
Heavy Quark for secure AEAD

Jean-Philippe Aumasson1, Simon Knellwolf2, and Willi Meier2

1 NAGRA, Switzerland
2 FHNW, Switzerland

Abstract. Lightweight primitives are generally limited to 80- or 128-bit security, because
lightweight applications seldom need more than this. However, non-lightweight platforms like
multimedia systems-on-chip would also greatly benefit from a smaller hardware footprint,
as it reduces development and integration costs, and leaves more circuit area to another
component, or to add another functionality. Such systems sometimes need up to 256-bit
security, for example to ensure a consistent security level across primitives. This paper
thus breaks with the tradition and proposes a 256-bit authenticated encryption scheme
with associated data (AEAD), based on the lightweight design Quark. We create a new
Quark instance to use in a custom SpongeWrap mode, offering one-pass AEAD supporting
arbitrary interleaving of encrypted and associated data, as well as a range of trade-offs
between security and usage limit. More than a new primitive, this work provides insights
on the scalability of lightweight designs to higher security levels: our new design c-Quark
has internal state of 384 bits, and allows the implementation of 256-bit AEAD with in the
order of 4000 GE.

1 Introduction

A recent research trend is the design of lightweight hash functions, with proposals Quark [1],
photon [2], and spongent [3], all three being sponge functions. Those designs were preceded by
reduced versions of Keccak [4] as well as by hash functions based on the block cipher present [5].
The above sponge functions achieve a competitive ratio between security and hardware footprint,
due to a second preimage resistance of n/2 rather than n bits. In addition to this resource-efficiency,
those designs can easily be used to construct other primitives than hash functions like stream
ciphers, MACs, key derivation functions, or authenticated encryption schemes with associated
data (AEADs).

This paper presents c-Quark, a new Quark instance with state size b = 384 bits, and a dedi-
cated AEAD mode based on the SpongeWrap construction [6] of Bertoni et al. Compared to the
original general definition of SpongeWrap, our scheme explicitly defines nonce management as
well as a padding rule and a usage limit. This instance of SpongeWrap is called c-QuarkWrap.
Security of at least 253 bits is ensured against adversaries limited to 264 queries with a given key.
Lower bounding to 253 rather than 256 bits simplifies a lot the construction.

We wrote a VHDL description of the new instance c-Quark, and simulated its performance
in 90 nm ASIC. We estimate that the compact architecture fits in approximately 4000 gate-
equivalents. Both our serial and parallel architectures show combinations of security, area, and
speed that are competitive with those of previous designs.

Similar AEAD schemes can be easily constructed for (reduced) Keccak, photon, or spon-
gent. A thorough comparison of the security and efficiency of all those schemes remains to be
done.

2 Specification of c-Quark

c-Quark is a new instance of the Quark family, with parameters r = 64, c = 320, b = 384, n =
384. Here r is the rate (or block size), c is the capacity (or security), b is the width (or state size),
and n is the digest’s size. The description below is succinct and we refer to [1] for more details.

Like previous Quark instances, c-Quark processes a message m in three steps:

Version date: 2012.08.15



(1) Initialization: m is padded by appending a ’1’ bit followed by the minimal (possibly zero)
number of ’0’ bits to reach a length that is a multiple of r.

(2) Absorbing phase: the r-bit message blocks are XOR’d with the last r bits of the state (that
is sb−r, . . . , sb−2, sb−1), interleaved with applications of the permutation P .

(3) Squeezing phase: the last r bits of the state are returned as output, interleaved with appli-
cations of P until n bits are returned.

Unlike previous Quark instances, c-Quark’s permutation P makes 2b rounds rather than 4b (see
§§4.2). Note that we denote the internal sponge state s = (s0, . . . , sb−1), where s0 is the first bit
of the state. The IV of c-Quark is given in Appendix A.

The P permutation of c-Quark is composed of three feedback shift registers (see Fig. 1):

• An NFSR X of 192 bits, denoted Xt = (Xt
0, . . . , X

t
191), at epoch t ≥ 0.

• An NFSR Y of 192 bits, denoted Y t = (Y t
0 , . . . , Y

t
191).

• An LFSR L of 16 bits, denoted Lt = (Lt
0, . . . , L

t
15).

Given a b-bit input and the internal state s of the sponge function, P is initialized as follows:

• (X0
0 , . . . , X

0
191) := (s0, . . . , s191).

• (Y 0
0 , . . . , Y

0
191) := (s192, . . . , s383).

• (L0
0, . . . , L

0
15) := (1, . . . , 1).

Then the state update works as follows to compute (Xt+1, Y t+1, Lt+1) from (Xt, Y t, Lt):

(1) The function h is evaluated upon input bits from Xt, Y t, and Lt, and the result is denoted
ht: ht := h(Xt, Y t, Lt).

(2) X is clocked: (Xt+1
0 , . . . , Xt+1

191 ) := (Xt
1, . . . , X

t
191, Y

t
0 + f(Xt) + ht).

(3) Y is clocked: (Y t+1
0 , . . . , Y t+1

191 ) := (Y t
1 , . . . , Y

t
191, g(Y t) + ht).

(4) L is clocked: (Lt+1
0 , . . . , Lt+1

15 ) := (Lt
1, . . . , L

t
15, p(L

t)).

In c-Quark, the LFSR is of 16 bits (against 10 in previous instances), to facilitate the ×32 parallel
implementation. The feedback polynomial is thus adapted, so that p(Lt) returns Lt

0 +Lt
2 +Lt

3 +Lt
5

rather than Lt
0 + Lt

3. The functions f , g, and h are given in Appendix B.
Once initialized, the state of Quark is updated 2b times. The output is defined as the final

value of the NFSRs X and Y , using the same bit ordering as for the initialization. That is, the
new internal state of the sponge construction is set to

s = (s0, . . . , sb−1) = (X2b
0 , X

2b
1 , . . . , Y

2b
b/2−2, Y

2b
b/2−1) .

NFSR X NFSR Y

h

6

i
6

?

f g

LFSR L

p

�

6

- �

- -

?i� � �

Fig. 1. Diagram of the permutation of Quark.



6

?

?

6

c− 1

r + 1

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	
P P P P P P

-

-

-

-

-

-

-

-

-

-

-

-

i?
K0‖1

i?
K1‖0

i?
A0‖0

i?
A1‖1 i6�C0

i?B0‖1 i6�C1

i?B1‖0
6

T

Fig. 2. Generic SpongeWrap mode a 2r-bit (padded) key K, a 2r-bit (padded) header A, and
a 2r-bit (padded) body B, returning an r-bit tag T .

3 Authenticated encryption with c-Quark

We construct an authenticated encryption scheme with associated data (AEAD) by using c-
Quark in SpongeWrap mode [6, §5], an AEAD construction based on the duplex construc-
tion. Below we briefly describe the original SpongeWrap and then how to refine it to specify
a concrete AEAD based on c-Quark; for convenience of reference we name this construction
c-QuarkWrap.

3.1 The original SpongeWrap mode

The SpongeWrap mode is essentially the sponge construction wherein

(1) The key K is absorbed,
(2) Data to be absorbed is given as pairs (A,B), where the header A is returned unencrypted,

and the body B is encrypted by xoring each r-bit block with the r-bit block squeezed from the
current internal state.

(3) A tag T is returned as the r-bit blocks squeezed after the last B block processed (empty blocks
are processed if more than r bits are needed).

Moreover, each block absorbed is flagged by a frame bit (see [6, §§5.1]), set to ’1’ for

• All key blocks except the last,
• The last header block,
• All body blocks except the last,

and it is set to ’0’ for all other blocks. This frame bit is absorbed by extending the original rate r
of one bit.

The SpongeWrap construction supports an arbitrary number of (A,B) “wraps”, and thus
can interleave associated and encrypted data, and can return intermediate authentication tags.
We refer to Algorithm 3 in [6] for a complete, formal, description of SpongeWrap.

Fig. 2 shows an example with a 2r-bit (padded) key K, a 3r-bit (padded) header A, and a
2r-bit (padded) body B, returning an r-bit tag T .

3.2 The c-QuarkWrap AEAD

We propose to use the SpongeWrap mode with c-Quark to construct an AEAD supporting in-
terleaved encrypted and (unencrypted) associated data. As SpongeWrap is very generic, specific
parameters have to be specified. The version of SpongeWrap with our particular parameters is
called c-QuarkWrap.



Padding. The SpongeWrap mode supports any sponge-compliant padding rule [6, Def.1]. c-
QuarkWrap uses the same padding as for c-Quark in sponge mode, namely, to append a ’1’
bit followed by zero to r − 1 zeroes. This is the simplest sponge-compliant padding rule. Note
that each block processed has to be padded, as per the definition of the duplex construction (see
Algorithm 2 in [6])

Key. SpongeWrap supports any key length. c-QuarkWrap keys are of 256 bits, and are thus
absorbed as four 64-bit blocks, each followed by the frame bit and a padding bit.

Usage exponent. [7, §§5.2] defines the usage exponent as the value a such that the implementation
imposes an upper limit of 2a uses of given key. c-QuarkWrap sets this limit to 264. As c-
QuarkWrap has an actual capacity of 384 − 61 − 1 − 1 = 318 (due to the duplex padding and
to the frame bit) this guarantees a security of at least 2318−1/264 = 2253 (see [7] for a proof).

Nonces. SpongeWrap does not specify how nonces should be handled (if at all). c-QuarkWrap
takes a 64-bit nonce, and each value should be used at most once within a same c-QuarkWrap
object. As noted in [6, §§2.2], a nonce repetition implies that an adversary can learn the xor of two
plaintext bodies, but does not affect the authentication functionality. As there are more distinct
nonces than uses allowed by the usage exponent, outpassing the latter does not imply a nonce
repetition.

After the SpongeWrap object is initialized with the key, the 64-bit nonce is copied to A0, that
is, the first bits of the first header processed. A nonce should be specified for each wrap call. Of
course if the nonce is identical for consecutive wrap calls, only one copy of it can be transmitted
along.

Tag length. SpongeWrap supports the generation of tags of arbitrary length. c-QuarkWrap
returns 64-bit tags, which is sufficient for most applications. Longer tags can be produced by
following the SpongeWrap specification.

Initial state. SpongeWrap relies on the duplex mode, which sets the initial state to the all-zero
string. Instead, c-QuarkWrap uses a specific initial state (given in Appendix A), because an
all-zero state may facilitate differential attacks on reduced-round versions of P .

3.3 Properties of c-QuarkWrap

As a particular version of SpongeWrap, c-QuarkWrap inherits its functional properties, which
include

• Single-pass processing of associated and encrypted data.
• Support for arbitrarily interleaved associated and encrypted data.
• Generation of intermediate tags after each “wrap”.
• Non-expanding encryption.
• Possibility to reuse the permutation to implement a hash function (or other cryptographic

primitives).

Encrypting 8m bytes without any associated data requires 4 + 1 + m calls to P , or 1 + m if the
secret internal state has been precomputed. Adding 8m′ bytes of associated data adds m′ calls to
P .



Algorithm 1 c-QuarkWrap

function init(K)
s = IV
s = P (s⊕K0‖11)
s = P (s⊕K1‖01)
s = P (s⊕K2‖01)
s = P (s⊕K3‖01)

end function

function ae(N,B) . authenticated encryption of B = B0‖ · · · ‖Bw with nonce N
s = P (s⊕N‖11))
C0 = B0 ⊕ (s320...383)
for i = 0→ w − 1 do

s = P (s⊕Bi‖11)
Ci+1 = Bi+1 ⊕ (s320...383)

end for
s = P (s⊕Bw‖01)
T = s320...383
return (N,C0‖ · · · ‖Cw, T )

end function

function aead(N,A,B) . authenticated encryption of B with associated data A0‖ · · · ‖Av and nonce
N

s = P (s⊕N‖01)
for i = 0→ v − 1 do

s = P (s⊕Ai‖01)
end for
s = P (s⊕Ai‖11)
C0 = B0 ⊕ (s320...383)
for i = 0→ w − 1 do

s = P (s⊕Bi‖11)
Ci+1 = Bi+1 ⊕ (s320...383)

end for
s = P (s⊕Bw‖01)
T = s320...383
return (N,A,C0‖ · · · ‖Cw, T )

end function



4 Security

4.1 Security with ideal permutation

As previously observed, c-Quark is actually used in c-QuarkWrap with a capacity of 318 bits,
due to the SpongeWrap frame bit and the duplex padding bit adding up to the 64 bits of effective
data xored to the state. As per the analysis reported in [6, Th.1], this guarantees a security (with
respect to confidentiality and authenticity) of approximately 2159 in the general case. However, by
defining an upper bound of 264 on the number of usages of a given key, a bound of 2253 on the
complexity of a generic attack succeeding with high probability is obtained.

4.2 Security of the permutation

Reduced-round P permutations of previous Quark instances were attacked [1] with cube testers,
truncated differential attacks, and conditional differentials attacks, with the latter method out-
performing the first two. While the three original instances of Quark have 4b rounds, fewer than
b rounds could be attacked. This security margin, along with the results of the analysis below, is
the reason why we reduced the number of rounds to 2b for c-Quark.

We first applied the same kind of truncated differential analysis to c-Quark than to the original
Quark’s: 348 rounds could be distinguished from an ideal permutation with complexity 220, by
exploiting a biased difference in s0 given an input difference in s3.

We then applied the more advanced technique of conditional differential cryptanalysis, with two
specific approaches:

(1) Control the propagation of the single-input difference in s3 as far as possible.
(2) Find an input difference (of arbitrary weight) that leads to a single-bit difference in the state

bit s3 after q rounds. After q rounds, the propagation is not controlled anymore.

The details and results of both approaches are described in the following.

Conditional Differential Cryptanalysis (1). The following conditions prevent the propagation of
the difference whenever possible in the first 50 rounds (5 conditions in total):

In round 36:
s49 = 0, s1+s9+s14s48s66s78s95+s14s48+s14s78s128s160+s14+s18s52s70s82s99+s18s52+s18s82s132s164+

s18 + s26s47s196 + s26s47s252 + s29 + s30s51s200 + s30s51s256 + s33 + s35 + s39 + s41 + s45 + s47s56s196 +

s47s56 +s47s196s252 +s48s66s158s160 +s51s60s200 +s51s60 +s51s200s256 +s52s70s162s164 +s56s196 +s56s252 +

s60s200 + s60s256 + s66s78s95s110s128s146 + s66s78s95 + s66 + s70s82s99s114s132s150 + s70s82s99 + s70 + s78 +

s82 + s86 + s90 + s95s110s146s158 + s95s110 + s95 + s99s114s150s162 + s99s114 + s99 + s110s128s146s158s160 +

s110 + s113 + s114s132s150s162s164 + s114 + s117 + s128s146s158 + s128 + s132s150s162 + s132 + s141 + s142 +

s145 + s147 + s150 + s151 + s153 + s157 + s158s160 + s158 + s162s164 + s162 + s193 + s195 + s197 + s199 + s226 +

s230 + s252 + s253 + s255 + s256 + s257 + s259 + s280 + s284 + s292 + s296 + s331 + s335 + s341 + s345 = 0

In round 38:
s183 + 1 = 0, s132s147 + s165 + 1 = 0, s5 + s9 + s18s52s70s82s99 + s18s52 + s18s82s132s164 + s18 + s30s51s200 +

s30s51s256 + s33 + s39 + s45 + s51s60s200 + s51s60 + s51s200s256 + s52s70s162s164 + s60s200 + s60s256 +

s70s82s99s114s132s150 + s70s82s99 + s70 + s82 + s90 + s99s114s150s162 + s99s114 + s99 + s114s132s150s162s164 +

s114 + s117 + s132s150s162 + s132 + s145 + s146 + s150 + s151 + s157 + s162s164 + s162 + s197 + s199 + s230 +

s256 + s257 + s259 + s284 + s296 + s335 + s345 + 1 = 0

On a sample that satisfies these conditions we found a stronger bias on the difference in s0 after
348 rounds (the bias can be reliably detected on samples of size 212 at significance level α = 0.001),
but no additional was detected at later rounds.



Conditional Differential Cryptanalysis (2). Let q = 30, that is, we aim for a single bit difference
in s3 after 30 rounds. By backward computation with linearized update functions one can find an
initial difference that has differences at the following bits (25 in total): s1, s3, s4, s5, s17, s30, s192,
s193, s195, s196, s198, s199, s200, s201, s202, s203, s204, s205, s206, s208, s210, s212, s214, s216, and
s218. The following conditions make sure that this difference boils down to a single bit difference
after 30 rounds (22 conditions in total):

In rounds 0 to 9:
s25s46+s46s55+s46s251+s55 = 0 s229s253s287s305+s229+s287s326s352 = 0 s26s47+s47s56+s47s252+s56 = 0

s231s255s289s307+s231+s289s328s354 = 0 s28s49+s49s58+s49s254+s58 = 0 s51s69s81s98+s51+s81s131s163 =

0 s29s50+s50s59+s50s255+s59 = 0 s233s257s291s309+s233+s291s330s356 = 0 s30s51+s51s60+s51s200+s51+

s60 = 0 s31s52+s52s61+s52s257+s61 = 0 s32s53+s53s62+s53s258+s62 = 0 s33s54+s54s63+s54s259+s63 = 0

s34s55 + s55s64 + s55s260 + s64 = 0

In rounds 10 to 19:
s35s56 + s56s65 + s56s261 + s65 = 0 s36s57 + s57s66 + s57s262 + s66 = 0 s38s59 + s59s68 + s59s264 + s68 = 0

s40s61 + s61s70 + s61s266 + s70 = 0 s64s82s94s111 + s64 + s94s144s176 = 0 s42s63 + s63s72 + s63s268 + s72 = 0

s44s65 + s65s74 + s65s270 + s74 = 0

In rounds 20 to 29:
s46s67 + s67s76 + s67s272 + s76 = 0

s48s69 + s69s78 + s69s274 + s78 = 0

A sample that satisfies all these conditions can be generated by setting the following bits of the
initial state to zero (and assigning random values to the other bits): s46, s47, s49, s50, s51, s52, s53,
s54, s55, s56, s57, s58, s59, s60, s61, s62, s63, s64, s65, s66, s67, s68, s69, s70, s72, s74, s76, s78, s81,
s94, s229, s231, s233, s287, s289, and s291. Using a sample of size 220, a bias can always be detected
in the difference of s0 after 348 + 30 = 378 rounds (at significance level α = 0.001).

It is possible to choose a slightly larger q (and hence to further increase the number of rounds).
Table 1 shows the weight of the input difference and the number of required conditions for some
larger values of q. Not only grows the number of conditions quickly, but they also get very com-
plicated, which means that large parts of the state must be fixed.

Table 1. Hamming weight of the input difference and number of conditions for different q (the
bias can be detected after 348 + q rounds).

Controlled rounds (q) 30 32 34 36 38 40 42 44 46 48

Difference weight 25 28 32 35 37 39 36 38 40 42

Number of conditions 22 24 28 33 41 49 53 61 67 78

Conclusion. It seems very unlikely that the c-Quark permutation with 2b = 768 rounds admits
differential properties that can be exploited for an attack on the hash function or its use in the
proposed AEAD mode. Using conditional differential cryptanalysis we could “attack” 348 + 48 =
396 rounds, which leaves a reasonable security margin.

Obviously better distinguishers may exist on P , and “shortcut” attacks on c-Quark as a hash
function may exist too. As a first step, cryptanalysts may consider reduced-round versions of
c-Quark as well modified versions with weaker feedback functions. Although we do not claim
resistance against related-key attacks, they could be considered in the security evaluation of c-
Quark.



5 Hardware efficiency

5.1 Methodology

We wrote VHDL descriptions of a serial architecture of c-Quark (1-bit datapath; most compact,
slowest) and of a parallel architecture (32-bit datapath; less compact, fastest). We synthesized
them for a 90 nm TSMC technology using Synopsys DC Ultra (2011 version) with the tcbn90lphp
standard cell library.

Compared to the hardware evaluation in [1], we report only a basic analysis with pre-place-
and-route area evaluation for the c-Quark sponge function. Much more reliable results would be
obtained from a working post-layout design. Extra logic and memory is necessary to implement
the complete c-QuarkWrap mode.

5.2 Results

Below we report the main performance metrics for each of the architectures implemented, showing
efficiency estimates competitive with other lightweight designs3:

Serial architecture. In this architecture the P permutation has a latency of 2b = 768 cycles,
and processes 64 bits. At 100 kHz, this is a throughput of 100/768×64 ≈ 8.33 kbps. The synthesis
of our RTL design gave a circuit of approximately 3125 gate-equivalents (GE); assuming a density
of 80% after place-and-route, this gives an area of approximately 4000 GE, that is, an efficiency of
approximately 8333/4000 ≈ 2 bps/GE.

Parallel architecture. In this architecture the P permutation has a latency of 2b/32 = 24 cycles,
and processes 64 bits. At 100 kHz, this is a throughput of 100/24×64 ≈ 266.67 kbps. The synthesis
of our RTL design gave a circuit of approximately 7100 gate-equivalents (GE); assuming a density
of 80% after place-and-route, this gives an area of approximately 8875 GE, that is, an efficiency of
approximately 266 666/8875 ≈ 30 bps/GE.

References

1. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight hash (full version).
http://131002.net/quark/quark_full.pdf appeared in CHES 2010.

2. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: CRYPTO.
(2011)

3. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: SPONGENT: A
lightweight hash function. In: CHES. (2011)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission. Submission to
NIST (Round 3), http://keccak.noekeon.org/Keccak-submission-3.pdf (2011)

5. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions
and RFID tags: Mind the gap. In: CHES. (2008)

6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: single-pass authenticated
encryption and other applications. http://sponge.noekeon.org/SpongeDuplex.pdf appeared in SAC
2011.

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed sponge construction.
http://sponge.noekeon.org/SpongeKeyed.pdf appeared in SKEW 2011.

A Initial state

The initial state of c-Quark is the SHA-384 digest of the string “c-quark”, and like for previous
Quark instances the first state bit s0 (copied to X0 in P ) is defined as the most significant bit of
the first byte of this value (2b):
3b4503ec7662c3cb30e00837ec8d38bbe5ff5acd6901a2495750f9198e2e3b5852dcaa1662b7dad65fcb5a8a1f0d5fcc

3For example, at a same 100 kHz frequency, the serial and parallel architectures of spongent-
256/512/256 have respective efficiencies 350/5110 = 0.068 bps/GE and 66490/9944 = 6.68 bps/GE.

http://131002.net/quark/quark_full.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://sponge.noekeon.org/SpongeDuplex.pdf
http://sponge.noekeon.org/SpongeKeyed.pdf


B Boolean functions

We define the Boolean functions f , g, and h used for computing the P permutation of c-Quark:

f(X) = X0+X13+X34+X65+X77+X94+X109+X127+X145+X157+X140+X159X157+X109X94+
X47X13+X157X145X127+X94X77X65+X159X127X77X13+X157X145X109X94+X159X157X65X47+
X159X157X145X127X109 +X94X77X65X47X13 +X145X127X109X94X77X65

g(Y ) = Yi+21 + Yi+57 + Yi+60 + Yi+94 + Yi+112 + Yi+125 + Yi+133 + Yi+152 + Yi+157 + Yi+146 +
Yi+159Yi+157 + Yi+125Yi+112 + Yi+36Yi+21 + Yi+157Yi+152Yi+133 + Yi+112Yi+94Yi+60+
Yi+159Yi+133Yi+94Yi+21 + Yi+157Yi+152Yi+125Yi+112 + Yi+159Yi+157Yi+60Yi+36+
Yi+159Yi+157Yi+152Yi+133Yi+125+Yi+112Yi+94Yi+60Yi+36Yi+21+Yi+152Yi+133Yi+125Yi+112Yi+94Yi+60

h(X,Y, L) = Xi+25 + Yi+59 + Yi+3Xi+55 +Xi+46Xi+55 +Xi+55Yi+59 + Yi+3Xi+25Xi+46+
Yi+3Xi+46Xi+55 +Yi+3Xi+46Yi+59 +Xi+25Xi+46Yi+59Li +Xi+25Li +Li +Xi+4 +Xi+28 +Xi+40 +
Xi+85 + Xi+112 + Xi+141 + Xi+146 + Xi+152 + Yi+2 + Yi+33 + Yi+60 + Yi+62 + Yi+87 + Yi+99 +
Yi+138 + Yi+148

C Test values

We give intermediate values of the c-Quark internal state when hashing the empty message, that
is, after padding, the message block 80000000:

Initial state after XOR with the message block 80000000:
3b4503ec7662c3cb30e00837ec8d38bbe5ff5acd6901a2495750f9198e2e3b5852dcaa1662b7dad6dfcb5a8a1f0d5fcc

State after applying the only permutation of the absorbing phase:
b9a4d5653dff49af0e9c01c202e33ce30df6dc988a3f7df674ed10280b74152b0b7542795236945e1cb9770ee7c25fa9

States after each permutation of the squeezing phase:
9d4607ec0e3a744447d6f79343970a4986a6d7b5dcfa0b52f5ea3cbbc54ed1056eadbfe16ccfeafbdce2c9464578337c

97078af8b39dec11810d275fe1ee072aa766a82cffadf8e875df86c85802ebc68fa919f69aeb28e469c7e26cb4f1bdf4

eb09b18152c593c24e24b4313a92134ebe6e88099dfeeefc793f1165c9f1585910133da0b3fe393b4869f1a93639f1f3

57cec14c521600e91936829170737bfb66f9adf818abb10f6e44b1121a5916043a11a5706b4c987b60b888975ff9ffee

ea1477b135ff77cd78585224a2d224e9f6e48b812021bf68b02125f329d2310e731d0bee58c56b1b880d2c499108a27a

Digest returned:
1cb9770ee7c25fa9dce2c9464578337c69c7e26cb4f1bdf44869f1a93639f1f360b888975ff9ffee880d2c499108a27a


	Heavy Quark for secure AEAD
	Jean-Philippe Aumasson cl@@auth, Simon Knellwolf cl@@auth, Willi Meier

