
Analysis of NORX:
Investigating Differential and Rotational Properties

Jean-Philippe Aumasson1, Philipp Jovanovic2, and Samuel Neves3

1 Kudelski Security, Switzerland
jeanphilippe.aumasson@gmail.com

2 University of Passau, Germany
jovanovic@fim.uni-passau.de

3 University of Coimbra, Portugal
sneves@dei.uc.pt

Abstract. This paper presents a thorough analysis of the AEAD scheme
NORX, focussing on differential and rotational properties. We first in-
troduce mathematical models that describe differential propagation with
respect to the non-linear operation of NORX. Afterwards, we adapt a
framework previously proposed for ARX designs allowing us to automa-
tise the search for differentials and characteristics. We give upper bounds
on the differential probability for a small number of steps of the NORX
core permutation. For example, in a scenario where an attacker can only
modify the nonce during initialisation, we show that characteristics have
probabilities of less than 2−60 (32-bit) and 2−53 (64-bit) after only one
round. Furthermore, we describe how we found the best characteristics
for four rounds, which have probabilities of 2−584 (32-bit) and 2−836 (64-
bit), respectively. Finally, we discuss some rotational properties of the
core permutation which yield some first, rough bounds and can be used
as a basis for future studies.

Keywords: NORX, AEAD, LRX, differential cryptanalysis, rotational crypt-
analysis

1 Introduction

NORX [4] is a new scheme for authenticated encryption with associated data
(AEAD) and was recently submitted to CAESAR [1]. NORX is based on well-
known building blocks but refines those components to provide certain desirable
features. Its layout is a modified version of the monkeyDuplex construction [9],
which allows to process data in parallel. The duplex construction is an alteration
of sponge functions [10], which were introduced alongside Keccak [12]. The core
permutation F of NORX is derived from ChaCha [6] and BLAKE2 [5], which are
parade examples for ARX primitives, i.e. cryptographic functions based solely on
integer addition mod 2n, bit rotations and XOR. However, the permutation F

2

is a so-called LRX4 construction, because integer addition, which can be written
as a+ b = (a⊕ b) + ((a∧ b)� 1) [21], is replaced by the approximation (a⊕ b)⊕
((a ∧ b) � 1), a purely logic-based operation. The aim is to increase hardware
friendliness and simplify cryptanalysis. Despite its famous predecessors, that
have already resisted extensive analysis [3,19,25] and are deemed secure, this new
permutation F still lacks in-depth analysis and its security level is yet unclear.

Differential cryptanalysis [13] is one of the most powerful and versatile at-
tack techniques usable against symmetric primitives and belongs to the standard
repertoire of every cryptanalyst. Therefore, it is not surprising that every new
symmetric primitive is examined upon its resistance against differential attacks.
Usually, it is much easier to establish bounds for strongly aligned ciphers, like
AES [16], than for weakly aligned ones [8]. NORX rather belongs to the latter
category and, despite some successful inroads into deriving bounds for weakly
aligned ciphers [15,17], it is not obvious how to establish such bounds in the
general case. Hence, in the first part of the paper, we investigate differential
propagation in F and, based on that, introduce NODE [2], the NORX Differ-
ential Search Engine, a framework providing a way to search for differentials
and characteristics in an automated way. Our approach is guided by the work
of Mouha and Preneel [24], where a search framework was introduced for the
ARX cipher Salsa20 [7]. Their framework constructs a description of the differ-
ential propagation behaviour of Salsa20, using well-known differential properties
of integer addition [22]. The description is formulated in the CVC language,
the standard input language of the constraint solver STP [18], which supports
operations on bit vectors (like bitwise XOR, AND, modular addition, etc.) and
therefore allows a straightforward modelling of the differential search problem.
The resulting description has a simple shape, which facilitates cryptanalysis.

However, in order to use such a framework for NORX, some adjustments are
necessary: The permutation F of NORX is not based on integer addition, and
hence we can not rely upon already known results on the differential properties
of the latter [22]. Therefore, we start with the mathematical modelling of differ-
ential propagation with respect to the non-linear operation (a⊕b)⊕

(
(a∧b)� 1

)
of NORX. All of our claims are supported by rigorous proofs. Then, we use these
results to show how to adapt the search framework to the NORX permutation,
which requires some more modifications, since the original framework [24] was
developed for Salsa20, whereas F is based on ChaCha [6]. Finally, we present the
results from our extensive empirical analysis of FR.

The second part of this paper is dedicated to the rotational cryptanalysis [20]
of the core permutation FR. Rotational cryptanalysis is another important aspect
for the security evaluation of ARX/LRX-based primitives. We present some basic
rotational properties of F and based on that derive bounds for a few simple
rotational attacks.

4 This is not an official term. We introduce it to easily distinguish between ARX- and
purely logic-based primitives. Terminology-wise it is not entirely correct, though, as
integer addition can be obviously modelled by bitwise logical operations as well.

3

Outline. The paper is structured as follows. Section 2 introduces notation and
recalls the basic layout of NORX, with a focus on its core permutation FR, as it is
the main target of our cryptanalysis efforts. Sections 3 and 4 present differential
and rotational cryptanalysis of NORX and Section 5 concludes the paper.

2 Preliminaries

2.1 Notation

Hexadecimal numbers are denoted in typewriter, e.g. c9 = 201. A word is either
a 32-bit or 64-bit string, depending on the context. Parsing of data streams (as
byte arrays) to word arrays is done in little-endian order. The concatenation of
strings x and y is denoted by x ‖ y. The length of a bit string x is written as
|x|, and its Hamming weight as hw(x). We use the standard notation ¬, ∧, ∨
and ⊕ for bitwise NOT, AND, OR and XOR, x � n and x � n for left- and
right-shift, and x≪ n and x≫ n for left- and right-rotation of x by n bits.

2.2 Core Components of NORX

The NORX family of AEAD schemes is based on the monkeyDuplex construc-
tion [9,11] and parametrised by a word size W ∈ {32, 64}, a round number
1 ≤ R ≤ 63, a parallelism degree 0 ≤ D ≤ 255 and a tag size |A| ≤ 10W . The
meaning of the parameters is basically self-explanatory, for more details see [4].

The state S of NORX consists of sixteen words s0, . . . , s15 each of size W
bits, which are arranged in a 4× 4 matrix. Thus, the state has a size of 512 bits
for W = 32 and a size of 1024 bits for W = 64. Due to the duplex construction,
the words of the state are divided into two types: s0, . . . , s9 are called the rate
words and s10, . . . , s15 are called the capacity words5. The rate words are used for
data processing, whereas the capacity words remain untouched and ensure the
security of the scheme. S is initialised by loading a nonce n0, n1, a key k0, . . . , k3
and constants u0, . . . , u9 in the following way:

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 ←−

u0 n0 n1 u1
k0 k1 k2 k3
u2 u3 u4 u5
u6 u7 u8 u9

More information on the constants can be found in [4]. This initial state is
transformed by F2R, where F is the round function, interleaved with the injection
of parameter and domain separation constants, before data processing starts,
which uses FR. Concrete instances of NORX, as given in [4], use R ∈ {4, 6}. The
round function F of NORX is composed of a column step

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

5 These are also respectively known as the outer and inner part of the state [10,9].

4

followed by a diagonal step

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

The function G transforms four words a, b, c, and d by doing

1 : a←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
5 : a←− (a⊕ b)⊕

(
(a ∧ b)� 1

)
2 : d←− (a⊕ d) ≫ r0 6 : d←− (a⊕ d) ≫ r2
3 : c ←− (c⊕ d)⊕

(
(c ∧ d)� 1

)
7 : c ←− (c⊕ d)⊕

(
(c ∧ d)� 1

)
4 : b ←− (b⊕ c) ≫ r1 8 : b ←− (b⊕ c) ≫ r3

where rotation offsets (r0, r1, r2, r3) have the values (8, 11, 16, 31) for 32-bit and
(8, 19, 40, 63) for 64-bit.

Since our analysis focusses on the core permutation FR, we do not go into
the details of NORX’s mode of operation. For more information on these topics,
we refer to the official specification [4].

2.3 Weak States

The NORX specification [4] contains a discussion about the all-zero state, which
is mapped to itself by FR for any R > 0, and why it is no problem for the security
of the scheme. However, due to the layout of F, there is another class of weak
states. These are of the form

w w w w
x x x x
y y y y
z z z z

with w, x, y, and z being arbitrary W -bit sized words. The column-pattern is
preserved by FR for an arbitrary value of R > 0. The ability to hit such a state
purposely, is equivalent to the ability of reconstructing the key and therefore
breaking the entire scheme. While there are quite many of these states, namely
24W , their number is still negligible compared to the total number of 216W

states. Thus, the probability to hit such a state is 2−12W , which translates to
probabilities of 2−384 (W = 32) and 2−768 (W = 64). Additionally, this attack
does not take into account the extra protection provided through the duplex
construction, the asymmetric constants used during initialisation, or the domain
separation constants which are integrated into the state before each application
of FR. All of the above features should impede the exploitation of these states.

3 Differential Cryptanalysis

This section is dedicated to the differential cryptanalysis of NORX. First, we
introduce the required mathematical models to describe differential propagation
in FR of NORX. Then we describe how to construct the search framework and
finally apply it to NORX and present our results.

5

3.1 Mathematical Models

Let n denote the word size, let x and y denote bit strings of size n and let α,
β and γ denote differences of size n. We identify by αi, βi, γi, xi and yi the
individual bits of α, β, γ, x and y, with 0 ≤ i ≤ n− 1.

Definition 1. The non-linear operation H of NORX is the vector Boolean func-
tion defined by

H : F2n
2 −→ Fn2 , (x, y) 7→ (x⊕ y)⊕ ((x ∧ y)� 1)

Definition 2. Let f : F2n
2 −→ Fn2 be a vector Boolean function and let α, β and

γ be n-bit sized XOR-differences. We call (α, β) −→ γ a (XOR-)differential of f
if there exist n-bit strings x and y such that the following equation holds:

f(x⊕ α, y ⊕ β) = f(x, y)⊕ γ

Otherwise, if no such n-bit strings x and y exist, we call (α, β) −→ γ an impos-
sible (XOR-)differential of f .

Plugging the non-linear operation H of NORX from Definition 1 into the
formula of Definition 2, we see that an XOR-differential (α, β) −→ γ of H fulfils

α⊕ β ⊕ γ = ((x ∧ β)⊕ (y ∧ α)⊕ (α ∧ β))� 1 (1)

for n-bit strings x and y. Rewriting the above formula on bit level we get

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi)⊕ (αi−1 ∧ βi−1)⊕ (xi−1 ∧ βi−1)⊕ (yi−1 ∧ αi−1), i > 0

Lemma 3 is an important step towards expressing differential propagation
in NORX and is the analogue to Theorem 1 for integer addition from [22]. The
lemma eliminates the dependence of Equation 1 on the bit strings x and y and
therefore allows us to check in a constant amount of word operations if a given
tuple (α, β, γ) of differences is an (impossible) XOR-differential of H.

Lemma 3. For each XOR-differential (α, β) −→ γ of the non-linear operation
H of NORX the following equation is satisfied:

(α⊕ β ⊕ γ) ∧ (¬((α ∨ β)� 1)) = 0 (2)

Proof. See Appendix A.

Obviously, a tuple of differences (α, β, γ) not satisfying Lemma 3 is an im-
possible XOR-differential of H.

Definition 4. Let f be a vector Boolean function and let δ be an XOR-differential
in terms of Definition 2. The probability xdpf of δ is defined as

xdpf (δ) = |{x, y ∈ Fn2 : f(x⊕ α, y ⊕ β)⊕ f(x, y)⊕ γ = 0}| · 2−2n

The value xdpf (δ) is also called the XOR-differential probability of δ. Moreover,
for xdpf (δ) = 2−w we call w the XOR-(differential) weight of δ.

6

The differential probability of an impossible differential is always 0 by pre-
requisite, as {x, y ∈ Fn2 : f(x ⊕ α, y ⊕ β) ⊕ f(x, y) ⊕ γ = 0} is then the empty
set, see Definition 2. To compute the probability of a differential with respect to
the non-linear operation H of NORX, we can use the following lemma.
Lemma 5. Let δ be a XOR-differential with respect to the non-linear operation
H of NORX. Its differential probability is then given by

xdpH(δ) = 2−hw((α∨β)�1)

Proof. See Appendix A.
Instead of looking at XOR-differences one could alternatively also analyse

f -differentials, which is done in the following.
Definition 6. Let f : F2n

2 −→ Fn2 be a vector Boolean function and let α, β and
γ be differences with respect to f . We call (α, β) −→ γ an f-differential of XOR
if there exist n-bit strings x and y such that the following equation holds:

f(x, α)⊕ f(y, β) = f(x⊕ y, γ)
Otherwise, if no such n-bit strings x and y exist, we call (α, β) −→ γ an impos-
sible f-differential of XOR.

Plugging the non-linear operation H of NORX into the formula of Definition 6
we obtain the following equation

α⊕ β ⊕ γ = ((x ∧ (α⊕ γ))⊕ (y ∧ (β ⊕ γ)))� 1 (3)
which can be expressed on bit level as

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi)⊕ (xi−1 ∧ (αi−1 ⊕ γi−1))⊕ (yi−1 ∧ (βi−1 ⊕ γi−1)), i > 0
Lemma 7. Let H denote the non-linear operation of NORX. For each H-differential
in terms of Definition 6 the following equation is satisfied:

(α⊕ β ⊕ γ) ∧ (¬(γ � 1)⊕ (α� 1)) ∧ (¬(β � 1)⊕ (γ � 1)) = 0 (4)
Proof. See Appendix A.
Definition 8. Let f be a vector Boolean function and δ be an f -differential in
terms of Definition 6. The probability fdp⊕ of δ is defined as

fdp⊕(δ) = |{x, y ∈ Fn2 : f(x, α)⊕ f(y, β)⊕ f(x⊕ y, γ) = 0}| · 2−2n

We call fdp⊕(δ) the f-differential probability of δ. Moreover, for fdp⊕(δ) = 2−w
we call w the f-(differential) weight of δ.
Lemma 9. Let H denote the non-linear operation of NORX and let δ be an
H-differential in terms of Definition 6. Its probability is then given by

Hdp⊕(δ) = 2−hw(((α⊕γ)∨(β⊕γ))�1)

Proof. See Appendix A.
While we exclusively consider XOR-differentials and -characteristics in the

rest of the paper, f -differentials might be of interest for future investigations.

7

3.2 NODE – The NORX Differential Search Engine

Now that we have introduced the mathematical model, we describe in this part
the framework NODE for the search of differential characteristics of a predefined
weight. Our tool is freely available at [2] under a public domain-like license. We
focus here on XOR-differentials, as introduced in Definition 2, i.e. differences are
computed with respect to XOR and for the vector Boolean function we use the
non-linear operation H of NORX. If we speak in the following of differentials we
always refer to the above type. Below we show the general approach, and refer
to Appendix B for the CVC code.

For modelling the differential propagation through a sequence of operations,
we use a technique well known from algebraic cryptanalysis: For every output
of an operation a new set of variables is introduced. These output variables are
then modelled as a function of its input variables. Moreover, the former are used
as input to the next operation. This is repeated until all required operations have
been integrated into the problem description. Before we show how the differential
propagation in FR is modelled concretely, we introduce the required variables.

Let s denote the number of (column and diagonal) steps to be analysed and
let 0 ≤ i ≤ 15 and 0 ≤ j ≤ 2(s−1). For example, if we analyse F2, we have s = 4.
Let xi, yi,j and zi be W -bit sized variables, which model the input, internal and
output XOR differences of a differential characteristic. Recall that W ∈ {32, 64}
denotes the word size of NORX. Moreover, let wi,k, with 0 ≤ k ≤ s − 1, be
W -bit sized helper variables which are used for differential weight computations
or equivalently to determine the probability of a differential characteristic. We
assume that the probability of a differential characteristic is the sum of weights of
each non-linear operation H. Furthermore, let d denote a W -bit sized variable,
which fixes the total weight of the characteristic we plan to search for. The
description of the search problem is generated through the following steps:

1. Every time the function G applies the non-linear operation H we add two
expressions to our description:
(a) Append the equation 0 = (α⊕β⊕γ)∧ (¬((α∨β)� 1)) from Lemma 3,

with α, β and γ each substituted by one of the variables xi, yi,j or zi.
This ensures that only non-impossible characteristics are considered.

(b) Add the expression wi,k = (α ∨ β) � 1 from Lemma 5, with α and
β substituted by the same variables xi, yi,j or zi as in step (a). This
expression keeps track of the weight of the characteristic.

2. Every time the function G applies a rotation we apply the same rotation
to the corresponding XOR difference, i.e. we add γ = (α ⊕ β) ≫ r to the
problem description, with α, β and γ substituted appropriately. Note that
the rotation is a linear operation and thus does not change the differential
probability.

3. Add an expression corresponding to the following equation:

d =
s−1∑
k=0

15∑
i=0

hw(wi,k) (5)

8

This equation ensures that indeed a characteristic of weight d is found. De-
pending on the technique how Hamming weights are computed, additional
variables might be necessary. Refer to Appendix B for one possible imple-
mentation to compute Hamming weights in the CVC language.

4. Set the variable d to the target differential weight and append it to the
problem description.

5. Exclude the trivial characteristic mapping an all-zero input difference to an
all-zero output difference. To do so, it is sufficient to exclude the all-zero
input difference. Therefore, append an expression equivalent to ¬

(
(x0 =

0) ∧ ... ∧ (x15 = 0)
)
to the CVC description.

After the generation of the problem description is finished, it can be used to
search for differential characteristics using STP. Alternatively, STP allows to con-
vert the representation of the problem to SMT-LIB2 or CNF, enabling searches
with other SMT or SAT solvers, like Boolector [14] or CryptoMiniSat [23].

3.3 Applications of NODE

In this part we describe the application of the search framework to the permu-
tation FR of NORX. Depending on the concrete attack model, there are different
ways an attacker could inject differences into the NORX state. During initialisa-
tion an adversary is allowed to modify either the nonce words s1 and s2 (initN)
or nonce and key words s1, s2, s4, . . . , s7 (initN,K). During data processing an
attacker can inject differences into the words of the rate s0, . . . , s9 (rate). Last
but not least, we also investigate the case where an attacker can manipulate
the whole state s0, . . . , s15 (full). While an attacker is not able to influence the
entire state at any point directly due to the duplex construction, the full sce-
nario is nevertheless useful to estimate the general strength of FR, because all of
the other settings described above are special cases of the latter. Additionally, it
could be useful for the chaining of characteristics: For example, an attacker could
start with a search in the data processing part (i.e. under the rate setting) over a
couple of steps, say FR1 , and continue afterwards with a second search, starting
from the full state for another couple of steps, say FR2 , so that differentials from
the second search connect to those from the first, resulting in differentials for
FR1+R2 . We will explore this Divide&Conquer strategy in more detail below.

For the rest of the paper, we denote a differential characteristic as a tuple
of differences (δ0, . . . , δn), where δ0 is the input difference and δn is the output
difference. The values δi for 0 < i < n are called internal differences. The weight
of the probability that difference δi is transformed into difference δi+1 by the
ri-fold iteration of F is denoted by wi for 0 ≤ i ≤ n− 1. Recall, that we assume
that the probability of the entire characteristic is equal to the multiplication of
probabilities of the partial characteristics, and thus we have w =

∑n−1
i=0 wi for

the total weight of the characteristic. The notation FR+0.5 describes that we do
R full rounds followed by one more column step, e.g. F1.5 corresponds to one full
round plus one additional column step.

9

Experimental Verification of the Search Framework. The goal of the
experimental verification is to show that the framework indeed does what it is
supposed to do, namely find differentials of a predetermined weight w in FR.
Therefore, we generated differentials for F1.5 (full) and verified them against a C
reference implementation of F1.5. Under these prerequisites our framework found
the first differentials at a weight of 12, for both W = 32 and W = 64, which
thus should have a probability of about 2−12. To get a better coverage of our
verification test, we did not use only differentials of that particular weight, but
generated random differentials of weights w ∈ {12, . . . , 18}, which are listed in
Appendix C.1 for both 32- and 64-bit. Then we applied them to the C imple-
mentation of F1.5 for 2w+16 pairs of randomly chosen input states having the
input difference of the characteristic. In each case, we checked if the output
difference had the predicted pattern. The number of pairs adhering the char-
acteristic should be around 216. The results are illustrated in the first table of
Appendix C.1 and show that the search framework indeed finds characteristics
with the expected properties.

Lower Bounds for Differential Weights of FR. We made an extensive
analysis on the weight bounds of differential paths in FR, where we investigated
1 ≤ s ≤ 4 steps for our four different scenarios initN , initN,K , rate and full. We
tried to find the lowest weights where differentials appear for the first time. These
cases are listed in Table 1 as entries without brackets. For example, in case of
NORX32 under the setting full, there are no differentials in F1.5 with a weight
smaller than 12. Entries in brackets are the maximal weights we were capable
of examining without finding any differentials. Due to memory constraints, our
methods failed for differential weights higher than those presented in Table 1.
For example, our search routine did not find any characteristics of weight smaller
than 40 (i.e. of probability higher than 2−40) for the scenario F1.5, initN,K and
W = 32. The required amount of RAM, to execute this check, was approximately
49GiB (using CryptoMiniSat with 16 threads) with a running time of 8 hours.

Table 1. Lower bounds for differential trail weights

NORX32 NORX64

initN initN,K rate full initN initN,K rate full

F0.5 6 2 2 0 6 2 2 0
F1.0 (60) 22 10 2 (53) 22 12 2
F1.5 (60) (40) (31) 12 (53) (35) (27) 12
F2.0 (61) (45) (34) (27) (51) (37) (30) (23)

The security of NORX depends heavily on the security of the initialisation,
which transforms the initial state by F2R. As initN is the most realistic attack
scenario, we conducted a search over all possible 1- and 2-bit differences in the
nonce words. Our search revealed that the best characteristics have weights of

10

67 (32-bit) and 76 (64-bit) under those prerequisites. Obviously, these weights
are not too far away from the computationally verified values of 60 (32-bit) and
53 (64-bit) from Table 1, showing that the bounds for F (initN) are quite tight.

Extrapolating the above results to F 8 (i.e. R = 4), we get lower weights
of 61 + 3 · 27 = 142 (initN) or 45 + 3 · 27 = 126 (initN,K) for NORX32 and
51 + 3 · 23 = 132 (initN) or 37 + 3 · 23 = 106 (initN,K) for NORX64. However,
these are only loose bounds and we expect the real ones to be considerably higher.

Search for Differential Characteristics in F4. This part shows how we con-
structed differential characteristics in F4 under the setting full for both versions
of the permutation, i.e. 32- and 64-bit. Unsurprisingly, a direct approach to find
such characteristics turned out to be infeasible, hence we decomposed the search
into multiple parts and constructed the entire path step by step.

At first we made searches that only stretched over R ≤ 2 rounds. After tens
of thousands of iterations using many different search parameter combinations
we found differentials having internal differences of Hamming weight 1 and 2
after one application of F. We also used a probability-1 differential in G, which
is listed as the first entry in the table of Appendix C.2, as a starting place. We
expanded all those characteristics for both word sizes, in forward and backward
direction one column or diagonal step at a time, until their paths stretched the
entire 4 rounds. The best differential paths we found this way have weights of
584 (32-bit) and 836 (64-bit), respectively. Both are depicted in Appendix C.3.

Iterative Differentials. We also performed extensive searches for iterative
differentials in F for the setting full. Using our framework, we could show that
there are no such differentials up to a weight of 29 (32-bit) and 27 (64-bit), before
our methods failed due to computational constraints. Extrapolating these results
to F8 and F12, i.e. the number of initialisation rounds for R = 4 and R = 6, we
get lower weight bounds of 232 and 348, for 32-bit, or of 216 and 324 for 64-
bit. The best iterative differentials we could find for F, have weights of 512
(32-bit) and 843 (64-bit) and are depicted in Appendix C.4. These weights are
obviously much higher than our guaranteed lower bounds, and hence we expect
that the latter are much better compared to the values we were able to verify
computationally.

Differentials with Equal Columns. The class of weak states from Section 2.3
can be obviously transformed into XOR-differentials having four equal columns.
The best differentials we could find for one round F have weight 44 for both
32-bit and 64-bit. They exploit an already well known probability-1 differential
in G, see Appendix C.2. The 64-bit variant was also used in the construction
of the characteristics with weight 836 in F4 above. Concrete representations of
these differentials can be found in Appendix C.5.

11

3.4 Further Applications

The techniques presented in this section are obviously not restricted to NORX
only. In principle, every function based on integer addition, as shown for Salsa20
in [24], and/or bitwise logical operations, like OR, NAND, NOR and so on, can
be analysed just as easily. For LRX ciphers, all one has to do is rewrite their
non-linear operations in terms of bitwise logical AND, which then allows to reuse
the results from above.

4 Rotational Cryptanalysis

Definition 10. Let f be a vector Boolean function f : F2n
2 −→ Fn2 and let x, y

be n-bit strings. We call (x, y) a rotational pair with respect to f if the following
equation holds:

f(x, y) ≫ r = f(x≫ r, y ≫ r)

Lemma 11. Let H be the non-linear function of NORX, and let x, y be n-bit
strings. The probability of (x, y) being a rotational pair is:

Pr(H(x, y) ≫ r = H(x≫ r, y ≫ r)) = 9
16 (≈ 2−0.83)

Proof. See Appendix D.

Now we can use Lemma 11 and Theorem 1 from [20] (under the assumption
that the latter holds for H, too) to compute the probability of Pr(FR(S) ≫ r =
FR(S ≫ r)) for a state S and a number of rounds R. It is given by:

Pr(FR(S) ≫ r = FR(S ≫ r) = (9/16)4·4·2·R

Table 2 summarizes the (rounded) weights (i.e. the negative logarithms of the
probabilities) for different values of R, which are relevant for NORX.

Table 2. Weights for rotational distinguishers of FR

R 4 6 8 12
w 106 159 212 318

As a consequence, the permutation FR on a 16W state is indistinguishable
from a random permutation for R ≥ 20 if W = 32 and for R ≥ 39 if W = 64
with probabilities of Pr ≤ 2−531 and Pr ≤ 2−1035 respectively.

Definition 12. Let f be a vector Boolean function f : F2n
2 −→ Fn2 and let x, y

be n-bit strings. We call (x, y) a rotational fixed point with respect to f if the
following equation holds:

f(x, y) ≫ r = f(x, y)

12

Lemma 13. Let f be a vector Boolean function f : F2n
2 −→ Fn2 , (x, y) 7→

f(x, y), which is a permutation on Fn2 , if either x or y is fixed. The probability
that (x, y) is a rotational fixed point is:

Pr(f(x, y) ≫ r = f(x, y)) = 2−(n−gcd(r,n))

Proof. See Appendix D.

A direct consequence of Lemma 13 is that for n even and r = n/2 the
probability that (x, y) is a rotational fixed point is 2−n/2. The rotation r =
n/2, which swaps the two halves of a bit string, is especially interesting for
cryptanalysis as it results in the highest probability among all 0 < r < n.

The non-linear function H of NORX obviously satisfies the requirement of
being a permutation on Fn2 , when one of its inputs is fixed. Therefore we get
probabilities of 2−16 (32-bit, r = 16) and 2−32 (64-bit, r = 32), that (x, y) is a
rotational fixed point of H.

5 Conclusion

In this paper, we provide an extensive analysis of the differential and rotational
properties of NORX’s core permutation FR and derive some first bounds for
attacks on the complete scheme. We introduce the mathematical models required
to describe XOR- and H-differentials with respect to FR. All mathematical claims
are verified by rigorous proofs. Moreover, we present NODE, a framework, which
allows to automatise the search for XOR-differentials and -characteristics. We
show the results of our extensive experiments and can conclude that there is a
large gap between those differential bounds that are computationally verifiable
and the weights of the best differentials that we were able to find. In particular,
when considering initialisation with F8, the verifiable but extrapolated weight
bounds have values of 126 (NORX32) and 106 (NORX64) for an attacker in the
related key model. On the other hand, the best differentials for F4 have weights
of 584 (32-bit) and 836 (64-bit). Thus, initialisation with F8 (R = 4) and F12

(R = 6) seems to have a high security margin against differential attacks.
For rotational cryptanalysis, we are able to derive lower weight bounds of 212

and 318 for distinguishers on F8 and F12 using a mix of new and already known
results. We stress that these distinguishers only hold for the bare permutation.
They do not take into account the additional protection provided by the duplex
construction of NORX or the asymmetric constants used during initialisation.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their comprehensive commentaries which helped to improve the quality
of this paper.

References
1. CAESAR — Competition for Authenticated Encryption: Security, Applicability,

and Robustness (2014), http://competitions.cr.yp.to/caesar.html

http://competitions.cr.yp.to/caesar.html

13

2. NODE — The NORX Differential Search Engine (2014), https://github.com/
norx/NODE

3. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer (2008)

4. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX: Parallel and Scalable AEAD.
In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer (2014)

5. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler,
Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer (2013)

6. Bernstein, D.J.: ChaCha, a Variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008), http://cr.yp.to/chacha.html

7. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On Alignment in Keccak. In:
ECRYPT II Hash Workshop (May 2011)

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based Encryption,
Authentication and Authenticated Encryption, presented at DIAC 2012, 05–06
July 2012, Stockholm, Sweden

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic Sponge Func-
tions (January 2011), http://sponge.noekeon.org/CSF-0.1.pdf

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay,
S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer (2011)

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak Reference (Jan-
uary 2011), http://keccak.noekeon.org/

13. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

14. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In: Kowalewski, S., Philippou, A. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. LNCS, vol. 5505, pp. 174–177. Springer
(2009), http://fmv.jku.at/boolector/

15. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: the Block
Cipher Noekeon. Nessie submission (2000), http://gro.noekeon.org/

16. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding, LNCS, vol. 2260, pp. 222–238. Springer (2001)

17. Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In:
FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer (2012)

18. Ganesh, V., Govostes, R., Phang, K.Y., Soos, M., Schwartz, E.: STP — A Simple
Theorem Prover (2006–2013), http://stp.github.io/stp

19. Guo, J., Karpman, P., Nikolic, I., Wang, L., Wu, S.: Analysis of BLAKE2. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 402–423. Springer (2014)

20. Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer (2010)

21. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Al-
gorithms, Part 1, vol. 4A. Addison-Wesley, Upper Saddle River, New Jersey (2011),
http://www-cs-faculty.stanford.edu/~uno/taocp.html

22. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties
of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer
(2001)

https://github.com/norx/NODE
https://github.com/norx/NODE
http://cr.yp.to/chacha.html
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org/
http://fmv.jku.at/boolector/
http://gro.noekeon.org/
http://stp.github.io/stp
http://www-cs-faculty.stanford.edu/~uno/taocp.html

14

23. Mate Soos: CryptoMinisat (2009–2014), http://www.msoos.org/cryptominisat2
24. Mouha, N., Preneel, B.: Towards Finding Optimal Differential Characteristics for

ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013)
25. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on Reduced

Round Salsa20 and ChaCha. In: Kwon, T., Lee, M.K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 337–351. Springer (2012)

26. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2nd edn. (2009), http://shoup.net/ntb

A Addenda to Differential Cryptanalysis

Proof of Lemma 3. On bit level Equation 2 has the form

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi) ∧ (αi−1 ⊕ 1) ∧ (βi−1 ⊕ 1), i > 0

Obviously, the least significant bits (i.e. i = 0) are identical for Equations 1
and 2. For i > 0 let t = (αi ⊕ βi ⊕ γi)⊕ (αi−1 ∧ βi−1). If t = 0 then Equation 1
has always the solution xi−1 = yi−1 = 0. Otherwise, if t = 1, Equation 1 is only
solvable if αi−1 = 1 or βi−1 = 1, and these are exactly the cases captured in
Equation 2.

Proof of Lemma 5. Without loss of generality we assume that α 6= 0 or β 6= 0.
Looking at Equation 1, we see that the term (α ⊕ β ⊕ γ) has no effect on the
probability of the differential δ, since it does not depend on either x or y. It has
therefore probability 1.

Analysing the bit level representation of Equation 1, we observe that the
term (xi−1 ∧ αi−1) ⊕ (yi−1 ∧ βi−1) ⊕ (αi−1 ∧ βi−1) is balanced (i.e., is 1 with
probability 1/2) if αi−1 = 1 or βi−1 = 1. Therefore, under the assumption of
independence of αi and βi, the overall probability of δ can be computed by
counting the number of 1s in the first n − 1 bits of α ∨ β or, equivalently, of
(α ∨ β)� 1, which proves the lemma.

Proof of Lemma 7. It is easy to see that the least significant bits (i.e. i = 0)
of Equations 3 and 4 are the same. Therefore, we will consider them no longer.
Looking at the bit level representation of Equation 3 (for i > 0) we consider two
cases:
– αi ⊕ βi ⊕ γi = 0: Here, Equation 3 has always the solution xi−1 = yi−1 = 0.
– αi ⊕ βi ⊕ γi = 1: In this case, the bit level representation of Equation 3 is

only solvable if either αi−1 6= γi−1 or βi−1 6= γi−1. Furthermore, the bit level
representation of Equation 4 is given by

(αi ⊕ βi ⊕ γi) ∧ (αi−1 ⊕ γi−1 ⊕ 1) ∧ (βi−1 ⊕ γi−1 ⊕ 1) = 0, i > 0

It is evident that the latter equation only holds if (αi⊕ βi⊕ γi) = 0, αi−1 6=
γi−1, or βi−1 6= γi−1. As seen above, these are the very same conditions that
define a H-differential.

http://www.msoos.org/cryptominisat2
http://shoup.net/ntb

15

Proof of Lemma 9. The claim can be proven analogously to Lemma 5. It
follows from the fact that in the bit level representation of Equation 3 the ex-
pression

(xi−1 ∧ (αi−1 ⊕ γi−1))⊕ (yi−1 ∧ (βi−1 ⊕ γi−1))

is balanced if αi−1 ⊕ γi−1 = 1 or βi−1 ⊕ γi−1 = 1.

B CVC Code

Below we show exemplarily for NORX64 how to translate the differential search
operations to the CVC language. Variables have the datatype BITVECTOR(W),
where W = 64 is the wordsize.

0 = (α⊕ β ⊕ γ) ∧ (¬((α ∨ β)� 1)) ASSERT(0 = BVXOR(BVXOR(α,β),γ) & (~(((α | β)�1)[63:0])));

w = (α ∨ β)� 1 ASSERT(w = (((α | β)�1)[63:0]));

γ = (α⊕ β) ≫ 8 ASSERT(γ = (BVXOR(α,β)�8)|((BVXOR(α,β) �56)[63:0]));

Computation of hw(w) using helper variables h0, . . . , h5, where hw(w) = h5:

ASSERT(m1 = 0x5555555555555555); ASSERT(h0 = BVPLUS(64,(w & m1), (((w�1)[63:0]) & m1)));

ASSERT(m2 = 0x3333333333333333); ASSERT(h1 = BVPLUS(64,(h0 & m2), (((h0�2)[63:0]) & m2)));

ASSERT(m4 = 0x0f0f0f0f0f0f0f0f); ASSERT(h2 = BVPLUS(64,(h1 & m4), (((h1�4)[63:0]) & m4)));

ASSERT(m8 = 0x00ff00ff00ff00ff); ASSERT(h3 = BVPLUS(64,(h2 & m8), (((h2�8)[63:0]) & m8)));

ASSERT(m16 = 0x0000ffff0000ffff); ASSERT(h4 = BVPLUS(64,(h3 & m16), (((h3�16)[63:0]) & m16)));

ASSERT(m32 = 0x00000000ffffffff); ASSERT(h5 = BVPLUS(64,(h4 & m32), (((h4�32)[63:0]) & m32)));

C Selected Differentials

C.1 Experimental Verification of NODE

The first table shows the results from our verification of NODE, see Section 3.3.
Notation is used as follows. we: expected weight, #S: number of samples, ve:
expected value of input/output pairs adhering the differential, vm: measured
value of input/output pairs adhering the differential, wm: measured weight. After
that we list the differentials in 32- and 64-bit F1.5 that we used to perform the
verification.

NORX32 NORX64

we #S ve vm vm − ve wm vm vm − ve wm

12 228 65536 65652 +116 11.997 65627 +91 11.997
13 229 65536 65788 +252 12.994 65584 +48 12.998
14 230 65536 65170 −366 14.008 65476 −60 14.001
15 231 65536 65441 −95 15.002 65515 −21 15.000
16 232 65536 65683 +147 15.996 65563 +27 15.999
17 233 65536 65296 −240 17.005 65608 +72 16.998
18 234 65536 65389 −147 18.003 65565 +29 17.999

16

δ0 δ1 w

00000000 00000400 80000080 80000000 00000000 00000000 00000000 80001000

1200000000 80000400 80000080 00000000 00000000 00000000 00000000 21012100

00000000 80000000 80808080 80000000 00000000 00000000 00000000 10808080

00000000 80000000 80800000 80000080 00000000 00000000 00000000 10008080

80000000 00000000 00000400 80000180 80001000 00000000 00000000 00000000

1300000000 00000000 80000400 80000080 21012100 00000000 00000000 00000000

80000000 00000000 80000000 80808080 10808080 00000000 00000000 00000000

80000080 00000000 80000000 80800000 10008080 00000000 00000000 00000000

80000080 80000000 00000000 00000400 00000000 80001000 00000000 00000000

1480000180 00000000 00000000 80000400 00000000 21012100 00000000 00000000

80808080 80000000 00000000 80000000 00000000 10808080 00000000 00000000

80800000 80000080 00000000 80000000 00000000 10008080 00000000 00000000

00000400 80000000 00000400 40100000 00100000 00000000 00000000 00000000

1580000400 80000000 00000000 00100200 00200021 00000000 00000000 00000000

80000000 80018000 00000400 00000000 80000010 00000000 00000000 00000000

80000000 00800000 00040400 40000600 00000010 00000000 00000000 00000000

00000400 80000080 80000000 00000000 00000000 00000000 80003000 00000000

1680000400 80000080 00000000 00000000 00000000 00000000 63016100 00000000

80000000 81808080 80000000 00000000 00000000 00000000 31808080 00000000

80000000 80800000 80000080 00000000 00000000 00000000 30008080 00000000

00000000 00000400 80000080 80000000 00000000 00000000 00000000 80001000

1700000000 80000400 80000080 00000000 00000000 00000000 00000000 21012100

00000000 80000000 80838780 80000000 00000000 00000000 00000000 10808080

00000000 80000000 80800000 80000080 00000000 00000000 00000000 10008080

00000400 00000000 80000000 C0000200 00100000 00000000 00000000 00606001

1880000400 00000000 00000000 00000200 00200021 00000000 00000000 C24242C0

80000000 00000000 80000000 00000000 80000010 00000000 00000000 61010160

80000000 00000000 80000080 C0000000 00000010 00000000 00000000 60010160

δ0 δ1 w

8000000000000000 0000000000000000 0000000000040000 8000000000000080 8000001000000000 0000000000000000 0000000000000000 0000000000000000

120000000000000000 0000000000000000 8000000000040000 8000000000000080 2100002001010000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 8000000000000000 8000808000000080 1080000000808000 0000000000000000 0000000000000000 0000000000000000

8000000000000080 0000000000000000 8000000000000000 0080800000000000 1000000000808000 0000000000000000 0000000000000000 0000000000000000

4000001000000000 0000000000040000 8000000000000000 0000000000040000 0000000000000000 0000100000000000 0000000000000000 0000000000000000

130000001000020000 8000000000040000 8000000000000000 0000000000000000 0000000000000000 0000200000000021 0000000000000000 0000000000000000

0000000000000000 8000000000000000 8000008000000000 0000000000040000 0000000000000000 8000000000000010 0000000000000000 0000000000000000

4000000000020000 8000000000000000 0000800000000000 0000000004040000 0000000000000000 0000000000000010 0000000000000000 0000000000000000

0000000000040000 8000000000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000001000000000 0000000000000000

148000000000040000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2100002001010000 0000000000000000

8000000000000000 8003808000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1080000000808000 0000000000000000

8000000000000000 0080800000000000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 1000000000808000 0000000000000000

0000000000000000 00000000000C0000 8000000000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000001000000000

150000000000000000 8000000000040000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2300006001010000

0000000000000000 8000000000000000 8000808000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1180000000808000

0000000000000000 8000000000000000 0080800000000000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 1000000000808000

0000000000040000 4000001000080000 0000000000040000 8000000000000000 0000000000000000 0000000000000000 0000100000000000 0000000000000000

160000000000000000 0000001000020000 8000000000040000 8000000000000000 0000000000000000 0000000000000000 0000200000000021 0000000000000000

0000000000040000 0000000000000000 8000000000000000 8000008000000000 0000000000000000 0000000000000000 8000000000000010 0000000000000000

0000000004040000 C0000000000E0000 8000000000000000 0000800000000000 0000000000000000 0000000000000000 0000000000000010 0000000000000000

8000000000000080 8000000000000000 0000000000000000 0000000000040000 0000000000000000 8000007000000000 0000000000000000 0000000000000000

178000000000000080 0000000000000000 0000000000000000 8000000000040000 0000000000000000 E300006001010000 0000000000000000 0000000000000000

8000808000000180 8000000000000000 0000000000000000 8000000000000000 0000000000000000 7180000000808000 0000000000000000 0000000000000000

0080800000000000 8000000000000080 0000000000000000 8000000000000000 0000000000000000 7000000000808000 0000000000000000 0000000000000000

0000000000040000 8000000000000000 0000000000040000 400000F000000000 0000100000000000 0000000000000000 0000000000000000 0000000000000000

188000000000040000 8000000000000000 0000000000000000 0000001000020000 0000200000000021 0000000000000000 0000000000000000 0000000000000000

8000000000000000 8000008000000000 0000000000040000 0000000000000000 8000000000000010 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000800000000000 000000000C040000 4000000000020000 0000000000000010 0000000000000000 0000000000000000 0000000000000000

17

C.2 Probability-1 Differentials in G

Using NODE we could show that there are exactly 3 probability-1 differentials
in both versions (32- and 64-bit) of G.

Differences Differences

δ0 80000000 80000000 80000000 00000000 δ0 8000000000000000 8000000000000000 8000000000000000 0000000000000000

δ1 00000000 00000001 80000000 00000000 δ1 0000000000000000 0000000000000001 8000000000000000 0000000000000000

δ0 80000000 00000000 80000000 80000080 δ0 8000000000000000 0000000000000000 8000000000000000 8000000000000080

δ1 80000000 00000000 00000000 00000000 δ1 8000000000000000 0000000000000000 0000000000000000 0000000000000000

δ0 00000000 80000000 00000000 80000080 δ0 0000000000000000 8000000000000000 0000000000000000 8000000000000080

δ1 80000000 00000001 80000000 00000000 δ1 8000000000000000 0000000000000001 8000000000000000 0000000000000000

C.3 Best Differential Characteristics for F4

The following two tables show the best differential characteristics in F4 that
we were capable to find with NODE. The values δ0 and δ4 are in- and output
difference, respectively, and δ1, δ2, and δ3 are internal differences. The differences
are listed after a single application of F, respectively, and the values wi, with
i ∈ {0, . . . , 3}, are the corresponding differential weights.

δ0 w0 δ1 w1

80140100 90024294 84246020 92800154

172

40100000 00000400 80000000 00000400

11
e4548300 52240214 e0202424 d0004054 00100200 80000400 80000000 00000000

c4464046 00a08480 c1008108 90d43134 00000000 80000000 80008000 00000400

e200c684 e2eac480 a4848881 06915342 40000200 80000000 00800000 00040400

δ2 w2 δ3 w3

00000000 00000000 00000000 00000000

44

04042425 00100002 00020000 02100000

357
00000000 00000000 00000000 00000000 04200401 42024200 20042024 20042004

00000000 80000000 00000000 00000000 10001002 80000200 25250504 10021010

00000000 00000000 00000000 00000000 10020010 00001002 00000210 04252504

δ4

c4001963 804da817 0c05b60e 12220503

total weight: 5849072b909 185b792a cc0d56cd 7e0ac646

80116300 100c2800 8f003320 3b270222

01056104 88000041 92002824 04210001

δ0 w0 δ1 w1

00900824010288c5 4000443880011086 224012044220ac43 e004044484049520

349

8000000800050000 8000000000000000 4000000000000000 0000001000020080

27
4080882001010885 4600841880821086 a3c0721444632c43 c224440007849504 8000000800040000 8000000000000000 c000000000040000 8000001000020080

81600850830b0484 840080c080868000 8004449040c14400 8102101840908a80 0000000000000000 8000008000000000 c000004000040000 4000808000020080

6191548c08000581 0200004006038044 8104f01c8702c0e0 60605084938886e3 0000000000010080 0000800000000000 8000400004040000 80808000020000c0

δ2 w2 δ3 w3

8000000000000000 0000000000000000 0000000000000000 0000000000000000

12

0000000000000000 0000000000000000 0000100000000000 0000202000000001

448
8000000000000000 0000000000000000 0000000000000000 0000000000000000 4200404002020040 0000000000000000 0000000000000000 0000200000000021

8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000000000000010 2100000001010020 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000010 2000000001010020 0000000000000000

δ4

321a4500060e4e2e 27404405026e500e 3806422387200a08 8c40f4a0884c0820

total weight: 83671540fb858cb9902 ee018cc282747980 c714164174ce3eb9 1a49a091101191e1

786680d0e46406cb 14440844013274e6 03a843203f071b7c 09a840c00c0ccc78

4000404a22120005 07220c4202016240 2aa4200a0a041a62 84a468682000601c

18

C.4 Best Iterative Differentials for F
Differences w Differences w

δ
0

=
δ

1 818c959b 00186049 eb5b7984 791c6da1

512

δ
0

=
δ

1 0000000100000000 0000000000000000 f77c78b200000d04 0000000000000000

843677b513d 80000400 00000227 5293655f be7fffeffe0f349f 0000000000000000 6c07fbd200000001 ff1ab5be4e7500be

00809a2b bfa98bff c08b8e89 0000711c 0060c54927018000 0000000000000000 0000000000000000 b603fde900000000

800027c3 f984eb5b 6d81f915 b5aaa99d b6035caf00000000 0000000000000000 0000000000000000 0000000000000000

C.5 Best Differentials having Equal Columns of weight 44 in F

Differences Differences

δ0

80000000 80000000 80000000 80000000

δ0

8000000000000000 8000000000000000 8000000000000000 8000000000000000

80000000 80000000 80000000 80000000 8000000000000000 8000000000000000 8000000000000000 8000000000000000

80000000 80000000 80000000 80000000 8000000000000000 8000000000000000 8000000000000000 8000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

δ1

00102001 00102001 00102001 00102001

δ1

0000102000000001 0000102000000001 0000102000000001 0000102000000001

42624221 42624221 42624221 42624221 4200604002020021 4200604002020021 4200604002020021 4200604002020021

a1010110 a1010110 a1010110 a1010110 a100000001010010 a100000001010010 a100000001010010 a100000001010010

20010110 20010110 20010110 20010110 2000000001010010 2000000001010010 2000000001010010 2000000001010010

D Addenda to Rotational Cryptanalysis

Proof of Lemma 11. After evaluating and simplifying the equation H(x, y) ≫
r = H(x ≫ r, y ≫ r) we get ((x ∧ y) � 1) ≫ r = ((x ≫ r) ∧ (y ≫ r)) � 1.
Translating this equation to bit vectors results in

(xr−1 ∧ yr−1, . . . , x0 ∧ y0, 0, xn−2 ∧ yn−2, . . . , xr ∧ yr)
= (xr−1 ∧ yr−1, . . . , x0 ∧ y0, xn−1 ∧ yn−1, xn−2 ∧ yn−2, . . . , 0)

The probability that those two vectors match is (3/4)2 = 9/16, as a∧ b = 0 with
probability 3/4 for bits a and b chosen uniformly at random.

Proof of Lemma 13. The first important observation is that the statement
of this lemma is independent of the function f , as it only makes a claim on
the image of f . Thus it is sufficient to prove the lemma for z ≫ r = z, where
z = f(x, y) and x or y was fixed.

We identify the indices of an n-bit string by the elements in G := Z/nZ. Let
τ : G −→ G, i mod n 7→ (i + 1) mod n. Then τ obviously generates the cyclic
group G, i.e. ord(τ) = n. Moreover, for an arbitrary r ∈ Z we have ord(τ r) =
n/ gcd(r, n), see [26, §§6.2]. In other words, the subgroup H := 〈τ r〉 of G has
order n/ gcd(r, n). By Lagrange’s theorem we have ord(G) = [G : H] · ord(H)
and it follows for the group index [G : H] = gcd(r, n), which corresponds to the
number of (left) cosets of H in G. These cosets contain the indices of a bit string
which are mapped onto each other by a rotation ≫ r. This means that there
are 2gcd(r,n) n-bit strings z which satisfy z ≫ r = z. Thus the probability, that
an n-bit string z, chosen uniformly at random among all n-bit strings, satisfies
z ≫ r = z is 2−(n−gcd(r,n)). This proves the lemma.

	Analysis of NORX:

