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Abstract. Hamsi is one of 14 remaining candidates in NIST’s Hash Competition for the
future hash standard SHA-3. Until now, little analysis has been published on its resistance
to differential cryptanalysis, the main technique used to attack hash functions. We present
a study of Hamsi’s resistance to differential and higher-order differential cryptanalysis, with
focus on the 256-bit version of Hamsi. Our main results are efficient distinguishers and near-
collisions for its full (3-round) compression function, and distinguishers for its full (6-round)
finalization function, indicating that Hamsi’s building blocks do not behave ideally.
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1 Introduction

Hash functions are one of the most ubiquitous primitives in cryptography, with digital signatures
and integrity checks as their main applications. Collision attacks on the deployed standards MD5
and SHA-1 [17–20] have weakened the confidence in the MD family of hash functions. Hence, the
US Institute of Standards and Technology (NIST) launched a public competition to develop a
future SHA-3 standard [12].

The hash function Hamsi [7] is one of 64 designs submitted to NIST in fall 2008. Hamsi is also
among the 14 submissions selected for the second round of the competition in July 2009 as one of
the few submissions with no major weaknesses detected thus far. While Hamsi reuses the round
components of the Serpent block cipher [4], its larger block size and different round structure make
existing cryptanalytic results on Serpent hardly useful in its security analysis.

So far, little research has been published on the resistance of Hamsi to common cryptanalytic
attacks: in a work independent from ours, Çalık and Turan studied differential properties of Hamsi-
256, and presented message-recovery and pseudo-second-preimage attacks. Near collisions were
studied by Nikolić [11] and Wang et al. [16], as discussed in Section 4.3.

We study the resistance of Hamsi to differential and higher-order differential cryptanalysis, with
focus on the 256-bit version Hamsi-256. In Section 3, we show by higher-order analysis that the 3-
round compression function of Hamsi-256 does not achieve maximal degree. This is demonstrated
by showing that the output of certain related chaining values (with fixed message word) or related
message words (with fixed chaining value) sums to zero with a high probability.

In Sections 4 and 5, we focus on differential cryptanalysis and construct high-probability differ-
ential paths for the 3-round compression function as well as the full 6-round output transformation.
The former gives near-collisions on (256− 25) bits of the compression function output, with only
six differences in the input chaining value. Section 4 describes a technique for building low-weight,

∗Full version of a paper appearing at ACISP 2010.



high-probability differential paths for Hamsi. Finally, Section 5 presents differential paths for six
rounds of Hamsi-256 that show that the output transformation of Hamsi-256 does not behave
ideally.

2 Description of Hamsi-256

This section describes the hash function Hamsi-256, henceforth just called Hamsi. We refer to [7]
for a complete specification.

2.1 High-level structure

Like most hash functions, Hamsi builds on a finite-domain compression function, which is used to
process arbitrary-length messages through the use of a domain extender (or operation mode). The
compression function of Hamsi can be divided into four operations:

Message expansion E : {0, 1}32 → {0, 1}256

Concatenation C : {0, 1}256 × {0, 1}256 → {0, 1}512

Non-linear permutations P, Pf : {0, 1}512 → {0, 1}512

Truncation T : {0, 1}512 → {0, 1}256

The message M to hash is appropriately padded and split into ` blocks of 32 bits: M1, . . . ,M`. Each
block is iteratively processed by the compression function, which operates on a 512-bit internal
state viewed as a 4×4 matrix of 32-bit words.

Figure 1 depicts an iteration of the compression function H (or Hf ). Starting from the prede-
fined initial value (IV) h0, Hamsi iteratively computes the digest h of M as follows:

hi = H(hi−1,Mi) = (T ◦ P ◦ C(E(Mi), hi−1))⊕ hi−1 for 0 < i < ` ,

h = Hf (h`−1,M`) = (T ◦ Pf ◦ C(E(M`), h`−1))⊕ h`−1 .

concatenation C

message expansion

truncation T

non-linear permutation P /Pf

Mi hi

hi+1

E(Mi)

Fig. 1. Domain extension algorithm of Hamsi.

2.2 Internals of the compression function of Hamsi

Message expansion. The message expansion of Hamsi uses a linear code to expand a 32-bit
word into eight words (that is, 256 bits). We write an expanded Mi as (m0, . . . ,m7). Thus, the
mj ’s are defined as the product of a multiplication with the generator matrix of the code:

E(Mi) = (m0, . . . ,m7) = (Mi ×G) ,

where G can be found in [7].
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Concatenation. The concatenation function C forms a 512-bit internal state from the 256-
bit expanded message (m0, . . . ,m7) and the 256-bit incoming chaining value hi = (c0, . . . , c7)
(Figure 2):

C(m0, . . . ,m7, c0, . . . , c7) = (m0,m1, c0, c1, c2, c3,m2,m3,m4,m5, c4, c5, c6, c7,m6,m7) ,

m3

m0 m1 c0 c1

c2 c3 m2

m4 m5 c4 c5

c6 c7 m6 m7

concatenation C
(m0, m1, . . . , m7, c0, c1, . . . , c7)

Fig. 2. Concatenation of expanded message words m0, . . . , m7 and chaining value words c0, . . . , c7 in
Hamsi.

Truncation. The truncation function T selects eight 32-bit words among the 16 from the internal
state to form the new chaining value after feedforward (Figure 3):

T (s0, s1, s2, . . . , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11) .

truncation T

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

s0 s1 s2 s3

s8 s9 s10 s11

Fig. 3. Truncation selects eight out of 16 words of the internal state.

Permutations. Finally, we describe the permutations P and Pf . They only differ in the number
of rounds (three for P and six for Pf )8 and in the round constants. The round function is composed
of three layers. First, constants and a counter are XORed to the whole internal state. Then there
is a substitution layer, followed by a linear layer.

The substitution layer uses one 4-bit Sbox of the block cipher Serpent [4], in a bitsliced way.
That is, four bits, one from each of the four 32-words of the same column in the 4×4 internal state
matrix are first extracted and then replaced after application of the Sbox. We denote sj

i the j-th
bit of the internal state word si. The substitution layer can be described as follows, for 0 ≤ j ≤ 31
and 0 ≤ i ≤ 3:

(sj
i , s

j
i+4, s

j
i+8, s

j
i+12) := S(sj

i , s
j
i+4, s

j
i+8, s

j
i+12) ,

where S is the 4×4 Sbox given in Table 7 (Appendix A).
The linear diffusion layer applies the Serpent linear transform L : {0, 1}128 → {0, 1}128 to each

of the four diagonals of the state, as follows:

(s0, s5, s10, s15) := L(s0, s5, s10, s15)
(s1, s6, s11, s12) := L(s1, s6, s11, s12)
(s2, s7, s8, s13) := L(s2, s7, s8, s13)
(s3, s4, s9, s14) := L(s3, s4, s9, s14) .

8While 6 rounds remains the official parameter, the designer has suggested 8 rounds as a conservative
alternative. Our results indicate that moving to 8 rounds may be a necessary precaution.
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The algorithm below (read column by column) describes the linear transform L on input (a, b, c, d),
with x ≪ k denoting the left bit rotation of k positions on the word x and x � k denoting the
left bit shift of k positions on the word x.

a := a ≪ 13 d := d ≪ 7
c := c ≪ 3 a := a⊕ b⊕ d
b := a⊕ b⊕ c c := (b� 7)⊕ c⊕ d
d := (a� 3)⊕ c⊕ d a := a ≪ 5
b := b ≪ 1 c := c ≪ 22

3 Higher-order differential analysis

This section reports on properties of Hamsi related to higher-order derivatives. After some defini-
tions, we present upper bounds on the algebraic degree of Hamsi’s compression function and show
how to exploit them to find “k-sums” and “zero-sums”. This illustrates the fact that, due to its
low algebraic degree, the compression function of Hamsi does not behave ideally.

3.1 Definitions

Higher-order derivatives. Higher-order differential analysis [6, 9] of cryptographic algorithms
generalizes the notion of differential cryptanalysis by considering derivatives of order two or more.
It is based on the basic observation that for a function f with algebraic degree s ≥ 1, the degree of
a dth-order derivative of f is at most (s− d), where s ≥ d. Consequently, an sth-order derivative
of f is a constant and an (s + 1)st-order derivative of f is zero, which directly gives a 2s+1-sum
for f .

In the following we consider derivatives of functions with domain {0, 1}n, n ≥ 1 and range
{0, 1}. Note that a (certain type of) d-th order derivative is then the XOR of 2d values of the
function for the 2d choices of d input bits.

k-sums. The k-sum problem is, given k lists of random n-bit values (for example, k distinct
instances of a compression function f1, . . . , fk) , to find one value from each list such that the sum
of the k values is zero. The case k = 2 is essentially the collision problem.

The k-sum problem can be solved in polynomial time (using the XHASH attack [1]) when
k ≥ n. However, the problem is believed to be hard for small k. The standard method for the
k-sum problem with small k is Wagner’s “generalized birthday” method, which requires time and
space O(k2n/(1+log k)) [15] (see also [2]).

Henceforth, we consider the problem of finding k values whose images by a same function f
sum to zero. Note that if f has degree s < (n − 1), then a 2s+1-sum can be found by returning
the values corresponding to a (s+ 1)st order derivative.

An example of application of k-sums is to forge message authentication codes (MACs). Let
H he a hash function and consider the “prefix-MAC” construction defined as MACK(m) =
trunc (H(K‖m)), where trunc is a function removing some bits of the hash output to combat
length extension attacks. Assume we know messages m1, . . . ,mk such that the probability

Pr
K

[
k⊕

i=1

H(K‖mi) = 0

]
= p

is nonzero. Then by querying MACK with m1, . . . ,mk−1 we can determine MACK(mk) with
probability p and thus break the existential forgery of MAC.

This can be generalized to messages whose MAC tags sum to any fixed value, to other MAC
constructions, etc. For example, one may fix a message and forge the MAC HK(m) where K is
the IV of H by making related-key queries.
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Zero-sums. We define the zero-sum problem as a particular case of the k-sum problem: given a
function f , find distinct values that sum to zero such that their images by f also sum to zero.

Both the XHASH attack [1] and Wagner’s generalized birthday [15] can be adapted to find
zero-sums. These methods are generic, and are probabilistic algorithms whose failure probability
can be made exponentially small.

3.2 On the degree of the compression function

Simple bounds. The only nonlinear component of Hamsi’s compression function is the layer of
4×4 Sboxes. One round thus has degree three (see [13] for explicit expressions of the Sboxes used),
so N rounds have degree at most 3N , with respect to any choice of variables.

If variables are chosen in c0, . . . , c3 only, or in c4, . . . , c7 only, then they are all in distinct slices
and thus go into distinct Sboxes in the first round. Hence, the first round is linear and after N
rounds, the degree is at most 3N−1. This means that the degree is at most 81 after five rounds,
and that at least six rounds are necessary to reach maximal degree. In particular, the 3-round
compression function has degree at most 9 with respect to choices of 128 variables in distinct
slices, which distinguishes it from a randomly chosen function (whose degree would be below 9
with negligible probability).

Case of four variables. If four variables are chosen in the LSB’s of c0, . . . , c3, after the first
application of the Sbox, all the LSB’s of a given word depend on the bit varied in the corresponding
column. Since only one bit is varied per column, the degree of equations corresponding to LSB’s are
of degree 1. Then, the linear function L(a, b, c, d) is applied to each column, and we can determine,
for a given bit of the state, whether it depends on the single variable of its diagonal. Based on
this, we can determine whether a given 4-bit slice depends on 1, 2, 3, or 4 of the variables.

A simple computer-assisted analysis revealed that each slice depends on only one variable.
Therefore, the (3-round) compression function of Hamsi always has degree 3 with respect to four
variables in the first four LSB’s, for any values of the other bits. Ideally, the function should have
degree 4 with probability 1/2, over the choice of the other input bits.

3.3 Finding k-sums for the compression function

For randomly chosen 256-bit values, finding 4-sums for the compression function of Hamsi requires
an effort of complexity approximately 4·2256/3 ≈ 287, using the generalized birthday method. Below
we show efficient methods to find 16-, 8-, and 4-sums.

16-sums. Recall the above observation that three rounds have degree at most 3 with respect to a
certain choice of four variables. This observation can directly be used to find 16-sums, without any
computation. Based on empirical observations, we discovered that we can do better, as presented
below.

8-sums. Choose a random value of one 256-bit chaining value, then select seven other chaining
values, which are different from the first one only in the LSB’s of the first three 32-bit words. Denote
these chaining values by h0, . . . , h7. Choose a random 32-bit message block M , then compute∑7

i=0H(hi,M), In 1 000 000 such tests, the above sum was zero in 1458 cases (whereas for a
random mapping, the probability to obtain zero is negligible). This indicates that there are 3rd-
order derivatives with the value zero (or 8-sums) of a high probability for the compression function
of Hamsi. It is very likely that one can identify other 3rd-order derivatives of higher probabilities
(our search was limited).
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4-sums. We found 2nd-order derivatives with value zero, that is, 4-sums. One example is when
one chaining value is the IV of Hamsi specified in [8], and where the three others differ only in
two LSB’s of the second words; the XOR of the four outputs is the all-zero string (note that the
four inputs also sum to zero, thus this is also a zero-sum).

Via an exhaustive search over all 232 message words, we identified 70 messages for which the
above four chaining values lead to a 4-sum. We also found 4-sums for the IV given in [7], for 86
values of the 32-bit message block. Although complete analytical justification of these observations
remains to be found, the results of these observations strongly differ from what one obtains for a
random mapping (for which a 2nd-order derivative is zero with negligible probability).

k-sums for fixed chaining value. Here we report on the case where the chaining value is fixed
and where only the message block is varied. The outputs of the compression function in this case
has a much higher algebraic degree.

Consider h0, the IV specified in [8], and 219 values of the 32-bit message block obtained by
varying the first and second bytes, and the three least significant bits of the third byte. The
remaining bits can be fixed to arbitrary values. Denoting these message words by m0, . . . ,m219−1,
we have:

219−1⊕
i=0

H(h0,mi) = 0 .

This observation holds for any initial chaining variable. Here we obtain zero because we perform
a 19th-order derivative of a function of degree 18 only. Indeed, in the first round at most two bit
variables enter a same Sbox, hence the degree of the first round is 2. Since the two subsequent
rounds have degree 3 each, the three rounds have degree 2× 3× 3 = 18.

Note that if Pf is replaced by P in Hamsi’s domain extender, then the above observation
can be used to forge MAC’s (cf. Section 3.1), which shows that the extended 6-round output
transformation is necessary, and cannot be removed without compromising the security of Hamsi.

3.4 Finding zero-sums for the output permutation

We describe a dedicated method to find large zero-sums for the 6-round permutation of the final-
ization function of Hamsi(we stress that it only applies to the internal permutation and not to the
finalization as a whole, for it puts no restriction on the initial state). Contrary to Wagner’s and
the XHASH methods, it is deterministic rather than probabilistic, and needs to evaluate (and to
know) only half the function.

In the spirit of [14, §9], we present an “inside-out” technique that exploits the fact that two
halves of Hamsi’s permutation have low algebraic degree. This differs from our method for finding
k-sums which exploited the low degree of the full permutation. The attack works as follows:

1. Choose an arbitrary value for the state of Hamsi’s permutation after three rounds.
2. Choose 28 distinct bits of the state.
3. Compute the 228 initial states obtained by varying these bits and inverting the first three

rounds of the permutation.

We obtain 228 values that sum to zero, since their sum is the 28th-order derivative with respect to
three inverse rounds. Their images also sum to zero, since they are the 28th-order derivative with
respect to three forwards rounds (although the images are unknown, and need not be computed).

The method works whenever a function can be written as the composition of two low-degree
functions. As explained in [3], the proposed technique is slightly more efficient than previous
methods, for finding (here) zero-sums of 228 elements.
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4 First order differential analysis

In this section, we analyze the differential properties of the Hamsi round transformations and show
how to find high-probability differential paths for up to six rounds. Since we use XOR differences
in our analysis, the differential propagation is deterministic in the message expansion and in the
linear layer based on the L transform. However, the propagation of differences through the Sbox
layer is probabilistic and depends on the actual values of the input. To maximize the differential
probability of a differential path, we try to minimize the number of active Sboxes during the path
search.

4.1 Differential properties of the Sbox

The differential distribution table (DDT) of the 4-bit Hamsi Sbox S is given in Table 8 (Ap-
pendix A). Note that about half the differential transitions are impossible. The probabilities of
the non-zero differentials are either 2−2 or 2−3. In our approach, besides minimizing the number
of active Sboxes, we thus try to minimize the number of probability-2−3 differentials.

4.2 Differential properties of the linear transform L

The linear transform L has on average good diffusion properties, that is, a few differences in
the input lead to many differences in the output. Additionally, each bit of L contributes to one
of the 128 Sboxes in each round. To minimize the number of active Sboxes, we thus need to
minimize number of differences in L. The Hamming weight (HW) of a difference is a good heuristic
to measure the quality of a differential path. In the following, we first analyze the difference
propagation through the linear layer for differences with HW one.

If we introduce a single input difference at bit position i in one input word, the HW of the
output differences depends on the position and word of the input difference. In Table 1 and Table 2
give the HW of the output difference for each of the 128 single bit input differences.

We observe that for some specific words and bit positions, the resulting HW can be quite small.
This happens if one or more differences are removed by the shift operation. More specifically, the
branch number of L is only 3, so certain 1-bit input differences lead to only a 2-bit output difference,
and vice versa. Table 1 and Table 2 show the worst case of diffusion, that is, the output HW for a
multiple-bit input difference can be upper bounded by summing the corresponding table entries.
However, when inserting many differences in several input words, some bit differences might erase
each other, thus lowering the overall HW.

Table 1. Hamming weight of output differences if a single difference is introduced at one input word of
the 128-bit linear transformation (a′, b′, c′, d′) = L(a, b, c, d) of Hamsi in forward direction. The total and
word-wise Hamming weight of the output difference is given depending on the bit position i and input
word of the input difference.

Difference in Position i of Total HW of HW of output diff. in
Conditions (mod 32)

input word input difference output diff. a′ b′ c′ d′

a

16,17 3 2 1 - - i + 13 > 28, i + 14 > 24
18 4 2 1 1 - i + 13 > 28, i + 14 ≤ 24

11. . . 15 6 3 1 1 1 i + 13 ≤ 28, i + 14 > 24
else 7 3 1 2 1 i + 13 ≤ 28, i + 14 ≤ 24

b
24. . . 30 2 1 1 - - i + 1 > 24

else 3 1 1 1 - i + 1 ≤ 24

c
21. . . 27 6 2 1 2 1 i + 4 > 24

else 7 2 1 3 1 i + 4 ≤ 24

d 3 1 - 1 1
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Table 2. Hamming weight of input differences if a single difference is introduced at one output word of
the 128-bit linear transformation (a′, b′, c′, d′) = L(a, b, c, d) of Hamsi in backward direction. The total and
word-wise Hamming weight of the input difference is given depending on the bit position i and output
word of the output difference.

Difference in Position i of Total HW of HW of input diff. in
Conditions (mod 32)

output word output difference input diff. a b c d

a′
2. . . 4 2 1 1 - - i + 27 > 28
else 3 1 1 - 1 i + 27 ≤ 28

b′

28. . . 31 3 1 2 - - i > 28, i > 24
25. . . 28 4 1 2 - 1 i ≤ 28, i > 24
never 6 1 3 1 1 i > 28, i ≤ 24
else 7 1 3 1 2 i ≤ 28, i ≤ 24

c′ 3 - 1 1 1

d′
29. . . 31 4 1 - 1 2 i > 28

else 5 1 - 1 3 i ≤ 28

4.3 Near-collisions for the compression function

Using our observations on the differential properties of Hamsi’s Sbox and linear transform, we
first searched manually for high-probability paths leading to near-collisions for the compression
function, given some difference in the chaining value.

Previous work by Nikolic reported near collisions [11] on (256 − 25) bits with 14 differences
in the chaining value; work by Wang et al. reported [16] near collisions on (256 − 23) bits with
16 differences. Below we present near collisions on (256− 25) bits with only six differences in the
chaining value, using the differential path in Table 3.

The differential path in Table 3 is followed with probability 2−26 under standard uniformity and
independence assumptions. However, for the IV defined in [8] the path is followed with probability
2−23. This is because of the condition put by the two fixed bits in each Sbox. These probabilities
were verified experimentally.

Finally, note that the near collisions also result in other 4-sums: for example, for the IV h0

specified in [8], the IV h1 obtained by applying the weight-6 initial difference in Table 3, and the
message M1 = C33BE456 and M2 = C8D1B855, we have:

1. A near collision between H(h0,M1) and H(h1,M1).
2. A near collision between H(h0,M2) and H(h1,M2).
3. A 4-sum H(h0,M1)⊕H(h1,M1)⊕H(h0,M2)⊕H(h1,M2) = 0.

For inputs of an “ideal” function, the latter equality is unlikely to hold with probability 2−23, but
rather with probability close to 2−256.

In the following, we automate our search for high-probability differential paths. Our heuristic
algorithm, described in the next section, produced good differential paths for up to six rounds of
Hamsi.

4.4 Automated differential path search

As before, we search for differential paths with some difference in the input and output chaining
value, and no difference in the input message. The resulting 6-round paths allow us to distinguish
the output transform from random, as shown in Sect. 5.4.

Our primary heuristic is to minimise the HW of the differences in each round. To achieve
that goal, we start with a very low HW (1 or 2 bit) difference in the middle of the path (at the
start of round 3 for a 6-round search) and let the difference spread in both forward and backward
directions. Additionally, we try to maximise the transition probabilities and randomize the search.

More precisely, our automated differential path starts from the input of the Sbox layer in round
3, forcing a 1-bit or 2-bit input difference on only one Sbox position i (among the 128 possible bit
positions). We then choose one of the best differential transitions through the forward application
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Table 3. Differential path for three rounds of Hamsi with probability 2−26.

It. Sbox input Sbox output Prob.

1

00000000 00000000 00020000 00000002
00004000 00000000 00000000 00000000
00000000 00000000 00020000 00000002
00004000 00000000 00000000 00000000

00000000 00000000 00000000 00000002
00004000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00020000 00000000

8

2

00000000 00000000 00000000 00080000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00080000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00080000

3

3

80000000 00000000 02000000 00000000
00000000 00000000 00000000 00100000
00020000 00000000 00010000 00000000
00000000 00000000 00000000 04000000

00000000 00000000 00000000 04100000
80020000 00000000 02010000 04100000
00020000 00000000 00000000 00000000
80000000 00000000 02010000 00000000

15

End

00000000 80400800 00000000 10C130C0
00040105 00000000 04020000 08000000
00020400 A040A0A2 00000000 10004000
00000040 08000000 00820801 00000000

of the Sbox and apply the linear layer on this new internal state. By best Sbox transitions, we
mean the transitions that lead to a low HW after the application of the linear layer. To keep the
search complexity feasible, we apply the L-layer to each active S-box separately and use the sum of
the HWs as an estimate of the total output HW at the end of each round. Since the path is sparse,
the sum of HWs proves to be a good heuristic. We continue picking the best differential transitions
for all the active Sbox positions until the end of the fifth round of the output function of Hamsi.
As the final output HW of the difference does not influence the path complexity, we optimise for
transition probabilities in the last round, and pick the most probable differential Sbox transitions
(not the ones minimizing the HW). Finally, we apply the very last linear layer to obtain the full
path.

The backward computation is done analogously in the middle rounds, applying the linear layer
backward and picking the best backward differential transitions for all active Sboxes. In the first
round (the last round when computing backward) we impose additional restrictions in order to
fulfill constraints on the message expansion.

As we force no difference in the message input of the compression function, we expect the
256-bit expanded message word to contain no difference at all. Hence, in the first round we only
allow Sbox transitions where the difference in the expanded message bits is zero. Note that the
probabilities of the first-round transitions do not affect the complexity of the path, as long as they
are different from 0. Indeed, in the first round we can use the freedom of the chaining input to
fulfill the conditions on the Sboxes and we expect the complexity cost of this first round to be
negligible.

In order to increase our chances to obtain a good trail, we randomized the search with several
parameters. First, we randomized the first 1-bit or 2-bit perturbation introduction in the output of
round 3, as well as its position i among the 128 Sbox locations. Furthermore, we are also random-
izing the Sbox transitions when several candidates are equally good. Finally, another improvement
has been incorporated in our implementation: after having found a potentially interesting 6-round
candidate, we recompute the forward search by allowing more differential transitions through
the Sbox. Said in other words, after having placed ourselves in an interesting differential paths
subspace, we look in the neighborhood if better ones exist.

Our heuristic search revealed that after three rounds in both backward and forward directions,
the diffusion of Hamsi is not sufficient to avoid high-probability differential paths and we can find
a differential path with a rather low total HW and good probability. We were able to construct
a 6-round differential path with a relatively high probability, which is used to distinguish the the
whole Hamsi output transformation in the following section.
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5 Non-randomness of the ouput transformation

5.1 The differential path

The best 6-round path produced by our randomized search program is depicted in Table 4. We
can find an input pair (chaining values and messages) conforming to this path with a probability
of 2−206. Note that in the first round we have a probability of 2−58 for a random message and a
random chaining value. However, we can fix a suitable message (see below), and choose a valid
chaining value bit-by-bit such that the desired output difference is guaranteed. This means that
we can find a conforming input pair to the differential path with a complexity of about 2148.

Table 4. Differential path for six rounds of Hamsi with probability 2−148.

It. Sbox input Sbox output Prob.

start

00000000 00000000 84004880 4081C400

2C020018 000045C0 00000000 00000000

00000000 00000000 84024880 4081C400

28020018 000045C0 00000000 00000000

1

00000000 00000000 84004880 4081C400 04000000 00000000 04000000 40818000

(58)
2C020018 000045C0 00000000 00000000 28020018 000040C0 04020000 00000000

00000000 00000000 84024880 4081C400 00000018 00004100 00000800 00804000

28020018 000045C0 00000000 00000000 04020000 000004C0 80024880 00004400

2

00000000 00000000 00000000 00010000 00000000 00000000 00000000 00010000

17
30000010 00000080 00000000 00000080 30000000 00000000 00000000 00000080

30000010 00000080 00000000 00010080 00000010 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000080 00000000 00000000

3

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3
20000000 00000000 00000000 00000000 20000000 00000000 00000000 00000000

20000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

4

00000000 00000000 00000000 00000008 40000000 00000000 00000000 00000000

5
40000000 00000000 00000000 00000000 40000000 00000000 00000000 00000008

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

5

04038000 00000000 00000200 00000010 80000000 00001000 00000000 00200410

33
80000000 00001000 00000000 00000010 04038002 00001000 00000801 00000000

00000002 00000000 00000a01 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00200400 84038002 00000000 00000a01 00200400

6

08420002 F8022900 00000000 30821140 08830144 A0022100 0C051080 10C01000

90
0903000C 00000000 04001002 00000000 0181014C 58A04845 0C051082 22406340

00000000 A0A26145 00041080 12807200 01800148 58A04845 08011002 22406340

01C0014A 00000000 08051082 10420000 00400002 58000800 00040080 20020140

End

CD9F7546 362513EA 56FE147F 85F6B1E1

8D0682FD F100928A B44C3D06 18A0D101

B8871BEA 70315A82 4819C14B 26257026

A1DD0199 40072022 8329356A A744E830

5.2 First round and message expansion

In the first iteration, active S-boxes impose conditions on the expanded message: for a given non-
zero Sbox differential, only one or two pairs of values of the corresponding two expanded message
bits are possible. Since we have only 32 degrees of freedom in the message, we need to keep the

10



number of active Sboxes in the first round low. To improve the probability of finding a suitable
message candidate, we can vary the differences in the chaining values, whenever several input
differences lead to the same output difference of the first Sbox layer. These relaxable differential
Sbox transitions are listed in Table 5. In our path, five of the 23 active Sboxes of the first iteration
are relaxable. In total, we have only nine Sboxes with two constraints on the message bits; 12
Sboxes with one constraint on the message; and two S-Boxes with a “half” constraint on the
message (three of four bit pairs are possible). Therefore, we expect to find 232−2×9−12 ·

(
3
4

)2 ≈ 2
messages satisfying the relaxed first round differential. In practice, we found one such message using
the constants of permutation P and three messages using the constants of the output permutation
Pf . Table 9 in Appendix B lists these message words together with example chaining values that
satisfy the differential path for up to four rounds. Note that finding conforming message words
can be done in 232 by exhaustive search. The complexity to find chaining values such that the first
four rounds of the path are satisfied is about 225, since we can fulfill the conditions in the first
round deterministically.

Table 5. Relaxable differential transitions for the first round of the Hamsi Sbox. The first table shows
the possible input differences that give the same output if 1, 4 and 5 are the only possible Sbox input
differences. The second table shows the same possibilities if 2, 8, and 10 are the only possible Sbox input
differences. For each underlined transition two message pairs are possible, while for the other transitions
only one message pair is possible.

Desired 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

output a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Possible 1 4 1 1 1

input 5 5 4 4 5

Desired 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

output a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Possible 2 2 2 2

input 8 8 8 8

5.3 Last round and truncation

In order to improve the probability of the differential path, we consider truncated differentials in
the last application of the Sbox. Namely, we relax the Sbox transitions by fixing some bits in the
output difference, while letting the remaining bits vary. Since the “a”-bits and “c” bits diffuse
faster through the linear layer (see Table 1), we chose to fix these bits in the output of each Sbox.
Amongst four different truncated output differences (?0?0, ?0?1, ?1?0 and ?1?1), we chose, for each
input, the output difference with the highest probability. Table 6 lists the relaxed input-output
transitions for the Sbox.

In Appendix C, Table 10 gives the truncated 6th round differential. Relaxing the Sbox transi-
tions increases the probability of the last round to 2−61.8, giving a total path complexity 2−120.8.
At the same time, since the “wild card” bits are chosen to have low diffusion, the difference is still
fixed in 180 bits of the chaining value. Thus, we obtain a distinguisher by observing the difference
in these output bits.

5.4 Distinguishing the output transformation

To distinguish the output transformation of Hamsi we use the concept of differential q-multicollision
introduced by Biryukov et al. in the cryptanalysis of AES-256 [5] and applied to the SHA-3 candi-
date SIMD in [10]. Originally, differential q-multicollision have been applied to a block cipher but
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Table 6. Relaxed differential transitions for the last round of the Hamsi Sbox. The table shows the chosen
set of output differences for each given input difference. Underlined transitions have probability 2−2, while
the other transitions have probability 2−3.

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b ab c ac bc abc d ad bd abd cd acd bcd abcd

output 12 3 1 10 1 2 4 5 8 2 1 11 1 7 2

14 9 9 3 8 12 7 10 8 9 3 13 10

13 10

15

mask 11?0 ?0?1 ?001 1010 00?1 ?0?0 ?100 ?1?1 10?0 ?0?0 ?001 1011 00?1 ?1?1 ?010

can be easily adapted to a random function. A differential q-multicollision for a random (compres-
sion) function f(H,M) is a set of two differences∆H,∆M and q pairs (H1,M1), (H2,M2), . . . , (Hq,Mq)
such that:

f(H1,M1)⊕ f(H1 ⊕∆H,M1 ⊕∆M) =
f(H2,M2)⊕ f(H2 ⊕∆H,M2 ⊕∆M) =
. . .

f(Hq,Mq)⊕ f(Hq ⊕∆H,Mq ⊕∆M)

The generic complexity to find differential q-multicollision for a random function f with output
size n is at least q · 2

q−2
q+2 ·n evaluations of f .

In the case of Hamsi-256, the function f is the output transformation, the message differ-
ence ∆M is zero and the output size is n = 256. The generic complexity to find differential
q-multicollision should be q · 2

q−2
q+2 ·256 and we get for q = 8 a generic complexity of 2156.1. Using

our differential path of Section 5.1, we get for q = 8 a complexity of 8 · 2148 = 2151. Hence, for
q ≥ 8 we can distinguish the output transfomation of Hamsi from a random function, since we
expect to find a q-multicollision approximately 32 times faster than for an ideal transform.

Due to the relaxed conditions, we only fix a truncated difference in 180 output bits and hence,
we get n = 180. In this case, the generic complexity for q = 11 is q · 2

q−2
q+2 ·180 = 2128.1. Using

the relaxed differential path, we get q · 2120.8 = 2124.3 and hence, can distinguish the output
transfomation of Hamsi from a random function for q ≥ 11.

6 Conclusion

We investigated the resistance of the 256-bit version of the second round SHA-3 candidate Hamsi
against differential and higher-order differential attacks.

Using higher-order analysis, we showed that the 3-round compression function of Hamsi has
suboptimal algebraic degree. Using this observation, we provided sets of four related IV’s such
that the outputs of the compression function obtained with a given fixed message sum to zero. We
also presented a set of 219 message words such that the output chaining values, using any fixed
IV, sum to zero. The latter result indicates that the compression function of Hamsi, when seen as
a function of message words, does not reach the expected maximal degree 27. As an application,
we note that the low degree makes the standalone compression function existentially forgeable in
the message authentication setting.

Further, we constructed high-probability differential paths for the 3-round compression function
to demonstrate a near-collision on (256 − 25) bits with only six differences in the input chaining
value. We have also developed a technique for building low-weight, high-probability differential
paths for more rounds of Hamsi. Our best differential path for six rounds has probability 2−148,
much higher than expected for a random function. Additionally, we gave a truncated differential
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on 180 output bits with probability 2−120.8. These are the first results on six rounds of Hamsi,
allowing us to distinguish the full output transformation from a random function using differential
q-multicollisions.

Although none of our findings directly leads to an attack on the hash algorithm, they indicate
that the buildings blocks of Hamsi exhibit nonrandom behavior. We expect our work to serve as
a starting point for future analysis of Hamsi.

In order to prevent more serious attacks, we recommend increasing the number of rounds
in the output transformation as a precaution. While the current specification does not include
performance figures for the 8-round alternative, this change is only expected to noticeably affect
the speed of hashing short messages.
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8. Kücük, O.: Reference implementation of Hamsi. Submission to NIST (January 2009)
9. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R., Jr., D.C., Maurer, U.,

Mittelholzer, T. (eds.) Communications and Cryptography. pp. 227–233. Kluwer (1992)
10. Mendel, F., Nad, T.: A distinguisher for the compression function of simd-512. In: Roy, B.K., Sendrier,

N. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 5922, pp. 219–232. Springer (2009)
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A The Sbox of Hamsi

Table 7. The Hamsi Sbox in decimal basis.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S[x] 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

Table 8. The differential distribution table (DDT) of the Hamsi Sbox in decimal basis.

In \ Out 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 0 2 0 0 2 2 2 0 4 2

2 0 0 0 4 0 4 0 0 0 4 0 0 0 0 0 4

3 0 4 2 0 0 0 2 0 0 2 0 0 2 0 2 2

4 0 0 0 0 0 0 4 0 0 0 4 4 0 4 0 0

5 0 4 0 2 2 2 2 0 2 0 0 0 2 0 0 0

6 0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2

7 0 0 0 0 4 2 0 2 0 0 2 2 2 0 0 2

8 0 0 0 2 0 2 0 4 0 2 0 0 0 4 0 2

9 0 0 0 2 0 0 0 2 4 2 2 2 2 0 0 0

10 0 0 2 0 2 0 4 0 2 0 4 0 0 0 2 0

11 0 4 0 0 2 0 2 0 2 2 0 0 2 0 0 2

12 0 0 2 0 2 0 0 0 2 0 0 4 0 4 2 0

13 0 4 2 2 0 2 2 0 0 0 0 0 2 0 2 0

14 0 0 2 0 2 0 0 4 2 0 0 0 0 4 2 0

15 0 0 4 2 0 0 0 2 0 2 2 2 2 0 0 0

B Conforming Message Pairs
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Table 9. Messages satisfying the relaxed first round differential for permutation P and Pf together with
the corresponding difference on the chaining value before the application of the first Sbox. These differences
vary over the five relaxable Sbox transition. We also give example chaining values satisfying the differential
path up to four rounds. The chaining value and input difference should be read from top-left to top-right,
then bottom-left to bottom-right.

Permutation Message Difference on chaining value Chaining value

P FD 1A 35 83
84024880 4081C400 28020018 000045C0 0FE53B63 12DED071 D5A7C265 F886F53E

84004080 40818400 2C020018 000045C0 7F00EA2A F0F14CCC 0F6A6528 8E235B01

Pf 53 1C BD E2
84004880 4081C400 28020018 000045C0 B443BB07 149683BE DD71AD95 931F6D84

84024880 4081C400 2C020018 000045C0 4AFBF940 631CCFF0 576A371A 76618746

Pf 68 FF 2B 71
84004880 4081C400 2C020018 000045C0 1C03A81D 7155CABB BBF7EFC8 EE22F7CD

84024080 4001C400 28020018 000045C0 CAFBF940 231D8FF0 34457281 81A20735

Pf A6 ED 03 6C
84004880 4081C400 2C020018 000045C0 BB63500E B6E6863F FB3F6527 512A60DA

84024880 40818400 28020018 000045C0 4EF9B140 631C8BF0 323C56EC 012D9A36

C Truncated differential path

Table 10. Truncated differential for the last round of Hamsi with probability 2−61.8. The state is printed
column by column; “?” marks an unknown difference.

It. Sbox input Sbox output Prob.

00001000010000100000000000000010 00001000100000110000000101000100

61.8

6 00001001000000110000000000001100 0000000???00000?0000000?0?00???0

(col 0) 00000000000000000000000000000000 00000000100000000000000101000000

00000001110000000000000101001010 0000?00??10000??0000000?0?00??10

11111000000000100010100100000000 10100000000000100010000100000000

6 00000000000000000000000000000000 ?????000101000?001?0?00?01000101

(col 1) 10100000101000100110000101000101 01011000000000000000100000000000

00000000000000000000000000000000 01011000101000000100100001000101

00000000000000000000000000000000 00001100000001010001000010000000

6 00000100000000000001000000000010 0000??000000010?000?0000100000?0

(col 2) 00000000000001000001000010000000 00001000000000010001000000000000

00001000000001010001000010000010 0000??000000010?000?0000100000?0

00110000100000100001000101000000 00010000110000000001000000000000

6 00000000000000000000000000000000 00??0010??0000?0011?001?0?000000

(col 3) 00010010100000000111001000000000 00100000010000000000000101000000

00010000010000100000000000000000 001000100?0000100110001101000000

11001011?011?1?00?11000101?????0

7

(col 0) 0000100110??0001?0010?111?1?1010

00??01111?1?0?01??010010?11??1??

7

(col 1) ??11101??0??00001??110?01?0?11??

01??0010?1111?100?0?01001111??11

7

(col 2) 01?011000101?001?100?1?10?001101

1???010?0?0101001???10????110000

7

(col 3) ?010010?00??00011??10?1011?0?01?

15


