only), payload pro-
cessing, merging (for D # 1 only), and trailer processing. The number of steps
depends on whether H, P, or T are empty or not, and whether D = 1 or not.
NORX skips processing phases of empty message parts. For example, in the sim-
plest case when |H| = |T| =0, |P| > 0, and D = 1, message processing is done
in one step, since only the payload P needs to be encrypted and authenticated.

Below, we first describe the padding and domain separation rules, then each
of the aforementioned phases.

Padding. NORX uses the multi-rate padding [10], a padding rule defined by
pad, : X — X || 1091 with bitstrings X and 1071, and ¢ = (—|X| — 2) mod r.
This extends X to a multiple of the rate r and guarantees that the last block
of pad, (X) differs from the all-zero block 0”. Note, that there are three special
cases:

r—2, if 0=|X| modr
g=10, if r—2=|X|modr
r—1, if r—1=|X|modr

Domain Separation. NORX performs domain separation by XORing a domain
separation constant to the least significant byte of s15 each time before the
state is transformed by the permutation FZ. Distinct constants are used for
the different phases of message processing, for tag generation, and in case of
D # 1, for branching and merging steps. Table 1 gives the specification of those
constants and Figures 1 and 2 illustrate their integration into the state of NORX.

The domain separation constant used at a particular step is determined by
the type of the next processing step. The constants are switched together with
the steps. For example, as long as the next block is from the header, the domain
separation constant 01 is applied. During the processing of the last header block,
the constant is switched. If D = 1 and the next data block belongs to the payload,

Table 1. Domain separation constants.

header payload trailer tag branching merging
01 02 04 08 10 20

the new constant is 02. Then, as long as the next block is from the payload, 02
is used, and so on.

For the extra initial and final permutations no domain separation constants
are used, which is equivalent to XORing 00 to si5. Additionally this allows
NORX to skip unneeded processing phases, as already discussed above. For the
special case D # 1 and |P| = 0 not only payload processing is skipped but also
branching and merging phases.

Initialisation. This phase processes a 4W-bit key K = ko || k1 || k2 || k3, a
2W-bit nonce N = ng || n1 and the parameters D, R, W and |A|.

1. Basic Setup. The internal state S = sg || - - - || 15 is initialised as
S0 S1 82 83 Up o M1 U
S4 S5 S¢ S ko k1 ko k
5 86 S7 0 3
S8 S9 510 S11 Uz U3 Ug Us
512 513 514 S15 Ue U7 U U9

where ug to ug are as follows for NORX32 (left) and NORX64 (right):

ug = 243£6a88 ug = 243f6a8885a308d3
u; = 85a308d3 u; = 13198a2e03707344
uy = 13198a2e ugy = a4093822299£31d0
us = 03707344 u3 = 082efa98ec4e6c89

The other constants are computed by

(U4j+47 U445, Udj+6, U4j+7) = G(U4j7 Ugj41, U4j42, u4j+3)

for j € {0,1}. See Section 4 for a discussion on these constants.

2. Parameter Integration. The parameters D, R, W and |A| are integrated
into the state S by XORing (R < 26) @ (D < 18) & (W < 10) @ |A|° to s14
followed by an update of S with FF.

3. Finalisation. A domain separation constant v, whose value is determined

as shown above, is XORed into s15. Subsequently, S is updated once more
by FF.

Note, that step 1 and part of step 2, namely integration of the parameters,
are illustrated as init(K, N, D, R,|A|) in Figures 1 and 2.

5 This layout is used to avoid XOR-collisions between the parameters.

Message Processing. Message processing is the main phase of NORX encryp-
tion or decryption. Unless noted otherwise, the value of the domain separation
constant v is always determined according to the description above.

1. Header Processing. If |H| = 0, this step is skipped, otherwise let pad,.(H)

Ho || -+ || Hmy -1 denote the padded header data, with r-bit sized header
blocks H; = hyo || -+ || hi,9 and 0 <1 < mpg — 1. Then H; is processed by:

sj «— s;@h;, for 0<5<9
815 — S15 DU
S «— FE(9)

2. Branching. This step is only performed if D # 1 and |P| > 0. In that
case, NORX encrypts payload data on parallel lanes L;, with 0 <i< D —1
itD>10r0<i</JP|/r]—=1if D =0.For each lane L;, a copy
Si =80 || -+ || si,15 of the state S is created. The lane number i and the
domain separation constant v = 02 are integrated into the least significant
bytes of s; 13 || 8:.14 and s; 15, respectively. Finally each S, is updated by F%.

That is, NORX does
Si
(8i,14, 5i,13)
Si,15

Si

3. Payload Processing.

— S
— (8i14,5i13) @ (7 / 2V |, i mod 2V)
— Si15Dv

«— FR(S))

If |P| = 0, this step is skipped. Otherwise, payload

data is padded using the multi-rate padding and then encrypted. For padding
we distinguish three cases:

— D = 1: This is the standard case, where P is padded in the obvious way,
ie. padr(P) =5 ” T ” PmP—l'

D > 1: Here a fixed number of lanes L; is available for payload en-
cryption, with 0 <4 < D —1. Let P = Py || -+ || Pnp—1 denote the
unpadded payload, with |P;| = for 0 < j <mp — 2, and |Pp,, 1| < 7.
Those blocks are assembled in at most D strings as Q; = P; || Pp+i ||
Pypyi || ... for 0 < i < D — 1. That is, Q; includes blocks P, for
which [= 4 mod D. Then, we update sequence @ to pad,.(Q;), where
"= (mp—1) mod D. All other sequences include only r-bit sized blocks
and require no padding. Finally, Q; is assigned to L; for encryption.

D = 0: In this case the number of lanes is limited by the payload size.
Let P =Py || -+ || Pmp—1 denote the unpadded payload data, with
|P;| =7 for 0 <i<mp—2, and |P,,,—1| < r. For encryption, we assign
unpadded P; to lane L; and pad,.(Py,,—1) to lane L, 1.

The data encryption works equivalently for each value of D, hence we de-
scribe it only in a generic way. Let pad,.(P) = Py || -+ || Pmp—1 denote the
padded payload data. To encrypt a payload block P, = pyo || --- || p1,0 and

generate a new ciphertext block C; = ¢ || - - - || ¢1,9 the following operations
are executed

55 «— s;@py, for 0<5 <9
cj < S

S15 ¢+ S150v

S +— FE(9)

for 0 <l <mp—1. For l = mp — 1, the procedure is almost the same, but
only a truncated ciphertext block is created such that C' has the same length
as (unpadded) P. In other words, padding bits are never written to C.

4. Merging. This step is only performed if D # 1 and |P| > 0. After processing
of P, the states S; are merged back into a single state S. Then, a domain
separation constant v is integrated, and S is updated by F:

D-1
S+— Ps:
i=0
S15 — S15Dv
S «— FR(9)

5. Trailer Processing. Digestion of trailer data is done analogously to the
processing of header data as already described above. Hence, if |T| = 0,
trailer processing is skipped. If T is non-empty, let pad,(T) = To || --- ||
T,.,—1 denote the padded trailer data with r-bit trailer blocks 7; and 0 <
I < mg — 1. A trailer block T; =t || --- || t1,9 is then processed by doing
the following steps:

sj «— s5;@t;, for 0<5<9
S15 — S15DV
S «— FR(S)

Tag Generation. NORX generates an authentication tag A by transforming S
one last time with F# and then extracting the | A| least significant bits from the
rate words sg || -+ || s and setting them as A:

S« FR(9)
9
A +— (@(sl < W -i)) mod 2l 4l

1=0

2.6 Decryption and Tag Verification

NORX decryption mode is similar to the encryption mode. The only two differ-
ences are described below.

Message Processing. Processing header H and trailer T of M = H | C | T
is done in the same way as for encryption. Decryption of the encrypted payload
C' is achieved as follows:

Dij «—— Ss;Da;
Sj & Cj

S15 +— S15 D0
S «+— FE(9)

Like in encryption, as many bits are extracted and written to P as unpadded
encrypted payload bits.

Tag Verification. This step is executed after tag generation. Let A and A’
denote the received and the generated tag. If A = A’, tag verification succeeds;
otherwise it fails, the decrypted payload is discarded and an error is returned.

2.7 Datagrams

Many issues with encryption interoperability are due to ad hoc ways to represent
and transport cryptograms and the associated data. For example IVs are some-
times prepended to the ciphertext, sometimes appended, or sent separately. We
thus specify datagrams that can be integrated in a protocol stack, encapsulating
the ciphertext as a payload. More specifically, we introduce two distinct types
of datagrams, depending on whether the parameters of NORX are fixed or need
to be signalled in the datagram header.

Fixed Parameters. With fized parameters shared by the parties (for example
through the application using NORX), there is no need to include the parameters
in the header of the datagram. The datagram for fixed parameters thus only needs
to contain N, H, C, T, and A, as well as information to parse those elements.
It is depicted in Appendix A.

We encode the byte length of H and T on 16 bits, allowing for headers and
trailers of up to 64 KiB, a large enough value for most applications. The byte
length of C' is encoded on 32 bits for NORX32 and on 64 bits for NORX64,
which translates to a maximum payload size of 4 GiB and 16 EiB, respectively”.
Similarly, to frame check sequences in data link protocols, the tag is added as
a trailer of the datagram specified. The data H, C, and T of the underlying
protocol are viewed as the payload of the datagram. The default tag length being
a constant value of the NORX instance, it needs not be signalled. The length of
the datagram header is 28 bytes for NORX64 and 16 bytes for NORX32.

” Note that NORX is capable of (safely) processing much longer messages; those are
just the maximum values when our proposed datagrams are used.

Variable Parameters. In the case of variable parameters, the datagram needs
to signal the values of W, R, and D. The header is thus extended to encode
those values, as specified in Appendix A. To minimize bandwidth, W is encoded
on one bit, supporting the two choices 32-bit (W = 0) and 64-bit (W =1), R
on 7 bits (with the MSB fixed at 0, i.e. supporting up to 63 rounds), and D on 8
bits (supporting parallelization degree up to 255). The datagram header is thus
only 2 bytes longer than the header for fixed parameters.

3 Expected Strength

We expect NORX with R > 4 to provide the maximum security for any AEAD
scheme with the same interface (input and output types and lengths). The fol-
lowing requirements should be satisfied in order to use NORX securely:

1. Unique Nonces. Each key and nonce pair should not be used to process
more than one message.

2. Abort on Verification Failure. If the tag verification fails, only an error
is returned. In particular, the decrypted plaintext and the wrong tag must
not be given as an output and should be erased from memory in a safe way.

We do not make any claim regarding attackers using “related keys”, “known
keys”, “chosen keys”, etc. We also exclude from the claims below models where
information is “leaked” on the internal state or key.

The security of NORX is limited by the key length (128 or 256 bits) and by the
tag length (128 or 256 bits). Plaintext confidentiality should thus have the order
of 128 or 256 bits of security. The same level of security should hold for integrity
of the plaintext or of associated data (based on the fact that an attacker trying
2" tags will succeed with probability 277256 n < 256). In particular, recovery
of a k-bit NORX key should require resources (“computations”, energy, etc.)
comparable to those required to recover the key of an ideal k-bit key cipher.

Note that NORX restricts the number of messages processed with a given key:
in [6] the usage exponent e is defined as the value such that the implementation
imposes an upper limit of 2¢ uses to a given key. NORX sets it to egy = 128 for
64-bit and ey = 64 for 32-bit, which corresponds in both cases to the size of the
nonce. NORX has capacities of cgq = 384 (64-bit) and ¢33 = 192 (32-bit). Hence,
security levels of at least cgqy — egqs — 1 = 384 — 128 — 1 = 255 bits for NORX64
and cgz —e32 — 1 =192 — 64 — 1 = 127 bits for NORX32 are expected (see [6]).

Moreover, [15] shows that the NORX mode of operation achieves security
levels for authenticity and confidentiality of min{2%/2, 2¢ 2IK1} (recall that |K| =
|A]), for all 0 < D < 255, assuming an ideal underlying permutation F and a
nonce respecting adversary.

4 Rationale

The Parallel Duplex Construction. The layout of NORX is based on the
monkeyDuplex construction [7,10] enhanced by the capability of parallel payload

processing. The parallel duplex construction is similar to the tree-hashing mode
for sponge functions [8]. It allows NORX to take advantage of multi-core proces-
sors and enables high-throughput hardware implementations. Associated data
can be authenticated as header and/or trailer data but only on a single lane. We
felt that it is not worth the effort to enable processing of H and T in parallel,
as they are usually short. The number of lanes is controlled by the parallelism
degree 0 < D < 255, which is a fixed instance parameter. Hence, two instances
with distinct D values cannot decrypt data from each other. Obviously, the same
holds for differing W and R values.

To ensure that the payload blocks on parallel lanes are encrypted with dis-
tinct key streams, NORX injects a unique id into each of the lanes during the
branching phase. Once the parallel payload processing is finished, the states are
re-combined in the merging phase and NORX advances to the processing of the
trailer (if present) or creation of the authentication tag.

The Permutations G and F. The function G of NORX is inspired by the
quarterround function of the stream cipher ChaCha [5]. NORX adopts this core
function almost one-to-one, with the only difference being the replacement of
the integer addition by z = (z ® y) ® ((x A y) < 1) with n-bit words z, y
and z. This operation uses bitwise AND to introduce non-linearity and mimics
integer addition of two bit strings z and y with a 1-bit carry propagation. Thus
it provides, in addition to non-linearity, also a slight diffusion of bits. Clearly, G
is invertible, and thus F is invertible as well.

Number of Rounds. For a higher protection of the key and authentication
tag, e.g. against differential cryptanalysis, we chose twice the number of rounds
for initialisation and finalisation, compared to the data processing phases. This
strategy was previously proposed in [7] and has only minor effects on the overall
performance, but increases the security of NORX. The minimal value of R = 4
is based on the following observations:

1. The best attacks on Salsa20 and ChaCha [3,20] break 8 and 7 rounds, re-
spectively, which roughly corresponds to 4 and 3.5 rounds of the NORX core.
However this is within a much stronger attack model than that provided by
the duplex construction of NORX.

2. The preliminary cryptanalysis of NORX as presented in Section 6. The best
differentials we were able to find belong to a class of high-probability trun-
cated differentials over 1.5 rounds and a class of impossible differentials over
3.5 rounds. Despite the fact that those differentials cannot be used to mount
an attack on NORX, it might be possible to find similar differentials, using
more advanced cryptanalytic techniques, which could be used for an attack.

Choice of Constants. The values ug, ..., us correspond to the first digits of .
The other six constants uy, ..., ug are derived iteratively from ug,...,us as de-
scribed in Section 2.5. Their purpose is to bring asymmetry during initialisation
and to limit an attacker’s freedom where he might inject differences.

The domain separation constants serve to separate the different processing
phases of NORX, which is important for the indifferentiability proofs of the
duplex construction [9,10]. In addition they help to break the self-similarity of
the round function and thus increase the complexity of certain kind of attacks
on NORX;, like slide attacks.

Choice of Rotation Offsets. The rotation offsets as used in F, see Section 2.4,
provide a balance between security and efficiency. Their values were selected such
that at least two out of four offsets are multiples of 8 and the remaining offsets
are odd values of the form 8 &+ 1 or 8n + 3, with a preference for the first
shape. The motivation behind those criteria is as follows: an offset which is a
multiple of 8 preserves byte alignment and thus is much faster than an unaligned
rotation on many architectures. Many 8-bit microcontrollers have only 1-bit
shifts, so for example rotations by 5 bits are particularly expensive. Using aligned
rotations, i.e. permutations of bytes, greatly improves the performance of the
entire algorithm. Even 64-bit architectures benefit from such aligned rotations,
for example when an instruction sequence of two shifts followed by XOR can be
replaced by SSSE3’s byte shuffling instruction pshufb. Odd offsets break up the
byte structure and thus increase diffusion.

To find good rotation offsets and assess their diffusion properties, we used
an automated search combined with a simple diffusion metric. The offsets we
finally chose achieve full diffusion after F2 and offer good performance.

Padding Rule. The sponge (or duplex) construction offers protection against
generic attacks if the padding rule is sponge-compliant, i.e. if it is injective
and ensures that the last block is different from the all-zero block. In [8] it has
been proven that the multi-rate padding satisfies those properties. Moreover, it is
simple to describe, easy to implement, very efficient and increases the complexity
of certain kind of attacks, like slide attacks (see Section 6.3).

5 Performance

NORX was designed to perform well across both software and hardware plat-
forms. This chapter details our implementations and performance results.

5.1 Software

NORX is easily implemented for 32-bit and 64-bit processors, as it works on
32- and 64-bit words and uses only word-based operations (XOR, AND, shifts,
and rotations). The specification can directly be translated to code and requires
no specific technique such as look-up tables or bitslicing. The core of NORX
essentially consists of repeated usage of the G function, which allows simple and
compact implementations (e.g., by having only one copy of the G code).

NORX lends itself well to implementations taking advantage of SIMD ex-
tensions present in modern processors, such as AVX or NEON. The typical
vectorized implementation of NORX, when D = 1, works in full rows on the 4x4
state, and computes column and diagonal steps of F in parallel.

Furthermore, constant-time implementations of NORX are straightforward
to write, due to the absence of secret-dependent instructions or branchings.

Avoiding Latency. One drawback of G is that it has limited instruction par-
allelism. In architectures where one is limited by the latency of the G function,
an implementer can trade a few extra instructions for reduced latency:

to+—a®db d+— ddty
ti¢—anbd d+—dot
tl%t1<<1 d(‘d>>>7‘0
a <—tyg Pty

This tweak saves up to 1 cycle per instruction sequence, of which there are
4 per G, at the cost of 1 extra instruction. In a sufficiently parallel architecture,
this can save at least 4 x 2 x R cycles, which translates to 6.4R/W cycles per
byte saved overall.

Results. We wrote portable C reference implementations for both NORX64
and NORX32, as well as optimized versions for CPUs supporting AVX and
AVX2 and for NEON-enabled ARMs. Table 2 shows speed measurements on
various platforms for messages with varying lengths. The listed CPU frequencies
are nominal ones, i.e. without dynamic overclocking features like Turbo Boost,
which improves the accuracy of measurements. Furthermore, we listed only those
platform-compiler combinations that achieved the highest speeds. Unless stated
otherwise we used the compiler flags -03 -march=native.

The top speed of NORX (for D = 1), in terms of bytes per second, was
achieved by an AVX2 implementation of NORX64-4-1 on a Haswell CPU; listed
in Table 2. For long messages (> 4KiB), it achieves a throughput of about
1.39 GiBps (2.51 cycles per byte at 3.5 GHz). The overhead for short messages (<
64 bytes) is mainly due to the initialisation and finalisation rounds (see Figure 1).
However, the cost per byte quickly decreases, and stabilizes for messages longer
than about 1 KiB.

Note that the speed between reference and optimized implementations dif-
fers by a factor of less than 2, suggesting that straightforward and portable
implementations will provide sufficient performance in most applications. Such
consistent performance reduces development costs and improves interoperability.

5.2 Hardware

Hardware architectures of NORX are efficient and easy to design from the speci-
fication: vertical and parallel folding are naturally derived from the iterated and

Table 2. Software performance of NORX in cycles per byte.

Intel Core i7-2630QM at 2.0 GHz

Intel Core i7-4770K at 3.5 GHz

data length [bytes] long 1536 576 64 data length [bytes] long 1536 576 64
f 7.69 9.08 11.54 37.75 f 6.63 7.77 9.85 32.12
NORX64-6-1 © NORXG4-6-1 °
AVX 4.94 590 7.52 24.81 AVX2 3.73 4.47 5.71 19.19
f 5.28 6.24 7.94 26.00 f 4.50 5.27 6.71 22.06
NORX64-4-1 1 © NORXG4-4-1 °
AVX 3.28 3.91 5.03 16.69 AVX2 251 3.01 3.83 13.06

Intel Core i7-3667U at 2.0 GHz

Samsung Exynos 4412 Prime (Cortex-A9) at 1.7 GHz

data length [bytes]

long 1536 576 64

data length [bytes] long 1536 576 64

Ref 7.04 8.32 10.59 34.87 Ref 37.04 44.55 57.99 203.06
NORX64-6-1 NORX64-6-1
AVX 5.04 6.03 7.71 25.44 NEON 13.17 16.76 23.10 94.56
4.92 5.86 7.43 24.93 £ 26.56 32.21 42.35 152.25
NORX64-4-1 f NORXG4-4-1 1°
AVX 3.37 4.01 5.16 17.18 NEON 8.94 11.81 16.81 74.12

parallel structure of NORX. The cipher benefits from the hardware-friendliness
of the function G, which requires only bitwise logical AND, XOR, and bit shifts,
and the iterated usage of G inside the core permutation of NORX.

A hardware architecture was designed, supporting parameters W € {32, 64},
Re{2,...,16} and D = 1. It was synthesized with the Synopsys Design Com-
piler for an ASIC using 180 nm UMC technology. The implementation was tar-
geted at high data throughput. The requirements in area amounted to about
62kGE. Simulations for NORX64-4-1 report a throughput of about 10 Gbps
(1.2 GiBps), at a frequency of 125 MHz.

A more thorough evaluation of all hardware aspects of NORX is planned for
the future. Due to the similarity of NORX to ChaCha and the fact that NORX
has only little overhead compared to a blank stream cipher, we expect similar
results as presented in [14] for ChaCha.

5.3 Comparison to AES-GCM

AES-GCM, the current de-facto standard for authenticated encryption, achieves
very high speeds when the AES New Instructions (AES-NI) extension is avail-
able. Gueron reports 1.31cpb for AES256-GCM on a Haswell processor [13].
In that case, NORX is only about half as fast as AES-GCM (the difference is
around 1.2cpb). The situation is different if AES-NI is not available, which is
the case for the majority of platforms. We expect that NORX outperforms AES-
GCM in these cases. For example, in [17] a constant-time implementation of
AES128-GCM is presented, reaching 20.29 cpb on a Nehalem processor, while
a vulnerable implementation reaches 10.12 cpb. These speeds are likely to be
somewhat better on modern architectures, but certainly not below 3 cpb and es-
pecially not for constant-time implementations. On the other hand, NORX was
designed to run in constant time, therefore such a protected implementation
should have comparable performance to the results presented in Section 5.1.

6 Preliminary Cryptanalysis

This section presents preliminary results on the cryptanalysis of NORX. For
a more thorough version, especially with respect to differential and rotational
properties, we refer to [16].

6.1 Differential Cryptanalysis

We show how to construct high-probability differentials for the round function
F when R is small. We focus on NORX64, but similar considerations hold for
NORX32.

We consider a simple attack model where the initial state is chosen uniformly
at random and where one seeks differences in the initial state that give biased
differences in the state obtained after a small number of iterations of F. To find
such simple differentials, we decomposed G into two functions G; and Go, i.e.
G = Gy o Gy, such that G; corresponds to the first part of G (i.e. up to the
rotation > r1) and Gs to the second. Then, we analysed the behaviour of G; on
1-bit input differences. Exploiting the fact that many differences are deleted by
the shift <« 1 when the active bit is in the MSB, we found three high-probability
differentials of G with a low-weight output, as shown in Table 3. Extending
those differentials to F delays the diffusion by one step. Input differences with
other combinations of active MSBs lead to similar output differences, but we
found none with a lower or equal Hamming weight as the above. Using the first
differential of the above, we derived a truncated differential over 3 steps (i.e.
F1-5) that has probability 1. This truncated differential can be used to construct
an impossible differential over 3.5 rounds for the 64-bit version of F, which is
shown in the next part. We expect that advanced search techniques are able to
find better differentials for a higher number of rounds of F, e.g. where the sparse
difference occurs in a later step than in the first.

Table 3. High-probability, low-weight differentials of G.

Input / Output Difference of G Pr(-)

8000000000000000, 8000000000000000, 8000000000000000, 0000000000000000
0000000000000000, 0000000000000001, 8000000000000000, 0000000000000000

0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000
8000000000000000, 0000000001000001, 8000000000800000, 0000000000800000

0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000
8000000000000000, 0000000003000001, 8000000001800000, 0000000000800000

Impossible Differentials. We show how to construct an impossible differential
using the miss-in-the-middle approach. In forward direction we use a probability-
1 truncated differential over 1.5 rounds with an input difference having active
bits in the first 3 MSBs of the input to G in the first column of the state, see
Table 3. We set (0000000000000000, 0000000000000000, 8000000000000000, 0000000000000000)
as the difference in the third column in backward direction. Applying F!® to the

state in forward direction and F~1% o col ™! to the state in backward direction,
results in a conflict in the 2nd bit of the 14th word. In forward direction this bit
is always 1 and in backward direction it is always 0. We validated the impossi-
ble differential empirically in 232 runs, starting in both directions from random
states having the above differences. Equivalent impossible differentials can be
constructed by varying the columns where the differences are injected. We were
unable to construct an impossible differential for more than 3.5 rounds.

Remark. Neither the simple nor the impossible differentials can be used to at-
tack NORX if the attacker is nonce-respecting: first of all the initialisation process
prevents an attacker to set the required input difference in forward direction, i.e.
active bits in 3 consecutive MSBs of a column. Once the initialisation is finished,
the attacker could theoretically set those differences in the first or second col-
umn, but it would have no effect, as two states initialised with different nonces
have a far too big distance from each other. Additionally the capacity part is
completely unknown to the attacker.

6.2 Algebraic Cryptanalysis

Algebraic attacks on cryptographic algorithms discussed in the literature [2]
target ciphers whose internal state is mainly updated in a linear way and thus
exploit a low algebraic degree of the attacked primitive. However, this is not
the case for NORX, where the b inner state bits are updated in a strongly non-
linear fashion. In the following we briefly discuss the non-linearity properties of
NORX, demonstrating why it is unlikely that algebraic attacks can be successfully
mounted against the cipher.

We constructed the algebraic normal form (ANF) of G and measured the
degree of every of the 4W polynomials and the distribution of the monomials.
Table 4 reports the number of polynomials per degree for the 32- and 64-bit
versions, as well as information on the distribution of monomials.

Table 4. Properties of the ANF of G.

polynomials by degree #monomials

3 4 5 6 7 8 min max avg median
32-bit 2 6 58 2 8 52 12 489 242 49.5
64-bit 2 6 122 2 8 116 12 489 253 49.5

In both cases most polynomials have degree 5 or 8 and merely 2 have degree
3. Multiplying each of the above values by 4 gives the distribution of degrees
of the whole state after a col or diag step. Due to memory constraints, we were
unable to construct® the ANF for a single full round F, neither for the 64-bit nor
for the 32-bit version. In summary, this shows that the state of NORX is updated
in a strongly non-linear fashion and due to a rapid degree growth and huge state

8 Using SAGE [21] on a workstation with 64 GiB RAM.

sizes it is unlikely that algebraic attacks can be successfully used against the
AEAD scheme.

6.3 Other Properties

Fixed Points. The G permutation and thus any iteration of the round function
F have a trivial distinguisher: the fixed points G(0) = 0 and FZ(0) = 0. Never-
theless it, seems hard to exploit this property, as hitting the all-zero state is as
hard as hitting any other arbitrary state. Thus, the ability to hit a predefined
state implies the ability to recover the key, which is equivalent to completely
breaking NORX. Furthermore, we used the constraint solver STP [11] to prove
that there are no further fixed points. For NORX32, the solver was able to show
that this is indeed the case, but for NORX64 the proof is a lot more complex.
Even after over 1000 hours, STP was unable to finish its computation with a
positive or negative result. Therefore, we find it unlikely that there are any other
fixed points in NORX64 besides the zero-to-zero point.

Slide Attacks. Slide attacks try to exploit the symmetries that consist of the
iteration of a number of identical rounds. To protect sponge constructions against
slide attacks, two simple defenses can be found in the literature: [12] proposes to
add a non-zero constant to the state just before applying the permutation and
[19] recommends to use a message padding, which ensures that the last processed
data block is different from the all-zero message. The duplex constructions is
derived from sponge functions, hence, the above defenses should hold for the
former, too, and thus for NORX. With the domain separation and multi-rate
padding both defensive mechanisms are already integrated into NORX.

Rotational Cryptanalysis. NORX includes several defenses against exploitable
rotation-invariant behaviour: during state setup 10 out of 16 words are initialised
with asymmetric constants, which impedes the occurrence of rotation-invariant
behaviour and limits the freedom of an attacker. The non-linear operation of
NORX contains a non rotation-invariant bit-shift < 1, and finally, the duplex
construction prevents an attacker from modifying the complete internal state at
a given time. He is only able to influence the rate bits, i.e. at most » = 10W bits
of the state, and has to “guess” the other 6\ bits in order to mount an attack.

Acknowledgements

The authors thank Frank K. Giirkaynak, Mauro Salomon, Tibor Keresztfalvi and
Christoph Keller for implementing NORX in hardware and for giving insightful
feedback from their hardware evaluation. Moreover, the authors would like to
thank Alexander Peslyak (Solar Designer), for giving them access to one of his
Haswell machines, so that they could test their AVX2 implementations of NORX.
Finally, the authors also thank the anonymous reviewers for their efforts and for
their very helpful comments regarding this paper.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Official website of NORX (2014), https://www.norx.io

Aumasson, J.P., Dinur, 1., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA
Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-
128. Cryptology ePrint Archive, Report 2009/218

Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470—488. Springer, Heidelberg (2008)

Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler,
Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119-135. Springer, Heidelberg (2013)
Bernstein, D.J.: ChaCha, a Variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008), http://cr.yp.to/chacha.html
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Security of Keyed
Sponge Constructions, presented at SKEW 2011, 16-17 February 2011, Lyngby,
Denmark, http://sponge.noekeon.org/SpongeKeyed.pdf

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based Encryption,
Authentication and Authenticated Encryption, presented at DIAC 2012, 05-06
July 2012, Stockholm, Sweden

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic Sponge Func-
tions (2008), http://sponge.noekeon.org/CSF-0.1.pdf

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of the
Sponge Construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 181-197. Springer, Heidelberg (2008)

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay,
S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320-337. Springer, Heidelberg (2011)
Ganesh, V., Govostes, R., Phang, K.Y., Soos, M., Schwartz, E.: STP — A Simple
Theorem Prover (2006-2013), http://stp.github.io/stp

Gorski, M., Lucks, S., Peyrin, T.: Slide Attacks on a Class of Hash Functions.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143-160. Springer,
Heidelberg (2008)

Gueron, S.: AES-GCM Software Performance on the Current High End CPUs as a
Performance Baseline for CAESAR Competition, presented at DIAC 2013, 11-13
August 2013, Chicago, USA, http://2013.diac.cr.yp.to/slides/gueron.pdf
Henzen, L., Carbognani, F., Felber, N., Fichtner, W.: VLSI Hardware Evaluation of
the Stream Ciphers Salsa20 and ChaCha, and the Compression Function Rumba.
In: 2nd International Conference on Signals, Circuits and Systems 2008. pp. 1-5.
IEEE (2008)

Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2% Security in Sponge-Based
Authenticated Encryption Modes. Cryptology ePrint Archive, Report 2014/373
(2014), http://eprint.iacr.org/2014/373

Jovanovic, P., Neves, S., Aumasson, J.P.: Analysis of NORX. Cryptology ePrint
Archive, Report 2014/317 (2014), http://eprint.iacr.org/2014/317

Kasper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. Cryptol-
ogy ePrint Archive, Report 2009/129 (2009), http://eprint.iacr.org/2009/129
Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Al-
gorithms, Part 1, vol. 4A. Addison-Wesley, Upper Saddle River, New Jersey (2011),
http://wuw-cs-faculty.stanford.edu/~uno/taocp.html

https://www.norx.io
http://cr.yp.to/chacha.html
http://sponge.noekeon.org/SpongeKeyed.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://stp.github.io/stp
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://eprint.iacr.org/2014/373
http://eprint.iacr.org/2014/317
http://eprint.iacr.org/2009/129
http://www-cs-faculty.stanford.edu/~uno/taocp.html

19. Peyrin, T.: Security Analysis of Extended Sponge Functions, presented at the
ECRYPT Workshop Hash Functions in Cryptology: Theory and Practice, Leiden,
The Netherlands, June 4th 2008, http://www.lorentzcenter.nl/lc/web/2008/

309/presentations/Peyrin.pdf
20.

Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on Reduced

Round Salsa20 and ChaCha. In: Kwon, T., Lee, M.K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 337-351. Springer, Heidelberg (2012)

21.
http://sagemath.org

A Datagrams

Representations for the datagrams as introduced in Section 2.7.

— Fixed Parameters:

Stein, W.: Sage Mathematics Software. The Sage Development Team (2005-2013),

NORX64 header payload trailer
field N TH [171 | _ICI H | C | T
offsets [bytes] 01516 ~17[18 ~19[20 ~27[[28 77|77 77|77 77 |[77 77
NORX32 header payload trailer
field N [TH | 71 [_ICI H | 0 | T A
offsets [bytes] 0-7 | 8-9 |10 -11[12 - 15][16 — 77 [?7 — 77?7 — 77 [[77 — 77
— Variable Parameters:
NORX64 header payload trailer
field N | H [71 [o] (WO RD] D 7] C T A
offsets [bytes] [| 0~ 15 [16 — 17 |18 — 19[20 — 27 | 28 [29 30 - 77|77 77|77 -7 (|77 - 77
NORX32 header payload trailer
field N T JH [1T [I [WO[RMH] D H [C T A
offsets [bytes] || 0 -7 | 8-9 |10 —11[12 —15] 16 [17 |[I8 72|77 77|70 72 |[72?7

B Test Vectors

Test vectors for some instances of NORX are given below. More can be found on

the official website [1].
— NORX®64:

: 0011223344556677

8899AABBCCDDEEFF

: FFFFFFFFFFFFFFFF
: 1000000000000002
: 8000000000000007
null

NORX64-4-1 : 1B4DCCFF6779A2C3
: DOCE5276FDEC9F6E
NORX64-6-1 : 7223675B69C7A934
: A0O5D644CCD2C5887

»Q 2Q SNYU™zZX

— NORX32:

: 00112233
: FFFFFFFF
: 10000002
: 80000007
null

44556677
FFFFFFFF
30000004
60000005

NORX32-4-1 : 1F8F35CD

: T702CA8A

CAFA2A38
E8BA5210
NORX32-6-1 : D9SEDABA
: 69872EE5S

25C18DD9
3DAC068C

»Q 2Q HNYIZX

FFFFFFFFFFFFFFFF
3000000000000004
6000000000000005

865464C856BC4B0OC

33EE64CESCCA3ABA

1EBAB65233E8DC25
31DE2501AE4FE789

8899AABB CCDDEEFF

40000003 20000001

724C1417
FD9B73AD

228732CA
C0443A0D

AOCA4C36
E8SD6D8B3

F73309C6
0A3D2099

FFEEDDCCBBAA9988

4000000000000003

DADBC58565E1690A
1187C05183464BD0O

AB660E1BFOF3FEES
5C153D99943D29A4

7766554433221100

2000000000000001

2CB12COBE9D2F045
AO0915ECAB6FAF8757

71BE33115B333D6D
98353A0E38D58A93

http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf
http://sagemath.org

	NORX: Parallel and Scalable AEAD

