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Abstract. We analyse the security of new hash functions whose compression function is explicitly
defined as a sequence of multivariate equations. First we prove non-universality of certain proposals
with sparse equations, and deduce trivial collisions holding with high probability. Then we introduce a
method inspired from coding theory for solving underdefined systems with a low density of non-linear
monomials, and apply it to find collisions in certain functions. We also study the security of message
authentication codes HMAC and NMAC built on multivariate hash functions, and demonstrate that
families of low-degree functions over GF(2) are neither pseudo-random nor unpredictable.

1 Introduction

A fundamental idea of multivariate cryptography was stated by Shannon in 1949 [35]: “if
we could show that solving a certain system requires at least as much work as solving a
system of simultaneous equations in a large number of unknowns, of a complex type, then
we would have a lower bound of sorts for the work characteristic”. Multivariate primitives
are indeed directly described in terms of multivariate polynomial functions, in order to
reduce certain security problems to the presumably hard problem of solving the system,
and/or to problems like Polynomial Isomorphism, Minrank, etc. At the opposite, primitives
without explicit multivariate equations might be attacked by first finding a full or partial
description as a system of equations, then exploiting the latter system (ideally, solving it) –
this is the principle of algebraic attacks. A number of multivariate primitives appeared since
the early years of modern cryptology, mainly asymmetric schemes (Matsumoto-Imai [28],
Ong-Schnorr-Shamir [33], HFE [34], etc.), and more recently, the stream cipher QUAD [7].
As the advent of RSA led to a multitude of works on integer factorisation, researchers
designed new algorithms for solving multivariate systems of equations, to tackle multivariate
primitives [14, 18, 24]. Note that, although every cipher possesses a characterisation as a
system of Boolean equations, this latter is generally at least as hard to compute as breaking
the cipher with a brute force attack.

This paper analyses multivariate hash functions, that is, iterated hash schemes built upon
a function Km+n 7→ Kn explicitly defined as a sequence of multivariate equations. More
precisely, we focus our study on the later compression function, and relate its parameters
to the security of the overall primitive. It is well-known that hash functions are essential in
numerous real-life cryptographic schemes and protocols, be it digital signatures (in DSA and
ECDSA), authentication codes (through HMAC), or for building pseudo-random function
and derive keys. After several breakthroughs in the analysis of the previous standards MD5,
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SHA-0, and SHA-1, the community is particularly attentive to new designs (cf. NIST’s
competition for a new standard [32]). Surprisingly, multivariate hash functions only appeared
in 2007, in works by Billet, Peyrin and Robshaw [8], introducing the constructions MQ-HASH
and RMQ-HASH, and simultaneously by Ding and Yang [20]. By reducing the problem of
finding a preimage of a given digest to the problem of solving a multivariate system, a
security guarantee is given for multivariate hash functions. Other “provably secure” hash
functions exist, whose resistance to preimage and/or collision relies on problems as different
as syndrome decoding [2, 25], (approximate) shortest vector in a lattice [6, 29], and non-
trivial square root of very smooth numbers [12]. We notice that the term “multivariate hash
functions” has already been employed in a non-cryptographic context [36] to denote functions
hashing several objects at the same times, and that multivariate hash functions over GF(2)
have recently been employed in the context of interactive hashing [27].

Our Work. Section 2 gives security definitions and presents our model of multivariate hash
functions, along with the description of the constructions MQ-HASH, RMQ-HASH, and
SCC. Section 3 then proves the non-universality of functions based on sparse equations, like
SCC, and illustrates this with several trivial collisions holding with high probability. Section 4
introduces a new method for solving underdefined semi-sparse multivariate systems, that we
apply to certain kinds of multivariate hash functions. Section 5 studies the security of message
authentication codes NMAC and HMAC built on multivariate hash functions, showing a
critical attack on NMAC-SCC. Section 6 demonstrates that all multivariate hash functions
over GF(2) with small degree are efficiently predictable and distinguishable from random
functions. As an aside, we identify weak instances of QUAD in Section 7, and eventually
draw some conclusions in Section 8.

2 Preliminaries

Let n ∈ N?,m ∈ Z. A multivariate system (of equations) over a finite field K with n
equations and (m+n) unknowns is denoted as {hi(x) = 0}0≤i<n−1, or simply h(x) = 0, with
x = (x0, . . . , xm+n−1) ∈ Km+n. The system is called underdefined (respectively overdefined)
when m > 0 (resp. m < 0). The degree deg(h) of the system is maxi deg(hi). We identify
Boolean functions with their representative polynomial over GF(2), and the weight of a
polynomial is defined as the number of non-null coefficients in its algebraic normal form.
The number of square-free monomials in n variables (that is, considering x2 ≡ x as over
GF(2)) of degree in [0, d] is

N (n, d) =
d∑

i=0

(
n

i

)
. (1)

The density of a polynomial of degree d in n variables is the ratio between its weight and
N (n, d), so that a random system of density δ ∈ [0, 1] has its equations with expected weight
bδN (n, d)c (for convenience, we omit from now the flooring symbols b.c ), such that each
monomial has probability δ to appear in an arbitrary component. We call a random system
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sparse when it has density δ ¿ 50%, and semi-sparse when only monomials of certains
degrees have a density ¿ 50% (for example, imagine a cubic system where δ only applies to
the cubic monomials). Eventually, when we mention “random” objects, it implicitly means
with respect to a uniform distribution in the appropriate sample space, unless precised
differently.

2.1 Security Definitions

We give the security definitions for families of hash functions1, that is, subsets of the set of all
functions Km+n 7→ Kn for fixed K, m, and n. These families can also be seen as distributions
over this superset.

Preimage
Input a random hash function h ∈ F , a random digest y ∈ {0, 1}n.
Output x ∈ {0, 1}m+n such that h(x) = y.

Second Preimage
Input a random hash function h ∈ F , a random input x ∈ {0, 1}m+n.
Output x′ ∈ {0, 1}m+n such that h(x) = h(x′) and x 6= x′.

Collision
Input a random hash function h ∈ F .
Output x, x′ ∈ {0, 1}m+n such that h(x) = h(x′) and x 6= x′.

In addition, the term near-collision designates a collision over only certain bits of the digest.
For an ideal hash function h, the problems above have complexity of about 2n, 2n and 2n/2

evaluations of h respectively.
Another crucial notion for the security of hash functions is their pseudo-randomness,

necessary for building secure key-derivation schemes, and, obviously, to instantiate pseudo-
random functions. Since we actually consider distributions of functions rather than single
instances, the following definitions from [31] are relevant.

Definition 1. A distribution of functions F is pseudo-random if

1. this distribution is efficient (i.e., it is easy to sample functions according to the distribution
and to compute their value), and

2. it is hard to tell apart a function sampled according to this distribution from a uniformly
distributed function given an adaptive access to the function as a black box.

Definition 2. A distribution of functions F is unpredictable if

1. this distribution is efficient, and

1 We further call “hash functions” mappings Km+n 7→ Kn, independently of their role of compression function in
iterated hash functions.
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2. for any efficient adversary that is given an adaptive black-box access to a function (sam-
pled according to the distribution) it is hard to compute the value of the function at any
point that was not queried explicitly.

(See [31] for more formal definitions 3.1 and 3.2.) Finally, we recall the definition of ε-
universality.

Definition 3. A family of functions F is ε-universal if for any distinct inputs x and x′ and
a random h ∈ F , the probability (over the choice of h) that h(x) = h(x′) is at most ε.

We rather consider the computational version, denoted ε-cAU (computational almost uni-
versality, see [4]), such that for a family not ε-cAU, one can efficiently compute such a pair
(x, x′).

2.2 Multivariate Hash Functions

A multivariate hash function h : Km+n 7→ Kn is explicitly defined as a sequence of n polyno-
mial functions hi : Km+n 7→ K for some finite fieldK, its components. A family of multivariate
hash functions is characterised by a construction scheme, along with a choice of parameters
for this scheme, thereby defining a distribution over the set of all functions Km+n 7→ Kn,
where K, m, and n are fixed either by the construction itself of by the parameters. An in-
stance is then randomly picked with respect to that distribution, casting into the framework
of probabilistic hash functions [9].

Given an arbitrary family of multivariate hash functions F , solving Preimage reduces
(in the Turing sense) to solving the system h(x) = y for random h ∈ F and y ∈ Kn. When
F corresponds to the set of all quadratic systems over K with (m + n) unknowns and n
equations, Preimage reduces to the problem MQ, known to be NP-hard for any finite field
K if m is small [26]:

Multivariate Quadratic (MQ)
Input a finite field K, a system f = {fi}0≤i<n of n random quadratic equations in

n + m variables over K, n ∈ N?, m ∈ Z.
Output x ∈ Km+n such that f(x) = 0.

The problem of solving a multivariate system is also assumed hard for higher degrees (state-
of-the art methods are briefly surveyed in Section 2.3). Furthermore, no efficient quantum
algorithm is known yet to solve multivariate systems, hence multivariate hash functions have
chances to survive in a world with efficient quantum computers.

On the other hand, Collision reduces to solving the equation h(x) − h(x′) = 0 with
the constraint x 6= x′, which will not be an instance of MQ. Another technique to find
collisions is to assume that there exists a colliding pair (x, x′) with difference ∆ = x− x′ =
(xi − x′i)0≤i<m+n, then computing that pair by solving the system

h(x)− h(x−∆) = 0 , (2)
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for a fixed and known difference ∆ 6= 0. This system has degree at most deg(h) − 1, and is
expected to have at least one solution for a sufficiently large m. We shall further refer to this
technique as the generic attack.

Composed Quadratics Construction. The construction MQ-HASH by Billet, Peyrin
and Robshaw [8], and an unnamed construction by Ding and Yang [20], propose to define
a quartic (degree 4) system h using two composed quadratic systems f and g, such that
h = g ◦ f . Following the ideas of [1], the first box f : Km+n 7→ Kr, for r > (m + n), expands
the input, while a second box g : Kr 7→ Kn compresses the intermediate value. Security
aspects are much more developed in [8] than in [20], and we will only consider that former
reference for composed quadratics. Hereafter we present a succinct overview of the security
arguments for MQ-HASH.

First, the main result of [8] is the reduction of Preimage to the problem of inverting f
or g, which proves Preimage-resistance, assuming the hardness of MQ for the parameters
chosen. Although no reduction is given for Collision, several arguments are presented:
indeed, a necessary property for h to resist Collision is the Collision-resistance of the
expanding box f ; this is expected to hold since f will actually be collision-free with high
probability for well chosen parameters, as stated by Proposition 1 of [8]. In the worst case,
when there exists a pair (x, x′) such that f(x) = f(x′), this can be recovered by solving a
linear system only if the difference (x − x′) is known. However, since the expected number
of colliding pairs is very low, only very few differentials would lead to a collision. Choosing
2(m + n) − r < s ensures that a random instance will possess a collision with probability
< 2−s, let alone the hardness of finding the corresponding difference. Another strategy to
find a colliding pair consists in

1. finding a collision (y, y′) for g, and
2. computing preimages of y and y′ by f ,

but this again is not efficient since f is assumed hard to invert.
The iteration mode for MQ-HASH is a basic Merkle-Damg̊ard mode, with standard

padding and no output filter. In order the function to meet the 80-bit security level (meaning
here a minimum of 280 trials in average to find a collision), the authors of MQ-HASH propose
to use the family over K = GF(2) with message blocks of m = 32 bits, a chaining value of
n = 160 bits, and an intermediate value of r = 464 bits. We will refer to this family along
the paper.

An alternative constrution to MQ-HASH called RMQ-HASH [8] proposes to define

h(x) = h(x1||x2) = f(x1, g(x2)),

with the message block represented by x1, and the previous chaining value by x2. The
functions f and g are quadratic, and defined as f : Km+r 7→ Kn, and g : Kn 7→ Kr. This
construction is just presented as a possible variant of MQ-HASH, and no security analysis is
provided. In the remainder of the paper, we will rather concentrate our study on MQ-HASH,
which remains the main proposal of [8], and whose analysis partially overlaps RMQ-HASH’s.
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However we can already observe that when m > n, one may simply set a random value for
x2, such that Preimage reduces to solving a quadratic system of n equations in m unknown,
but Collision with a given difference can be computed by solving a linear system with as
many equations and unknowns.

Sparse Cubic Construction. This construction introduced by Ding and Yang [20] merely
consists in a cubic system h : K2n 7→ Kn (thus m = n ) of density δ. In other words, every
component hi has exactly δN (2n, 3) monomials. We further use the shortcut “SCC” to refer
this construction.

Clearly, Preimage reduces to solving a sparse cubic system, assumed hard for well
chosen parameters by the designers. The generic attack against Collision directly reduces
here to solving a sparse quadratic system. Although assumed hard, the problem of solving
sparse systems is not as hard as the general case (cf. Section 2.3). On the other hand, sparse
systems provide a considerable speed-up, as well as reduced storage requirements. Several
families are suggested, characterised by their parameters hereafter (recall m = n).

1. For 160-bit digests:

• K = GF(2), n = 160, δ = 0.1%

• K = GF(24), n = 40, δ = 0.1%

• K = GF(28), n = 20, δ = 0.2%

2. For 256-bit digests:

• K = GF(2), n = 256, δ = 0.1%

• K = GF(24), n = 64, δ = 0.1%

• K = GF(28), n = 32, δ = 0.1%

• K = GF(216), n = 16, δ = 0.2%

2.3 Solving Multivariate Systems

To solve a system of multivariate equations, cryptanalysts mainly employ methods derived
from Buchberger’s algorithm to compute a Gröbner basis of a polynomial ideal. The most effi-
cient ones are Faugère’s F4 and F5 [22,23], and the algorithms of the XL family [13,16,17,19].
Those algorithms perform better on overdefined systems, and F4 and F5 are know to take ad-
vantage of sparse systems. Some work concentrates on the particularities of underdefined [15],
overdefined [16], or sparse systems [37,38]. More recently, sparse systems derived from cryp-
tographic primitives were solved by converting the system into a Sat instance, then solving
this instance using an efficient Sat-solver (e.g. MiniSat [21]), and finally converting the
solution to a solution of the system [3, 30]. Unfortunately, the complexity of multivariate
solvers is often hard to estimate. Empirical results are here probably more significant for
cryptanalysts. For instance, the algorithm XL-Wiedemann was demonstrated [40] to solve
MQ over GF(28) with n = 40 equations and n + m = 20 unknowns in less than 245 cycles of
a 64-bit AMD Opteron processor (a few hours of computation).
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3 Non-Universality of Sparse Function Families

In this section we give a simple result on the universality of sparse multivariate hash functions
independently of the degree of the components, and deduce collisions holding with high
probability.

3.1 General Case

Consider a family F of multivariate hash functions Km+n 7→ Kn of density δ. Then for a
random h ∈ F , any given monomial appears in an arbitrary component hi with probability
δ. In particular, a given degree 1 monomial xi appears in no single component (let’s call such
a xi an isolated variable) with probability (1− δ)n. When this event occurs, it is easy to see
that

h(0, . . . , 0, xi = 0, 0, . . . , 0) = h(0, . . . , 0, xi = 1, 0, . . . , 0) . (3)

Consequently, for any such pair of inputs, a collision occurs in a random h ∈ F with proba-
bility (1− δ)n. In other words, F is not (1− δ)n-cAU. Moreover, by trying all possible such
pairs of input, one gets at least one collision with probability

ρ = 1− (1− (1− δ)n)n+m . (4)

For all the parameters of SCC proposed in [20], ρ ≈ 1, hence with high probability at least
one such collision exists.

When no isolated variable exists in the original system, one might be found in a derived
system, obtained by suitably fixing values of a subset of the variables, such that there exists
an isolated variable in the new system. To find a derived system with xj isolated, one can
rewrite all components as

hi(x) = xj · di(x) + ei(x) , (5)

for polynomial functions di and ei, such that ei(x) does not contain the variable xj in any
monomial. Consequently, deg(di) ≤ (deg(h) − 1) and deg(ei) ≤ deg(h). Consider now the
system {di(x) = 0}0≤i<n, with (m + n− 1) unknowns: a solution gives a valuation such that
the output is independent of xj. This is an alternative manner to find collisions by solving a
system of reduced degree, equivalent to the generic collision attack.

Finally, observe that when the monomial xi appears in exactly k equations, then h(0, . . . , 0, xi =
0, 0, . . . , 0) and h(0, . . . , 0, xi = 1, 0, . . . , 0) collide over exactly (n − k) bits, thus bringing
near-collisions when k is small.

3.2 Case of Even Components over GF(2)

Now consider a family of multivariate hash functions GF(2)m+n 7→ GF(2)n of density δ,
such that δ imposes an even number of monomials in each component hi. Since the constant
monomial 1 appears with probability δ in a given hi, the collision

h(0, . . . , 0) = h(1, . . . , 1) (6)
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will hold for a random h with probability (1− δ)n. It is a different method to see that such
families are not (1−δ)n-cAU. For a random instance of SCC with 160-bit digest, the collision
in Eq. (6) holds with probability 0.73, and for 256-bit digests, with probability 0.60.

When the system does not have only “even” equations, one might look for a suitable
derived system where all components have an even number of non-constant monomials. One
can observe that finding such a system is equivalent to finding a preimage of h(0, . . . , 0).

Analogously to the previous observations, a near-collision over (n − k) bit occurs when
exactly k equations have an even number of non-constant monomials.

4 Solving Underdefined Semi-Sparse Systems

In a multivariate hash function, replacing a sparse system of equations by a semi-sparse one,
where the density δ ¿ 50% only applies to monomials of degree > 1, avoids the weaknesses of
Section 3. However collisions might be found in semi-sparse systems, as shown in the present
section: we introduce a method for solving underdefined quadratic systems with density of
quadratic terms δ ≪ 50%, then apply it to find collisions in semi-sparse cubic systems,
based on the generic attack.

4.1 Description of the Method

Consider a random quadratic system h(x) = 0 in (m+n) variables with n equations, m > 0,
such that each equation contains each degree 1 monomial with probability 1/2, but with
a density of quadratic terms δ, and null constant terms (homogeneous system). The linear
system h′(x) = 0 obtained by removing the quadratic monomials then describes the parity-
check matrix of a random linear code C of length (m + n), dimension m (assuming linear
independency of the equations), and unknown minimal distance dmin. Each solution of the
system h′(x) = 0 then corresponds to a codeword of C. The key observation is that a low-
weight solution of this system will be a solution of h(x) = 0 if in each component the sum of
all quadratic monomials happens to vanish. For a random word of weight w this latter event
has probability (cf. piling-up lemma in Appendix)

(
1

2
+ 2δ(m+n

2 )−1

∣∣∣∣
1

2
− w

m + n

∣∣∣∣
δ(m+n

2 )
)n

, (7)

where δ
(

m+n
2

)
is the expected number of quadratic monomials in an equation.

The best algorithm known so far for finding a low-weight codeword in a random linear
code [10] requires a “work factor” estimated to

exp2

{
0.12× (m + n− 1)H

(
m

m + n− 1
+ 2−5

)
+ 10

}
, (8)

where H is the binary entropy function,

H(ε) = −ε log(ε)− (1− ε) log(1− ε) . (9)
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Before applying this algorithm, we need to compute the generating matrix of the linear code
C from the parity-check matrix derived from the system h′(x) = 0, which adds a cost in
O((m + n)3).

The expected efficiency of this technique cannot be precisely established, since the dis-
tance dmin of the code is a priori unknown, as well as its expected value. Useful results are
the Gilbert-Varshamov bound

dmin−2∑
i=0

(
m + n− 1

i

)
< 2n , (10)

and an upper bound on the number of codewords of weight ≤ ε(m + n), equal to 2(m+n)H(ε).
Note that this method can also be applied to systems of degree larger than two, in which

case it succeeds as soon as all the sums of monomials of degree at least two happen to vanish
in each equation of the system.

4.2 Application to Multivariate Hash Functions

Consider a variant of SCC over GF(2) with n = 160, where the density δ ¿ 50% only applies
to the cubic monomials. Using the generic collision attack with a differential of weight 1, a
colliding pair of inputs can be computed by solving a quadratic system with in average
δ
(
2n−1

2

)
quadratic monomials, inherited from the cubic monomials of the original system

(since there are exactly
(
2n−1

2

)
cubic monomials containing a given xj). We then consider the

system built by removing those quadratic terms, in order to apply the method of the previous
subsection. The expected work factor to find a minimal weight word in the associated linear
code is about 248 (cf. Eq. (8)), and there are at most ≈ 214 codewords of weight ≤ 40.
Assume that a word with weight ≤ 40 is found. Then a collision is found for δ = 0.2%
with probability ≥ 0.0017, for δ = 0.1% with probability ≥ 0.0402, and for δ = 0.05%
with probability ≥ 0.1988. The ratios ”success probability over complexity” are then clearly
higher than for a birthday attack. Nonetheless, one should be careful by mixing asymptotic
estimates and assertions on concrete instances; for instance, the effective computation time
of the word-finding algorithm of “work factor” of 248 is probably much higher than the cost
of computing 248 digests.

Finally, note that we considered a homogeneous system, whereas the one we need in SCC
is not necessarily; we may easily convert this system to a homogeneous one, by introducing
a dummy variable X as soon as the constant 1 appears. Then the words obtained will have
X = 1 with probability w/(m+n), hence the attack has to be repeated about (m+n)/w times
(that is, with as many different codewords), to succeed – assuming a uniform distribution of
the non-null offsets in those words. An alternative solution is to directly modify the algorithm
of [10] to suit non-homogeneous systems.

5 Key Recovery for NMAC and HMAC

In this section we consider a concrete application of hash functions: we show that the message
authentication codes NMAC and HMAC [5] built on multivariate hash functions can be
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attacked by solving large overdefined systems. This alternative to exhaustive search directly
follows from the explicit structure of such hash functions.

Let F be a multivariate hash function Km+n 7→ Kn of degree d. For an arbitrary known
h ∈ F , we consider h?

k : K? 7→ Kn the corresponding iterated hash function with initial value
k ∈ Kn, no padding rule, and no output filter. For x ∈ K?, the NMAC construction with
secret key (k1, k2), ki ∈ Kn, is described as follows:

NMACk1,k2(x) = h?
k1

(h?
k2

(x)) . (11)

Let an attacker have access to NMACk1,k2 as a black box. With N queries of NMACk1,k2(x)
for N distinct x’s long of one message block (thus for x ∈ Km), she gets nN equations in
2n unknowns, of degree db+1, where b is the number of message blocks of h?

k2
(x). That is,

b = dn/me. If m ≥ n, then b = 1, thus the key (k1, k2) can be recovered by solving a system
of nN degree d2 equations in 2n unknowns. If k2 is known, the same observations apply to
recover k1 except that the system has now only n unknowns and degree db.

The HMAC construction with key k is defined by

HMACk(x) = h?
iv(k ⊕OPAD||h?

iv(k ⊕ IPAD||x)) , (12)

with constant OPAD and IPAD long of one message block, k at most as long as the constants,
and a fixed initial value iv ∈ Kn. The input of the outer h?

iv is then an element of Km+n,
and the input of the inner function is an element of Km+|x|, where |x| is the number of field
elements of x. Hence both the inner and the outer h?

iv run the compression function at least
twice. In this best-case scenario (when n ≤ m), with N queries with a m-element x, one gets
nN equations of degree d3 in |k| unknowns.

Are those attacks faster than exhaustive search of the key(s) ? This depends on the
construction, and on the parameters chosen. For instance, for the MQ-HASH proposal we
have K = GF(2), n/m = 160/32 = 5, so the attack on NMAC requires to solve a system
of degree 320 with 232 equations in 320 unknowns, certainly hard. For NMAC-SCC with
K = GF(2) and m = n = 160, with N ≤ 2160 queries one gets 320N equations of degree
9 in 320 unknowns (k1 and k2). Thus with about 248 queries, one obtains enough equations
to solve the system by linearisation (about 256 variables): this gives a complexity about
(256)3 = 2168 (higher than exhaustive search’s cost 2160). If K = GF(28) and m = n = 20,
with N ≤ 2160 queries one gets 40N equations of degree 9 in 40 unknowns. Thus with
about 223 queries, one obtains enough equations to solve the system by linearisation (about
228 variables): complexity is then about (228)3 ≈ 274 (smaller than exhaustive search’s cost
2160). However, in both cases, memory requirements for a practical implementation seem
unrealistic.

Note that the complexity evaluations above are independent of the density of the system.
For sparse systems, the cost of linearisation can be reduced (since certain monomials might
not appear in the system), as well as other methods as F5 or Sat-solvers can take advantage
of low-density systems.
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6 Pseudo-Randomness and Unpredictability

We show here that all families of low-degree multivariate hash functions over GF(2) are
neither pseudo-random nor unpredictable. This is a consequence of Fact 1, holding for an
arbitrary family F of degree d multivariate hash functions.

Fact 1 If one is given a random h ∈ F as a black box, computing the algebraic normal form
of h can be achieved in N (m + n, d) queries to the box.

This obviously holds for any function family, not only multivariate ones. However for low-
degree multivariate hash functions N (m + n, d) is much lower than for a random function,
whose degree, though unknown, is maximal (= m + n) with almost certainty. In this case
N (m + n, d) = 2m+n.

We now briefly justify Fact 1. Let us call B the challenge box with components {Bi}0≤i<n

(a priori unknown), then Bi(0, . . . , 0) is equal to the constant term of the algebraic normal
form of Bi. By querying B with all inputs of weight 1, one then recovers all the linear terms
of the algebraic normal forms of the Bi’s, using the knowledge of the constant terms. Once
all the linear terms are known, all weight 2 queries give the quadratic monomials, which are
used to deduce the list of cubic monomials, and so on, until degree d. As a consequence, for
a family F of degree d < m + n, we have the following facts.

Fact 2 Given a black box either a random h ∈ F or a random function GF(2)m+n 7→ GF(2)n,
one can identify the box with probability ≥ (1− 2−n), N (m + n, d) queries to the box, and a
negligible amount of computation.

Fact 3 Given a random h ∈ F as a black box, one can find h(x), for any x of weight > d
without querying the box with x, with N (m+n, d) queries to the box, and a negligible amount
of computation.

In Fact 2, the box is identified by computing its algebraic normal form up to degree d, then
evaluating the system obtained, and querying the box with a same input of degree > d. Since
a random function will have an output distinct from the degree d system’s with probability
≥ (1 − 2−n), one identifies the box with high probability. The result of Fact 3 is also quite
simple: in order to find h(x), one simply has to compute the algebraic normal form of the
function using black box queries, then evaluates the digest of any input without an explicit
query.

Consequently, all the families of MQ-HASH and SCC over GF(2) with reasonable pa-
rameters fail to be pseudo-random and unpredictable, since N (m+n, d) shall be much lower
than 2n. For the parameters proposed, one distinguishes a random instance of MQ-HASH
and SCC from a random function within respectively 225.74 and 222.38 black box queries. Note
that in the iterated version, the padding rule makes those techniques not applicable.

Another noteworthy property of multivariate hash functions (over an arbitrary K) is that,
given a random x = (x1, . . . , xm+n−1) and a random h ∈ F , one can easily find a distinct
h′ in F such that h′(x) = h(x), by adding and/or removing monomials in one or several
equations. Although we see no impact on security a priori, this property must be kept in
mind when designing protocols involving multivariate hash functions.
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7 Weak Instances of the Stream Ciphers QUAD

QUAD [7] is a construction of multivariate stream ciphers, based on two random quadratic
systems P : Kn 7→ Kr (output function) and Q : Kn 7→ Kn (update function). Given an
initial state x0 ∈ Kn derived from a key and a nonce, the i-th internal state is xi = Qi(x),
and the i-th r-bit output is yi = P (xi), so that {yi}0≤i is the keystream of the cipher.

From the observations of Section 3, we can see that if Q contains an isolated variable,
then two distinct initial states producing identical keystreams can be found, and if P ◦ Qi

contains an isolated variable, we can find distinct states whose keystreams collide on the
i-th output block. Analogously, a trivial collision with all-zero and all-one inputs holds if
K = GF(2) when all components of Q or P ◦ Qi have an even number of non-constant
monomials. When K = GF(2), the techniques of Section 6 apply as well to distinguish a
random instance of QUAD from a random oracle when given as a black box fed with an
initial state. Note that this is not a distinguisher in the usual sense for stream ciphers, in
which the instance is known, but not the initial state.

Finally, those observations are not threatening for the security of QUAD, since weak
instances appear with very low probability, and the distinguisher assumes as known the
secret information of the cipher.

8 Conclusion

We have studied several security aspects of multivariate hash functions, both in the general
case and for the specific constructions MQ-HASH and SCC. Our main results are summarised
below.

• Multivariate hash functions over GF(2) of degree ¿ (m + n) are neither pseudo-
random nor unpredictable.

• NMAC message authentication codes built on certain cubic multivariate hash func-
tions allow key recovery faster than by exhaustive search.

• Families of multivariate hash functions of given density are not ρ-universal, for ρ given
by Eq. (4).

• Constructions based on sparse systems are vulnerable to trivial collisions and near-
collisions.

• Collisions in certain semi-sparse hash functions can be solved by using an efficient
algorithm to find a low-weight word in a random linear code.

The first result applies to both MQ-HASH and SCC, while the second to the fourth results
only apply to SCC, and the last one to a semi-sparse variant of SCC.

Further work seems necessary to establish whether multivariate hash functions can be
competitive with conservative designs in terms of performances, as well as to design more
elaborate constructions improving on security and/or on efficiency.
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Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 153–165. Springer, 2005.

37. Xijin Tang and Yong Feng. A new efficient algorithm for solving systems of multivariate polynomials equations.
Cryptology ePrint Archive, Report 2005/312, 2005.

38. H̊avard Raddum and Igor Semaev. New technique for solving sparse equation systems. Cryptology ePrint Archive,
Report 2006/475, 2006.

39. Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer Science. Springer, 2006.

40. Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and Jimmy Chen. Analysis of QUAD. In Alex
Biryukov, editor, Fast Software Encryption, Lecture Notes in Computer Science, 2007. To appear.

Appendix

Lemma 4 (Piling-up). If {Xi}0≤i<n is a sequence of independent binary random variables
with bias respectively εi = |1

2
− P (Xi = 0)|, 0 ≤ i < n, then

P (X0 ⊕ · · · ⊕Xn−1 = 0) =
1

2
+ 2n−1

∏
0≤i<n

εi .


