
Cryptanalysis of the MCSSHA Hash Functions

Jean-Philippe Aumasson1 and Maŕıa Naya-Plasencia2

1 Nagravision SA, Switzerland
2 INRIA projet-team SECRET, France

Abstract. This note describes attacks on the first round SHA-3 candi-
date MCSSHA-3, and on its subsequent versions MCSSHA-4, MCSSHA-
5, and MCSSHA-6. We show a general strategy for searching second
preimages for all those functions, and a dedicated preimage attack for
MCSSHA-4. We deduce simple design criteria to avoid the presented
attacks in MCSSHA-like designs.

Keywords: hash functions, SHA-3, cryptanalysis.

1 Introduction

The US National Institude of Standards and Technology recently started a public
competition3 to select its future cryptographic hash standard, which will be
called SHA-3, and which will augment the existing SHA-2 family [1]. The so-
called SHA-3 Competition received 64 submissions fall 2008, out of which 51
were selected by NIST as “first round candidates”. NIST subsequently reduced
the set of potential SHA-3’s to 14 in July 2009.

MCSSHA-3 is a first round candidate in the SHA-3 Competition that did not
make it to the second round. MCSSHA-4 is a modified version of MCSSHA-3
proposed to foil some shortcut attacks [2] while retaining the merits of MCSSHA-
3. MCSSHA-5 is a modified version of MCSSHA-4, proposed to counteract the
preimage attack reported in the present paper. Finally, MCSSHA-6 [3] is the ulti-
mate attempt to thwart our attacks. We refer to [3–7] for complete specifications
of the hash algorithms.

In this paper, we show that all four versions of MCSSHA admit shortcut
second preimage attacks, and thus fail to satisfy the security requirements set
by NIST for the SHA-3 Competition. Our attacks are relatively simple, for they
are essentially meet-in-the-middle attacks adapted to the particular structure
of each version of MCSSHA. In particular, they are comparable to the attacks
presented in [8].

After a brief description of the MCSSHA hash algorithms in §2, we describe
the second preimage attacks in §3, and a preimage attack specific to MCSSHA-4
in §4. Conclusions are drawn in §5.

3See http://nist.gov/hash-competition.



2 Description of the MCSSHA hash functions

This section briefly describes the hash functions MCSSHA-3, -4, -5, and -6.
Performance figures for MCSSHA-4, -5, and -6 can be found on eBASH [9].
These are parametrized by a byte length N and a delay value ∆.

2.1 MCSSHA-3

MCSSHA-3 computes a digest of n bits (or N bytes, N = n/8) by

1. Initializing a nonlinear feedback shift register (NFSR) with N byte elements.
2. Clocking the register once with input of a message byte.
3. Clocking the register three times with input of the zero byte, so ∆ = 3.
4. Repeating steps 2 and 3 for each message byte (each message byte is input

only once), to obtain a state S = S0, . . . , SN−1.
5. Clocking the NFSR 4N times, with as input the 4N -byte sequence

S0, . . . , SN−1, S0, . . . , SN−1, S0, . . . , SN−1, S0, . . . , SN−1 .

The clocking mechanism involves one call to a 8×8 S-box, as only non-linear
component.

MCSSHA-3 uses no message length padding, and avoids length-extension by
the use of a distinct function for finalization. Details of the specification can be
found in [4].

2.2 MCSSHA-4

MCSSHA-4 differs from MCSSHA-3 by using a feedback register twice larger, by
making two instead of three “blank clockings”, and by initializing the register to a
fixed value in the finalization step. More precisely, for N ∈ {64, 128}, MCSSHA-4
computes a N/2-byte digest by

1. Initializing an NFSR with N byte elements.
2. Clocking the register once with input of a message byte.
3. Clocking the register twice with input of the zero byte, ∆ = 2.
4. Repeating steps 2 and 3 for each message byte to obtain a state S =

S0, . . . , SN−1.
5. Initializing an NFSR with N/2 byte elements 00, 01, 02, etc.
6. Clocking this register 2N times, with as input the 2N -byte sequence

S0, . . . , SN−1, S0, . . . , SN−1 .

2.3 MCSSHA-5 and MCSSHA-6

MCSSHA-5 is similar to MCSSHA-4, except that zero bytes are added between
each two bytes in the finalization procedure. This makes the preimage attack
described in §4 impossible.

MCSSHA-6’s finalization slightly differs from MCSSHA-5’s, to avoid the
preimage attack in §4 without any performance penalty, unlike MCSSHA-5.

Detailed specifications of MCSSHA-5 and MCSSHA-6 can be found in [3,7].



3 Second-preimage attacks for the MCSSHA family

Below we describe our strategy for finding second-preimages for the MCSSHA
functions, with register size N and delay ∆.

The key observation is that each input of a message byte allows one to
“choose” a byte of the N -byte state. The number of controlled bytes in the
internal state is bN/(∆ + 1)c. This is illustrated in Fig. 1, where the red bytes
are controlled by the message block insertions, and the grey bytes correspond to
the ∆ “blank” rounds between two consecutive message blocks.

m ’t

p

-

- -

1 N

DDDDDD D D

Fig. 1. Representation of controlled bytes (in red) in the N -byte register.

Since a clocking of the mechanism is invertible, we can perform a meet-in-the-
middle attack, searching for a collision on the N − bN/(∆ + 1)c ≥ ∆N/(∆ + 1)
uncontrolled byte. Since the finalization phase is not (easily) invertible, we need
to know the target value of the state before finalization, which makes preimage
search impossible.

Since we search for a collision on 8(N − bN/(∆ + 1)c) bits, approximately
24(N−bN/(∆+1)c) forwards (resp. backwards) computations are required in aver-
age to find a collision. Standard collision search methods [10] require negligible
memory. A collision directly gives a message that maps to T before the finaliza-
tion. Since finalization is message-independent, one obtains the same digest as
with the first message.

Table 3 gives the complexities of our attack for each MCSSHA version. Note
that the attack can be used to find collisions for MCSSHA-3 faster than with a
generic birthday search.

4 Preimage attack for MCSSHA-4

We present a preimage attack on MCSSHA-4, starting with a key observation:
In the finalization stage, one starts from a N/2-byte register initialized to bytes
00, 01, 02, etc. Call this initial state R0. At each of the 2N steps, one updates the
register with byte zi, i = 0, . . . , 2N − 1. When the message length is a multiple
of eight bits, we have

(z0, . . . , z2N−1) = (y0, . . . , yN−1, y0, . . . , yN−1) = y‖y ,

with y the state obtained after the message is processed. The final state of the
N/2-byte register is returned as the digest. Now observe that:



Table 1. Time complexity of the attack applied to different versions of MCSSHA.

Version N ∆ Trials

MCSSHA-3
256 32 3 296

512 64 3 2192

MCSSHA-4
256 64 2 2172

512 128 2 2344

MCSSHA-5
256 64 3 2192

512 128 3 2384

MCSSHA-6
256 64 3 2192

512 128 3 2384

1. One can easily find y0, . . . , yN/2−1 such that after N/2 steps the register
comes back to R0. Repeating this sequence four times, one thus obtains a
2N -byte sequence y that maps R0 to itself.

2. Given an arbitrary y0, . . . , yN/2−1, one can easily find yN , . . . , yN−1 such
that after N steps the register comes back to the state R0. Repeating such
a sequence twice, one again obtains a sequence y that maps to R0

Now we present an attack that computes preimages of R0. For ease of exposition,
we describe the attack for N = 64, i.e., for 256-bit digests:

1. Pick an arbitrary unique message M , perform the “pre-hash computation”
stage, to reach a state y = (y0, . . . , y63).

2. Using the observation above, find y′0, . . . , y
′
32 such that

(y33, . . . , y63, y
′
0, . . . , y

′
32)

maps R0 to itself after 64 finalization steps (out of 128 steps in total).
3. Choose the next message byte to obtain y′0 as new value. Then, the two

subsequent zeroes gives y′1 and y′2 with probability 2−16. If the correct values
are obtained, continue with the next message byte until y′32. When a zero
byte leads to a wrong value, go to step 2.

This algorithm terminates when all the 22 zero bytes lead to the desired byte
value. This happens with probability 2−8 for each zero individually. When an
erroneous value is obtained, one directly goes to step 2 and does not need to
continue with the next zero. The expected number of trials is thus about 28×22 =
2176. When the state

(y33, . . . , y63, y
′
0, . . . , y

′
32)

is reached, finalization will map R0 to itself after 64 and 128 steps, thus returning
R0 as digest. Note that MCSSHA-4 (as MCSSHA-3) uses no specific padding
rule, which simplifies our attack. The attack does not work on MCSSHA-5.

The strategy is identical for 512-bit digests, leading to a complexity 2344

instead of 2512 to find one preimage of R0. The attack does not directly work for
the 224- and 384-bit versions, because the register size does not divide 64 (resp.,
128).



5 Conclusion

We showed that the hash functions MCSSHA-3, MCSSHA-4, MCSSHA-5, and
MCSSHA-6, submitted to the SHA-3 Competition, do not satisfy the security
criteria set by NIST. However, none of our attacks is practical. Indeed, the lower
complexity of our shortcut attacks is as high as 284, when considering the 224-bit
version of MCSSHA-3.

For a MCSSHA-like architecture, a design criteria to avoid our second preim-
age attacks is to use a register size whose “uncontrolled” length (that is, the full
size of the register times the fraction of zero bytes included, as in step 3 in §§2.1)
at least twice as large as the digest size; that is, we need 4 (N − bN/(∆ + 1)c) ≥
`, where ` is the digest bit length.

Acknowledgments

This work was realized while the first author was with FHNW, Windisch Switzer-
land, and supported by the Swiss National Science Foundation under project
no. 113329. The second author was supported in part by the French Agence
Nationale de la Recherche under contract ANR-06-SETI-013-RAPIDE.

References

1. NIST: FIPS 180-2 secure hash standard (2002)
2. Aumasson, J.P., Naya-Plasencia, M.: Second preimages on MCSSHA-3. Public

comment on the NIST Hash Competition (2008)
3. Maslennikov, M.: Secure hash algorithm MCSSHA-6.

http://registercsp.nets.co.kr/hash competition.htm (June 2009)
4. Maslennikov, M.: Secure hash algorithm MCSSHA-3. Submission to NIST (2008)
5. Maslennikov, M.: Secure hash algorithm MCSSHA-4.

http://registercsp.nets.co.kr/hash competition.htm (December 2008)
6. Maslennikov, M.: MCSSHA: Secure hash algorithms family. Presentation material

for the First SHA-3 Conference (2009)
7. Maslennikov, M.: Secure hash algorithm MCSSHA-5.

http://registercsp.nets.co.kr/hash competition.htm (June 2009)
8. Khovratovich, D., Nikolic, I., Weinmann, R.P.: Meet-in-the-middle attacks on sha-

3 candidates. In Dunkelman, O., ed.: FSE. Volume 5665 of LNCS., Springer (2009)
228–245

9. Bernstein, D.J., (editors), T.L.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. http://bench.cr.yp.to Accessed 23 December 2009.

10. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic
applications. J. Cryptology 12(1) (1999) 1–28


