
The Hash Function Family LAKE

Jean-Philippe Aumasson1?, Willi Meier1, and Raphael C.-W. Phan2??

1 FHNW, 5210 Windisch, Switzerland
2 Electronic & Electrical Engineering, Loughborough University, LE11 3TU, United Kingdom

Abstract. This paper advocates a new hash function family based on the HAIFA framework,
inheriting built-in randomized hashing and higher security guarantees than the Merkle-Damg̊ard
construction against generic attacks. The family has as its special design features: a nested feed-
forward mechanism and an internal wide-pipe construction within the compression function. As
examples, we give two proposed instances that compute 256- and 512-bit digests, with a 8- and
10-round compression function respectively.
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1 Introduction

Why do we need another hash function? Aside from the explicit aim of the U.S. Institute of
Standards and Technology (NIST) to revise its standards [29,30], motivations lie in the present
status of hash functions: among the proposals of recent years, many have been broken (including
“proven secure” ones), or show impractical parameters and/or performance compared to the
SHA-2 functions, despite containing interesting design ideas3. For example all the hash functions
proposed at FSE in the last five years [17–19] are now broken [25, 34, 35], except for one [33]
based on SHA-256. We even see recent works [27] breaking old designs that had until now been
assumed secure due to absence of attacks. It seems necessary to learn from these attacks and
propose new hash functions that are more resistant to known cryptanalysis methods, especially
against differential-based attacks, which lie at the heart of major hash function breaks. These
design proposals would also hopefully contribute to the discovery of new ways to attack hash
functions, contributing to NIST’s SHA3 development effort.

This paper introduces the hash function family LAKE along with two particular instances
aimed at suiting a wide variety of cryptographic usages as well as present and future API’s. We
adopted the extended Merkle-Damg̊ard framework HAIFA [8] and include the following features
in our design:

• Built-in salted hashing: to avoid extra code for applications requiring a salt (be it
random, a nonce, etc.), and to encourage the use of randomized hashing.
• Software-oriented: we target efficiency in software, although efficient hardware imple-

mentations are not precluded.
• Direct security: the security is not conditioned on any external hardness assumption.
• High speed: with significantly better performance than the SHA-2 functions on all our

machines.
• Flexibility: with variable number of rounds and digest length.

? Supported by the Swiss National Science Foundation under project number 113329.
?? Work done while the author was with the Security & Cryptography Lab (LASEC), Ecole Polytechnique

Fédérale de Lausanne (EPFL), Switzerland.
3 Note that the ISO/IEC standards Whirlpool [3] and RIPEMD-160 [13] are not broken yet.
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Road Map. First we give a complete specification of LAKE (§2), then we explain our de-
sign choices (§3), present performance (§4), and study security of the proposed instances (§5).
Appendices include lists of constants, and test values.

2 Specification

This section gives a bottom-up specification of the LAKE family, and the definition of the
instances LAKE-256 and LAKE-512 (“LAKE” designates both the general structure and the
family of hash functions built upon it, while instances have parametrized names). We’ll meet
the following symbols throughout the paper (length unit is the bit).

w Length of a word M̃ Padded message
n Length of the chaining variable M̃ t t-th (padded) message block
m Length of the message block M̃ t

i i-th word of M̃ t

s Length of the salt N Number of blocks of M̃
d Length of the digest S Salt
b Length of the block index Si i-th word of the salt
r Number of rounds Ht t-th chaining variable
t Index of the current block Ht

i i-th word of Ht

ti i-th word of t D Message digest
M Message to hash IV n-bit fixed initial value

We let lengths n, m, etc. be multiples of w. Hexadecimal numbers are written in typewriter
style, and function or primitive labels in sans-serif font. The operator symbols +, ⊕, À, ≫, ∨,
∧ keep their standard definition. Last but not least, LAKE is defined in unsigned little-endian
representation.

2.1 Building Blocks

LAKE’s compression function compress is made up of three procedures: initialization (function
saltstate), internal round function (function processmessage), and finalization (function feedfor-
ward). Fig. 1 represents the interaction between these functions.
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Fig. 1. The structure of LAKE’s compression function: the chaining variable Hi−1 is transformed into a local
chaining variable twice as large, which undergoes message-dependent modification, before being shrunk to define
Hi.
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The saltstate Function. This mixes the global chaining variable H with the salt S and the
block index t, writing its output into the buffer L, twice as large as H. In addition, saltstate
uses 16 constants C0, . . . , C15, and a function g that maps a 4w-bit string to a w-bit string.
L plays the role of the chain variable—in a “wide-pipe” fashion—, while g can be seen as an
internal compression function, and the constants are used to simulate different functions. In the
following algorithm, word indexes are taken modulo the number of w-bit words in the array.
For example, in the second “for” loop of saltstate’s algorithm, i ranges from 2 ≡ 10 (mod 8) to
7 ≡ 15 (mod 8) for Hi, and over 2, 3, 0, 1, . . . , 2, 3 for Si (see also Fig. 2).

saltstate

input H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1

1. for i = 0, . . . , 7 do
Li ← Hi

2. L8 ← g(H0, S0 ⊕ t0, C8, 0)
3. L9 ← g(H1, S1 ⊕ t1, C9, 0)
4. for i = 10, . . . , 15 do

Li ← g(Hi, Si, Ci, 0)

output L = L0‖ . . . ‖L15

The first eight words in the buffer L allow H to pass through saltstate unchanged for use in
later feedforwarding, while the last eight words ensure dependence on the salt and the block
index. Clearly, the function is not surjective, but will be injective for a well-chosen g. These
local properties do not raise any security issues (see §5 for more discussion).

?
8 calls to g
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Fig. 2. The saltstate function.

The processmessage Function. This is the bulk of LAKE’s round function. It incorporates the
current message block M within the current internal chaining variable L, with respect to a
permutation σ of the message words. It employs a local m-bit buffer F for local feedforward,
and internal compression functions f and g, both mapping a 4w-bit string to a w-bit string. In
the algorithm below, indexes are reduced modulo 16, i.e. L−1 = L15, L16 = L0.
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processmessage

input L = L0‖ . . . ‖L15, M = M0‖ . . . ‖M15, σ

1. F ← L
2. for i = 0, . . . , 15 do

Li ← f(Li−1, Li,Mσ(i), Ci)
3. for i = 0, . . . , 15 do

Li ← g(Li−1, Li, Fi, Li+1)

output L = L0‖ . . . ‖L15
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Fig. 3. The processmessage function.

The feedforward Function. This compresses the initial global chaining variable H, the salt S,
the block index t and the hitherto processed internal chaining variable L. It outputes the next
chaining variable. In the algorithm indexes are reduced modulo 4 for S (see also Fig. 4).

feedforward

input L = L0‖ . . . ‖L15, H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1

1. H0 ← f(L0, L8, S0 ⊕ t0,H0)
2. H1 ← f(L1, L9, S1 ⊕ t1,H1)
3. for i = 2, . . . , 7 do

Hi ← f(Li, Li+8, Si, Hi)

output H = H0‖ . . . ‖H7

The compress Function. This is the compression function of LAKE. It computes the next
chaining variable Ht+1 from the current Ht, the current message block M t, the salt S and the
current block index t. The number of rounds r and the permutations (σi)0≤i<r are parameters
to be set later.
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Fig. 4. The feedforward function.

compress

input H = H0‖ . . . ‖H7, M = M0‖ . . . ‖M15, S = S0‖ . . . ‖S3, t = t0‖t1

1. L←saltstate(H, S, t)
2. for i = 0, . . . , r − 1 do

L←processmessage(L,M, σi)
3. H ←feedforward(L,H, S, t)

output H

Apart from its arguments, compress requires 32 memory words for L and F . Here, L acts as
an internal chaining variable, twice as long as H, finally shrunk to output the next chaining
variable, as in the “wide-pipe” construction [23,24]. The goal of this approach is to make local
collisions difficult to find—if not impossible. Observe that the current message block M is
input r times to (and thus input to r different points of) processmessage; meanwhile the salt S,
the current block index t, and the chaining variable H are feedforwarded to the last stage of
compress, thus in fact these inputs are injected into two different points of compress.

2.2 The LAKE Structure

The LAKE structure consists of the sequence: initialization (functions pad and init), iteration of
compress, and finalization (function out). We start this section with a description of the padding
rule, inherited from HAIFA.

Padding. A message M is padded by concatenating a ‘1’ bit followed by sufficient number of
‘0’ bits, then the b-bit message length, and the digest length d, such that a padded message M̃
is exactly km bits, for a minimal integer k.

Initialization. The effective initial chaining variable H0 is computed by the function init on
input an n-bit initial value IV and a length d of the output hash value:

H0 ← init(IV, d) = compress(IV, d, 0, 0).

For words of reasonable length d is written in M0, and all other Mi’s are null. In practice H0

should be precomputed, unless variable digest length is necessary.

Finalization. The function out simply truncates the final chaining variable HN to its d first
bits, to return the final hash output digest D.
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Overall Hashing. A LAKE hash function take as input a message and a salt, and is parametrized
by an initial value IV , a number of rounds r, a sequence of permutations (σi)0≤i<r, the word
size w, and subsequently bit-lengths n,m, d, s, b.

LAKE

input M = M0‖ . . . ‖MN−1, S = S0‖ . . . ‖S3

1. M̃ ← pad(M)
2. H0 ← init(IV, d)
3. for t = 0, . . . , N − 1 do

Ht+1 ← compress(Ht, M̃ t, S, t)
4. D ← out(HN )

output D

2.3 Instances

We introduce LAKE-256 and LAKE-512, respectively suited for 32- and 64-bit words:
LAKE-256 has parameters

n = 256 (chaining variable) d = 256 (digest) r = 8 (rounds)
m = 512 (message block) s = 128 (salt) b = 64 (block index)

Its IV and constants C0, . . . , C15 are extracted from π (see Appendix A), and permutations of
the set {0, . . . , 15} are defined as in MD5 by

i ≡ 0 (mod 4)⇒ σi(j) = j
i ≡ 1 (mod 4)⇒ σi(j) = 5j + 1 (mod 16)
i ≡ 2 (mod 4)⇒ σi(j) = 3j + 5 (mod 16)
i ≡ 3 (mod 4)⇒ σi(j) = 7j (mod 16)

The internal compression functions are4

f(a, b, c, d) =
[
a + (b ∨ C0)

]
+

([
c + (a ∧ C1)

]
≫ 7

)
+

([
b + (c⊕ d)

]
≫ 13

)

g(a, b, c, d) =
[
(a + b) ≫ 1

]⊕ (c + d).

LAKE-512 has parameters

n = 512 (chaining variable) d = 512 (digest) r = 10 (rounds)
m = 1024 (message block) s = 256 (salt) b = 128 (block index)

Constant values are given in Appendix A, permutations are the same as for LAKE-256, and
internal compression functions are

f(a, b, c, d) =
[
a + (b ∨ C0)

]
+

([
c + (a ∧ C1)

]
≫ 17

)
+

([
b + (c⊕ d)

]
≫ 23

)

g(a, b, c, d) =
[
(a + b) ≫ 1

]⊕ (c + d).
4 It was observed by F. Mendel, C. Rechberger, and M. Schläffer [26] that the non-invertibility of f can be

exploited to find collisions for a reduced version with 4 rounds (instead of 8) faster than with a birthday
attack (this was independently suggested by S. Lucks at FSE 2008). These authors mention that choosing e.g.
f(a, b, c, d) = [a + (b ∨ C0)] + ([d + (a ∧ C1)] ≫ 7) + ([b + (c ⊕ d)] ≫ 13) makes this attack impossible. It is
however unclear whether their suggestion impacts the security of the original version with all 8 rounds.
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Other Instances. Instances with digest length 0 < d ≤ 256 take LAKE-256 parameters, and
instances with 256 < d ≤ 512 take LAKE-512 parameters. Since the effective initial value H0

depends on d, this will be distinct for each choice of d.

3 Design

Design rationale is given top-down, from the operating mode to the wordwise operators. Apart
from the obvious concerns of security and speed guiding principles include:

• Withstand differential attacks: no high-probability differential path should be ex-
ploitable, including techniques based on impossible or truncated differentials.
• Prevent side-channel leakage: time and memory consumption as well as operations

should be input-independent, to avoid weaknesses in keyed modes.
• Facilitate implementation: instances proposed should allow compact implementa-

tions, be the less processor-specific as possible, use simple operators.
• Facilitate analysis: we use a small number of building blocks, of reasonable complexity,

and provide flexible instances, in a clear and concise specification.

3.1 HAIFA as the Operating Mode

Some properties of the classical MD mode and the need for salted hashing (not explicitly
handled by the previous constructions) motivated the design of the HAsh Iterative FrAmework
(HAIFA) [8]. Its main novelties are the explicit input of a salt and the number of bits hashed
so far to the compression function, the computation of the initial value depending on the digest
length, and the padding rule. Consequently,

• generic attacks for finding “one-of-many” preimages and second-preimages with k targets
requires 2d trials for HAIFA against 2d/k for MD,
• online “herding” time-memory trade-off for finding preimages with memory 2t require

2d/2+t/2+s trials for HAIFA against 2d/2+t/2 for MD,
• HAIFA captures the MD, enveloped MD [5], RMC [1], ROX [2], and Wide-pipe [23, 24]

operating modes,
• it explicitly handles randomized hashing.

Other operating modes could have been chosen, however we believe that HAIFA offers more
advantages, in addition to a simple and familiar framework for cryptanalysts and implementers
since it builds on the well known MD mode.

On Salted Hashing. To the best of our knowledge, LAKE is the first concrete hash construction
to include built-in salting. Although this is not a strict requirement for randomized hashing
(see e.g. the RMX transforms of Halevi and Krawczyk [15]), it has the advantage of requiring no
additional programming, so that the hash function can be directly used as a black box fed with a
message and a salt. The main application of randomized hashing is digital signatures, enhancing
security by reducing the security requirement of the underlying hash function from collision-
resistance to second-preimage-like notions [15]. More generally, a salt may find applications in
protocols requiring hash functions families, as well as future protocols may take advantage of
it, be it public or secret, random or a counter. When a salt is not needed, the null value can be
used.
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A disadvantage of salted hashing is that extra-data might have to be sent, while disadvan-
tages of built-in salt are that it might facilitate certain attacks, and potentially increases the
complexity of the algorithm. On the other hand, it encourages the use of randomized hashing,
and prevents from weak home-brewed construction.

3.2 Building Blocks

The structure of compress is similar in spirit to the one of the overall hash function: initialization,
chained rounds, and finalization. Essential differences are that the round function here allows
no collision for a fixed chaining variable, and that the same message is used at each iteration
(up to a permutation of words). The goal of the internal wide-pipe is indeed to have an (almost)
injective function built as a repetition of processmessage; the goal is to make local collisions
unlikely for fixed chaining variable, salt, and counter. Also note that, contrary to the SHA
functions, LAKE-256 does not admit easily found fixed-points.

For designing compress we create two levels of interdependence: fast diffusion can be seen
as a propagation of spatial interdependence across words at any intermediate state within the
hash function, and complicates attacks including those that exploit high-probability differen-
tials. Analogously, the feedforward mechanism allows injected values to influence two different
intermediate states at different times during the processing, which achieves temporal interdepen-
dence. Although wordwise diffusion as a spatial interdependence technique is widely known in
cryptographic literature to increase resistance to common attacks, the notion of feedforwarding
as a form of achieving temporal interdependence is less treated. In fact, this latter serves to
complicate the perturb-and-correct strategy used in many hash function attacks that exploit
inputs with well chosen differences. The central building block processmessage achieves both
spatial and temporal interdependence by making use of multiple-blockwise chaining [4] and
feedforwarding respectively. Spatial and temporal interdependencies are achieved in a similar
way within feedforward and the structure of the compression function compress. We further
comment on the three internal modules of compress hereafter.

We chose a round-dependent permutation for the message input, with same permutations as
MD5; note that, though MD5 is broken, it is essentially due to the relative simplicity of its round
function, rather than to the message input strategy. An alternative would be to use message
expansion, as used in a fully XOR-linear fashion in SHA-0/1, and non-linearly in SHA-2. The
main argument for recursive message expansion is that it simulates a complicated function, and
the non-surjectivity makes collisions of random expanded messages useless. However, it may
increase memory usage, and other strategies can be used to have a complex mixing.

3.3 Core Functions f and g

Each of these functions is called 136 times in an 8-round compress. We opted for a high-number
of calls to simple functions, rather than a few calls to some complicated procedures, mainly
because it simplifies analysis and implementation, and reduces the amount of code.

The role of f is to provide a large amount of mixing, to break linearity and diffuse changes
across words. We considered various combinations of wordwise operators and our final choice
was selected for its high ratio diffusion over speed, its ability to increase quickly the algebraic
degree, and its simplicity. The much simpler g only aims at making each input influence the
internal state, within a progressive diffusion of changes via addition carries and 1-bit rotations
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in a non-linear fashion. When used as arguments, constants Ci simulate distinct functions and
reduces self-similarity.

3.4 Wordwise Operators

We chose a combination of standard constant-time word operators, known to be complementary
to achieve cryptographic strength: integer addition and XOR diffuse changes locally, while
logical operators AND and OR increase non-linearity—over GF(2) and GF(232). Though the
operators AND and OR are in no way mandatory, the use of the sole triplet (+,⊕, ≫) can be
risky, as suggested by the existence of high-probability differentials in the stream ciphers Phelix
and Salsa20/8, the block cipher TEA, or in the hash function FORK-256 [7, 17, 39, 40]. Finally,
rotation provides fast diffusion within the words, with a choice of data-independent distances—
in order to avoid side-channel leakage, reduce the control of the attacker over the operations,
and reduce complexity of the algorithm. Rotation counts of f were chosen so as to avoid byte
alignments, and diffuse changes to any word offset as fast as possible; as observed by the authors
of Twofish [37], one-bit rotation (as used in g) saves time over smartcards processors, compared
to multi-bit rotation. We avoid integer multiplication essentially for performance reasons and
the risk of timing leakage.

3.5 Parameters

We propose instances whose input and output have lengths similar to previous and current
standards, to suit present and future API’s, and minimize implementers’ work. The salt length
was chosen to be sufficient for randomized hashing, and to suit HAIFA’s requirements (for which
the salt should be at least half as large as the digest).

After intensive security analysis, we believe that eight rounds for LAKE-256 are sufficient
for actual security, and as a security margin to counter future attacks (in comparison, MD5
and SHA-256 have four rounds, SHA-1 and SHA-512 have five rounds). We add two rounds for
LAKE-512 whose larger state delays full diffusion.

4 Performance

4.1 Algorithmic Complexity

We consider here the algorithm independently from any specific implementation or parallelism
issues, and study time and space complexities. However, from this abstract evaluation one
cannot directly infer statements on the actual speed of the algorithms when implemented,
which depends on a multitude of other factors (see speed benchmarks in §4.2).

Table 1 presents on its leftmost part the number of arithmetic operations for LAKE-256,
LAKE-512, and their components, comparing with SHA-256 and SHA-512 (refering to [29]): our
functions count slightly less operations than the SHA-2 equivalents, with significantly less XORs
and more integer additions. The larger amount of rotations in SHA-2 functions increases the
difference of operation counts on processors simulating a rotation with two shifts (as the Itanium
and UltraSPARC). The rightmost part of Table 1 compares storage requirements.
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Table 1. Algorithmic complexities and memory requirements (in bytes).

Function Operations Memory
Total + ⊕ ≫ À ∨ ∧ ROM RAM

f 10 5 1 2 0 1 1 - -
g 4 2 1 1 0 0 0 - -

saltstate 34 16 10 8 0 0 0 - -
processmessage 224 112 32 48 0 16 16 - -

feedforward 82 40 10 16 0 8 8 - -
LAKE-256 1908 952 276 408 0 136 136 64 128
SHA-256 2232 600 640 576 96 0 320 256 64
LAKE-512 2356 1176 340 504 0 168 168 128 256
SHA-512 2632 712 752 672 96 0 400 512 128

4.2 Implementation

Implementation on 32- and 64-bit architectures should pose no problem, since we only use
standard wordwise operators. On 8- and 16-bit architectures (e.g. smartcards) word operations
have to be decomposed; rotations translate less simply than addition and XOR, but remain easily
implementable. Choosing multiples of 8 as rotation counts would have improved performances
on 8- and 16-bit processors, but reduced the quality of diffusion. We do not preclude hardware
implementation, since our operators are consistently simple and fast.

Speed Benchmarks. It is, alas, rather difficult to make a complete and comprehensive relative
study of hash functions: security evaluation requires intensive cryptanalysis effort (even for
“proven secure” designs), and performances comparison cannot be fair when reference source
codes are not published, or do not have a same degree of optimization, are more or less processor-
dependent, etc., not to mention the issue of hardware benchmarks. The simplest solution is then
to compare with the reference SHA-2 family, since other proposals would also be compared to
these functions.

We compare LAKE-256 with SHA-256 using portable C implementations: respectively our
reference code (available upon request) and the version in XySSL [12]. These codes have roughly
the same level of optimization, and we used exactly the same source code for all processors. Cy-
cles counts are measured using the RDTSC assembly instruction through the processor-specific
cpucycles library [6], on machines running a Linux kernel 2.6.19 with Gentoo distributions;
sources are compiled with gcc 4.1.2 with full optimization flags (-O3) and processor-specific
settings (e.g. -march=pentium4). For each machine, Table 2 shows the median cycles count mea-
sured among 1000 successive calls to the compression function with random inputs, along with
the cycles-per-byte cost. This measurement has a relatively high variant, so we give rounded
values for clarity, that seems sufficient for a raw comparison of performance.

LAKE-256 significantly outperforms SHA-256 on our test machines, particularly on our
Athlon XP and Pentium D, while the difference of cycles on the other machines roughly matches
the difference of arithmetic operations (see §4.1); this suggests that LAKE-256 takes a particular
advantage of some feature of the former processors (possibly thread-level parallelism). These
results should be interpreted carefully, and performance on other architectures as well as the
optimization potential remain to be studied.
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Table 2. Cycle counts for the compression function (and corresponding cycles-per-byte cost).

CPU Function
Name Frequency L2 cache LAKE-256 SHA-256

Athlon 800 MHz 256 Kb 2700 (42) 3000 (50)
Athlon XP 1830 MHz 512 Kb 2400 (38) 4500 (70)
Pentium 4 1500 MHz 256 Kb 3600 (56) 4050 (63)
Pentium 4 2400 MHz 512 Kb 3300 (52) 3900 (61)
Pentium D 2×3010 MHz 2048 Kb 2600 (41) 4500 (70)

Parallelism. How can LAKE-256 be parallelized? First consider the “medium grain” level: In
saltstate, the computation of the Li’s can be parallelized into sixteen branches, since there is no
diffusion across word boundaries—the concurrent access to H might however be an obstacle. Due
to its large amount of flow dependence, the main function processmessage is not parallelizable,
unlike feedforward, which can be split into eight branches. At a finer level, the three internal
expressions of f can be computed in parallel (by copying two variables), as well as the two
additions of g. This can benefit to the three components.

5 Security

5.1 Introduction

Definitions. For LAKE hash functions, the preimage problem (resp. second preimage) takes as
parameter a random digest y (resp. random message and salt of digest y), and the challenge is to
find a (distinct) pair message and salt mapping to y. Target second preimage is similar to second
preimage except that the two salts must be identical. The collision problem is to find two pairs
message and salt with identical digest, and we call a collision synchronized if the two salts are
identical. The generic (brute force) attack solves preimage with probability ε within 2d+log2 ε calls
to the hash function. Hellman’s time(T)-memory(M) trade-off is TM2 = 22n [16]. Idem for (tar-
get) second preimage. Against collision, the generic birthday attack requires

√
−2 log(1− ε)·2d/2

calls to the hash function to succeed with probability ε, with negligible memory requirement
(thanks to smart variants of Floyd’s cycle-finding technique [36, 38]). For evaluating the cryp-
tographic quality of the distributions induced by our hash functions, we suggest to consider the
definitions of pseudo-randomness and unpredictability given by Naor and Reingold [28] for func-
tion distributions, which apply as well for salt-indexed families derived from a LAKE instance
(in this case the function of the family take as sole input a message).

Conjectures. For all the instances proposed, no method should solve preimage, second preim-
age, or collision faster than the generic one for any parameters of the problem. We also conjecture
pseudo-randomness and unpredictability for families indexed by the s-bit salt. In addition, re-
laxed problems as pseudo- or near-collision should also be hard (note that our claims concern
the full functions, not the building blocks individually). On the other hand we expect variants
with less than three rounds to be relatively weak—though we have no evidence of it yet.

5.2 One-Wayness and Collision Resistance

One-wayness is achieved mainly thanks to the feedforward operations (in processmessage and
feedforward), and to the redundancy in the initial local chaining variable L (in saltstate).
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Arguments for collision resistance are given by the structure of processmessage: recall from
§3.2 that the local wide-pipe strategy of processmessage makes it injective for a fixed L; we
can expect the r-round processmessage to be collision-free as well, or at least have a negligible
number of collisions. Synchronized collisions on compress can thus only occur at the ultimate
step, feedforward, when the 512-bit state is compressed to a 256-bit chaining variable (for LAKE-
256 parameters). Therefore, the objective of the repeated processmessage is to make hard the
search for message pairs (M, M ′) such that

feedforward(processmessage(L,M, σ),H, S, t) = feedforward(processmessage(L,M ′, σ),H, S, t),

with L = saltstate(H,S, t). Note that, if synchronized collisions over compress with similar
(H, S, t) are hard to find, then the corresponding LAKE instance is target collision resistant.
This is because for any collision over the full hash function with similar salts, at least one
collision over compress with identical counter exists.

On the other hand, it is easy to find 1-round collisions with (chosen) distinct salts, and
identical H: it suffices to take a random message M , and adapt a second one M ′ to correct
changes in the last eight words of the initial L. However, the collision does not persist to
subsequent rounds, and seems to have no consequence on the overall security of compress.

5.3 Algebraic Attacks

Traditional algebraic attacks aim at giving an input/output relationship in terms of multivariate
equations, then exploiting this system (ideally solving it) to recover secret information. Due to its
rather nested structure, LAKE is unlikely to be vulnerable to such attacks: addition carries and
chained computation of L ensure an algebraic normal form (ANF) for each Boolean component
of maximal degree after one round of processmessage.

Recently, two works aimed at detecting non-uniform randomness in the algebraic structure
of several cryptographic primitives [14,31,32]. Their basic idea is to compute all or part of the
ANF of some implicit Boolean function, mapping part of the input to part of the output, then
applying statistical tests on the distribution of the monomials of the ANF; reference [32] notably
claims to distinguish SHA-2 functions from random using so-called Defectoscopy, claiming that
“at least 8 full cycles are required for it to be secure instead of the proposed 4-5”, idem for MD5
and SHA-0/1—unfortunately, the description of the tests and the methodology used in [32] is
not precise enough to reproduce the experiments. In [14], comparable tests are used to build
distinguishers for the stream ciphers DECIM, Grain, Lex, and Trivium. Against such methods,
we applied the following countermeasures:

• Intensive feedforward: each round incorporates a complex feedforward operation, such
temporal dependency providing highly non-linear relations.
• Many additions: compared to SHA-256, we use a large amount of integer additions, and

a few XORs (see Table 1), which increases non-linearity through the carries.
• Large state: the output of compress is extracted from a large local state combined with

a non-linear dependence on the initial H in feedforward (unlike in SHA-2 functions).

We ran a few experiments with the “d-monomial” and “maximum-degree monomial” tests
described in [14], and also used in [32]; for input windows of 8 to 20 bits of the salt or of the
message, and each of the 256 output bits. Significant deviations where observed for up to two
rounds. This bound might be slightly increased by using refined experiments, as apparently
employed, but not detailed, in [32].
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5.4 Differential Attacks

The essential idea of differential attacks on hash functions [10], as used to break MD5 and
SHA-0/1, is to exploit a high-probability input/output differential over some component of the
hash function, e.g. under the form of a “perturb-and-correct” strategy for the latter functions,
exploiting high-probability linear/non-linear characteristics. A common property of those func-
tions, as well as to the SHA-2 functions, is indeed the behavior of the compression function as a
shift register: at each step, a “first” word is updated depending of a message word input, while
the other words are shifted. Hence “corrected words” can spread along the state, as explained in
the Chabaud-Joux attack on SHA-0 [11]. Moreover, their relatively simple step function allowed
to find several high-probability characteristics (see e.g. [10])—the SHA-2 functions made this
much more difficult, though have more or less the same structure as their ancestors, and keep
a similar number of rounds.

In the design of LAKE-256 and LAKE-512, we applied the following countermeasures against
differential attacks:

• High number of steps: with respectively 128 and 160 message word inputs in LAKE-256
and LAKE-512, against 64 for MD5 and SHA-256, and 80 for SHA-512 and SHA-0/1.
In particular, the function f called 136 and 168 times in compress makes the exploit of
linear approximations highly implausible.
• Nested feedforward: the r message-dependent internal feedforward operations aim at

strengthening the function against differential paths.
• Internal wide-pipe: this makes internal collisions unlikely, and the final compression of

L to H makes differences in the output much harder to predict.
• No “shift register”: in the round function, all state words are updated in chain with de-

pendence on a message word, and then undergo a message-independent post-treatment,
making any “correction” impossible.
• Use all operators: as observed in §3.4, a small set of operations often facilitates differential

analysis.

Note that the foregoing features, except the increased number of rounds, do not require extra
computation or memory, unlike the use of a recursive message expansion, or of S-boxes.

We can sketch a simple method for finding low-weight 1-round differentials in compress:
choose an input difference ∆ changing M14 and M15 such that after the first loop in processmes-
sage, only L14 is modified. Consequently, after the second loop changes will occur only in L13,
L14 and L15, that is, a difference of weight at least 3. However, such low-weight output-difference
will persist no further. We discovered no high-probability differential, but a more careful analysis
is required.

5.5 Empirical Tests

For completeness, we report some experiments assessing the minimal requirements for a hash
function. Note that no statement about preimage or collision resistance should be derived from
these results.

Diffusion. To illustrate the difference propagation in LAKE-256, we give visual examples of
the diffusion provided by processmessage, after running saltstate with H = IV , S = 0, t = 0.



14 Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan

The avalanche effect is suggested by the high number of differences within only two rounds of
processmessage. We consider various one-bit differences in random messages, as presented in
Fig. 5: the first stripe represents the message difference, and the eight subsequent ones show
the differences in the buffer L after each round of processmessage.

Fig. 5. Diffusion diagrams, for randomly chosen messages and a difference at 2nd, 128th, 256th, and 512th
position.

The observation that the most-significant bits of the message diffuse less after one round
can easily be explained by the algorithm of processmessage. This however has no consequence
on the security per se, since after only two rounds no kind of regularity seems observable.
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A Constants

For LAKE-256, IV corresponds to the first 64 hexadecimal digits of π, and the constants to the
65-th to the 192-th digits5:

IV0 = 243F6A88 IV2 = 13198A2E IV4 = A4093822 IV6 = 082EFA98
IV1 = 85A308D3 IV3 = 03707344 IV5 = 299F31D0 IV7 = EC4E6C89

C0 = 452821E6 C4 = C0AC29B7 C8 = 9216D5D9 C12 = 2FFD72DB
C1 = 38D01377 C5 = C97C50DD C9 = 8979FB1B C13 = D01ADFB7
C2 = BE5466CF C6 = 3F84D5B5 C10 = D1310BA6 C14 = B8E1AFED
C3 = 34E90C6C C7 = B5470917 C11 = 98DFB5AC C15 = 6A267E96

For LAKE-512, IV corresponds to the first 128 hexadecimal digits of π ending trillion-th, and
the constants to the 129-th to the 384-th digits.

IV0 = 57F5C7D088813AFC IV4 = F92F3FFEB7790C39
IV1 = 13908A7C25E945C0 IV5 = 428D3FD1A930A4EE
IV2 = B273D634AF4635AB IV6 = A66C46E2B3255458
IV3 = B8E6A0E2AE025B8F IV7 = F2AC54FEDE1EC2EA

C0 = 0769441AD54C789F C8 = 4623A40AB23A2E02
C1 = 3CB62BB721C2746E C9 = A43BA7CDFC9BCF82
C2 = 1BE973B3FF6C5EDE C10 = D6AEBF43FB266C5E
C3 = D9883F666CD37F6B C11 = 139363097AAB1247
C4 = 2A9572193E06AA68 C12 = 2A53B4E0A95CAA01
C5 = 8AB87CA9222605F2 C13 = 8D1770714B749520
C6 = 3B43E1D7013CEAC5 C14 = B3BC88DB689CA207
C7 = DF6534E1E77E037E C15 = C46EF39031B3E5A5

B Test Values

For LAKE-256, compress(Null input) =

C5EB97EC 704D4816 5A1714E3 549343B4 18831B53 2FB84D85 E304A0A4 73CB9E03.

For LAKE-512, compress(Null input)=

804829AB81DA589B E9205F12A4EE3666 D23D5574793C9C32 4DB7387F53795476
653D40810DC4A3AA F14D3A5E8D14F043 9904191ADE724751 C9D033C934C9229E.

5 Hexadecimal π digits are copied from http://www.super-computing.org/pi-hexa current.html.


