
How (Not) to Efficiently Dither
Blockcipher-Based Hash Functions?

Jean-Philippe Aumasson1∗ and Raphael C.-W. Phan2†

1 FHNW, 5210 Windisch, Switzerland
2 Loughborough Uni, LE11 3TU Leics, UK

Abstract. In the context of iterated hash functions, “dithering” desig-
nates the technique of adding an iteration-dependent input to the com-
pression function in order to defeat certain generic attacks. The purpose
of this paper is to identify methods for dithering blockcipher-based hash
functions that provide security bounds and efficiency, contrary to the
previous proposals. We considered 56 different constructions, based on
the 12 secure PGV schemes. Proofs are given in the blackbox model
that 12 of them preserve the bounds on collision and inversion resistance
given by Black et al. These 12 schemes avoid the need for short dither
values, induce negligible extra-computation, and achieve security inde-
pendent of the dither sequence used. We also identify 8 schemes that lead
to strong compression functions but potentially insecure hash functions.
Application of our results can be considered to popular hash functions
like SHA-1 or Whirlpool.

1 Introduction

The idea of making hash functions out of blockciphers goes back to 1978, when
Rabin [40] proposed to hash (m1, . . . , m`) as DESm`

(. . . (DESm1(IV) . . .). Sub-
sequent works devised less straightforward schemes, with either one or two calls
to the blockcipher within a compression function [28, 30, 33, 37, 39]. In 1993 re-
search went a step further when Preneel et al. [38] conducted a systematic anal-
ysis of all 64 compression functions of the form f(h,m) = EK(P) ⊕ F , for
K, P, F ∈ {m,h, m ⊕ h, v}, where v is a constant. They showed that only 4 of
these schemes resist all considered vulnerabilities, and 8 others just have the
non-critical attribute of easily found fixed-points. A decade later, Black et al. [9]
proved the security of hash functions based on these 12 PGV schemes in the
blackbox model.

Like a majority of hash functions blockcipher-based hash functions follow the
Merkle-Damg̊ard (MD) paradigm [16, 31]. Recent generic attacks [17, 20, 22–24]
that exploit its structure led to proposals to extend the basic MD construction.

∗Supported by the Swiss National Science Foundation under project number
113329.

†Work done while the author was with the Security & Cryptography Lab (LASEC),
EPFL, Lausanne, Switzerland.

These include the idea of dithering, i.e. adding an input (the dither) to the
compression function, whose value depends on the iteration count. The goal is
to defeat attacks based on message block repetitions (like [17,24]).

Proposals of dither sequences came from Kelsey and Schneier [24] (using a
counter), from Biham and Dunkelman [5, 6] (as part of the HAIFA framework,
using the number of bits hashed so far), and from Rivest [41] (using an abelian
square-free sequence). However, the method proposed [6, 41] for integrating the
dither value into concrete hash functions is inefficient, in the sense that it in-
creases the number of calls to the compression function. This method indeed
consists in reducing the effective size of a message block to make way for the
dither, i.e. filling the dither into the space freed up. This motivated Rivest’s
proposal to use short dithers (2-byte) encoding particular patterns over a small
alphabet. Another drawback of this method is that system parameters have to
be modified such that message chunks become, for example, 448 bits long instead
of 512 with a 64-bit counter, or 496 with Rivest’s method. It thus seems valu-
able to explore generic dithering methods that preserve efficiency and system
parameters, and that are still simple to apply.

1.1 Contribution

We will be concerned with the problem of constructing dithered compression
functions from blockcipher-based schemes, grounding our work on the 12 se-
cure PGV schemes. We first introduce 56 dithered variants, along with security
definitions adapted for dithered functions. Our blackbox analysis singles out 12
dithered schemes leading to hash functions as secure as the original (undithered)
ones, as far as collision and inversion resistance are concerned. The bounds given
are independent of the dither sequence use, contrary to 32 other constructions.
A counter-intuitive fact is proven, that 8 out of 56 dithered schemes lead to
hash functions which are not collision resistant when the dithering method of
HAIFA [6] is used, despite having a collision-resistant compression function. This
re-opens the suitability issue of the Merkle-Damg̊ard theorem for dithered hash
functions, and suggests that a careful revisit is required.

We emphasize that our results say nothing on the resistance to generic
second-preimage attacks as [17,24] that dithering aims at preventing. The resis-
tance to these attacks depends on the dither sequence used, whereas our point is
to show that previously known security bounds can hold as well when dithering
is used, independently of the sequence chosen.

Apart from our formal security analysis, the interest of our constructions is
twofold: Firstly, they are efficient, because the number of calls to the compres-
sion function is no longer increased by dithering; secondly, they allow dither
values of arbitrary length (up to the size of the key of the blockcipher), with no
performance penalty. As a result, a counter supporting large messages can now
be used. More generally, it avoids the need for short dither value with non-trivial
patterns like [41], which in addition provides fewer security guarantees than a
counter (see [12]).

1.2 Related Work

After a very calm period during the 90s, the results of [9] seem to have triggered
a regain of interest for blockcipher-based hashing: In 2005 Black et al. [8] proved
that a compression function of the form f2 (hi−1,mi, EK(f1(hi−1,mi))) cannot
be provably secure with respect to EK . This result has been recently extended by
Rogaway and Steinberger [43], who proved generic upper bounds on the security
of permutation-based hash functions.

Along the same lines, combinations of fixed permutations were previously
studied by Shrimpton and Stam [45]. Another impossibility result is due to Boneh
and Boyen [11] for hash functions combiners, later generalized by Pietrzak [35].
In [29], Lee et al. extend the [9] results to 22 other constructions, using simi-
lar blackbox proofs, and in [46] Stam simplifies the [9] proofs. In [26], Knud-
sen and Rijmen study known-key distinguishers for blockciphers; though un-
realistic for attacking encryption primitives, this scenario can be relevant for
blockcipher-based hashing (they show near-collisions for Matyas-Meyer-Oseas,
see Appendix B).

More concretely, the recent hash functions Maelstrom [19] and Grindahl [27]
are based on AES, and blockcipher-based designs remain a promising alternative
for several researchers (e.g. [25]). The NIST hash competition may also mark a
revival of hash functions built on blockciphers.

Stream-cipher-based hash function attracted less attention. They offer a less
confortable framework because (1) they are generally not defined to operate over
“blocks”, (2) until now they have been less reliable than blockciphers, and (3)
they often have a slow initialization. A counter-example is Bernstein’s compres-
sion function Rumba [3] is based on the stream cipher Salsa20. We can also
cite [14], based on RC4.

Fewer works have been produced about dithering. We can cite Shoup’s con-
struction [44] for universal one-way hash functions, which can be seen as a kind of
dithering (a sequence of values called the “schedule” is input through iterations,
see also [32]). More recently, Bouillaguet et al. [12] presented another generic
second-preimage attack, slower than [24] in general, but performing slightly bet-
ter when certain dither sequences are used. For etymological issues, see Ap-
pendix C.

1.3 Notations

We adopt the notations of [9], with only minor changes: A blockcipher is a
map E : {0, 1}κ × {0, 1}µ 7→ {0, 1}µ, such that Ek(·) = E(k, ·) is a permu-
tation on {0, 1}µ for all k ∈ {0, 1}κ, and its inverse is written E−1. The set
of all blockciphers with κ-bit key and µ-bit messages is denoted Bloc(κ, µ).
A blockcipher-based hash function is a map H : Bloc(κ, µ) × D 7→ R, where
D ⊆ {0, 1}? and R = {0, 1}n, defined iteratively by a compression function
f : Bloc(κ, µ)× {0, 1}n1 × {0, 1}n2 7→ {0, 1}n2 , where n1 is the size of a message
block, and n2 the size of chaining values. In the remainder of the paper, we as-
sume µ = n1 = n2 = n. We write fE (resp. HE) to denote the compression (resp.

hash) function instantiated with a particular E. Eventually, an adversary is an
algorithm with oracle-access to E and E−1—working within this setting is also
known as analysis in the blackbox model, along with the assumption that each
Ek is a random permutation. Furthermore, we set h+ = f(h,m) the output of
a compression function. In the context of iterated hashing, blocks and chaining
values are indexed as follows: h0 is the IV, m̄ = (m1, . . . , m`) is the (encoded)
message, h1 = f(h0,m1), and so on until h` = f(h`−1,m`) = H(m̄).

2 Dithering the PGV Schemes

The 12 PGV schemes f1, . . . , f12 are depicted in Fig. 1 and 2: f1 is the Matyas-
Meyer-Oseas [30] construction (MMO), and one of the simplest schemes; f3 is
the Miyaguchi-Preneel construction, notably employed in Whirlpool [2], with as
blockcipher a variant of Rijndael; f5 is the Davies-Meyer construction, somehow
the dual of MMO: Its structure is similar, except that the inputs of h and m play
reversed roles. However, it has the undesirable attribute of easily found fixed-
points; indeed, for an arbitrary m, choosing h = E−1

m(0) implies f5(h,m) = h.
The Davies-Meyer construction is used by the hash function Maelstrom-0 [19] (a
variant of Whirlpool), and implicitly by some dedicated hash functions like MD5
and SHA-1.

We consider dithered versions obtained with a single input of the dither value
d through an xor operation (in practice, it might be replaced by any easy-to-
invert mapping which is a permutation for one of its inputs fixed). We suppose d
non-null, and of convenient length (that is, not larger than its input slots in the
blockcipher). The dithered PGV (dPGV) schemes are then classified into five
subsets, describing the possible points for the dither d, see Table 1.

Table 1. Subsets of dithered PGV schemes.

Subset Input point Modification

C1 chaining value h← h⊕ d
C2 message block m← m⊕ d
C3 output h+ ← h+ ⊕ d
C4 key Ek ← Ek⊕d

C5 plaintext Ek(·)← Ek(· ⊕ d)

We write fi,j for the dithered scheme obtained by applying the j-th transform
to fi; thus fi,j ∈ Cj , for all (i, j) ∈ {1, . . . , 12} × {1, . . . , 5}. Clearly, |Ci| = 12
for i = 1, . . . , 5, but there are only 56 distinct dithered schemes, rather than 60,
because f1,1 ≡ f1,4, f5,2 ≡ f5,4, f9,1 ≡ f9,4, and f10,2 ≡ f10,5.

A crucial observation is that almost all schemes of C4 and C5 are formally
equivalent to a C3 scheme, up to variable renaming, e.g.

f4,4(h,m, d) = Eh⊕d(h⊕m)⊕m = Eh′(h′ ⊕m′)⊕m′ ⊕ d = f4,3(h′,m′, d),
f9,5(h,m, d) = Eh⊕m(m⊕ d)⊕m = Eh′⊕m′(m′)⊕m′ ⊕ d = f9,3(h′,m′, d),

h -

m

?
> E - i- h+?

(a) f1 (MMO).

h -

m

?

?

- i

> E - i- h+?

(b) f2.

h -

m

?
> E - i- h+?

6

(c) f3 (MP).

h -

m

?

?

- i

> E - i- h+?

(d) f4.

h -

m

?∨
E - i- h+

6

(e) f5 (DM).

h - i-

m

?? ∨
E - i- h+

6

(f) f6.

Fig. 1. PGV schemes f1 to f6, where a hatch marks the key input (we assume keys
and message blocks of same size, cf. §1.3).

h -

m

?∨
E

?- i- h+

6

(a) f7.

h - i-

m

?? ∨
E - i- h+

6

(b) f8.

h - i-?

m

?
> E - i- h+?

(c) f9.

h -

m

?

?
> E - i- h+

- i

6

(d) f10.

h - i-

m

??
> E - i- h+

6

(e) f11.

h -

m

?

?

- i
∨
E - i- h+?

(f) f12.

Fig. 2. PGV schemes f7 to f10.

for h′ = h ⊕ d, m′ = m ⊕ d. We denote C+3 the set of schemes that can be
expressed in C3 form. Only four members of C4∪C5 do not admit such rewriting,
namely the ones equivalent to a scheme of C1 or C2. We thus have

C+3 = (C3 ∪ C4 ∪ C5) \ {f1,4, f5,4, f9,4, f10,5}.

This set is used later for simplifying security proofs (we shall exploit the C3
structure for proving security bounds on C+3 schemes). To summarize, we have
|C1 ∪ C2| = 24, |C+3 | = 32, and (C1 ∪ C2) ∩ C+3 = ∅.

Note that if fi admits easily found fixed-points (as do 8 of the 12 PGV
schemes), then any dithered variant also possesses the property. For instance,
f5,5 admits the fixed-point E−1

m(0) ⊕ d, for any choice of m. It follows that
exactly 37 among the 56 dithered schemes have trivial fixed-points.

h - -i?

d m

?
> E - i- h+?

(a) dMMO1: h+ = Eh⊕d(m)⊕m.

h

d

-

-

m

?i
?

> E - i- h+?

(b) dMMO2: h+ = Eh(m⊕ d)⊕m.

h -

m

?
> E - i- h+

d

?i
?

(c) dMMO3: h+ = Eh(m)⊕m⊕ d.

h

d

-

-

m

?i
?

> E - i- h+?

(d) dMMO4: h+ = Eh(m⊕d)⊕m⊕d.

Fig. 3. Dithered versions of the Matyas-Meyer-Oseas scheme.

To illustrate our constructions, Figure 3 depicts the dithered variants of MMO
(f1): For a given d, dMMO1 is similar to MMO up to a reordering of the permu-
tation indexes (more precisely, the h-th permutation takes (h⊕d) as new index).
dMMO2 simulates the undithered MMO for a blockcipher E′(·) = E(·⊕d), while
dMMO3 has simply the output of MMO xored with d, as in Shoup’s method [44].
The structure of dMMO4 is somewhat similar to the RMX transform for ran-
domized hashing [21].

3 Security Definitions for Dithered Functions

We build on the formal definitions of [9] (recalled in Appendix A), extending
them to the case of dithered functions: A collision for dithered compression
functions where dithers are distinct is termed a ∆-collision—in essence, this
is somewhat analogous to a free-start collision for hash functions, in the sense
that here the dithers are distinct and public. Such a collision does not trivially
translate into a collision for the derived hash function, mainly due to the MD-
strengthening padding. We reserve the term collision to the case where a pair
of inputs map to the same image with same dither values. This is in order
to maintain the usefulness of the MD paradigm ported over to dithered hash
functions.

In the following definitions, A is an adversary that has access to E and E−1,
and f is a dithered blockcipher-based compression function, f : Bloc(κ, n) ×
{0, 1}n × {0, 1}n × {0, 1}k 7→ {0, 1}n, for some fixed k > 0. The IV of the hash
function is an arbitrary constant h0, introduced for considering collisions with
the empty string. Furthermore, we introduce the following definition:

Definition 1 (Dither sequence). A dither sequence is defined by a triplet
(I,D, d), where I ⊆ N is the set of iteration indexes, D ⊆ {0, 1}k is the set
of valid dither values, and d is a function I 7→ D returning the dither value
corresponding to an iteration index.

This definition is independent of the particular input method, and is relevant
for any iterated hash function. In the remainder, we let δ = |D| ≤ 2k, and write
d for a dither value3.

Definition 2 (Collision for Dithered Compression Function). The ad-
vantage of A in finding a collision in f is

Advcol
f (A) = Pr

E
$← Bloc(κ, µ), (h, m, d) 6= (h′,m′, d), d ∈ D,

(h,m, d, h′,m′) $← A [
fE(h,m, d) = fE(h′,m′, d)

or fE(h, m, d) = h0

]

 .

This notion of collision can be viewed as a variant of target-collision resis-
tance [34], where the key indexing the function is chosen by the attacker.

Definition 3 (∆-Collision for Dithered Compression Functions). The
advantage of A in finding a ∆-collision in f is

Adv∆col
f (A) = Pr

E
$← Bloc(κ, µ), (h, m, d) 6= (h′,m′, d′), (d, d′) ∈ D2,

(h, m, d, h′, m′, d′) $← A [
fE(h,m, d) = fE(h′,m′, d′)

or fE(h, m, d) = h0

]

 .

3The notation Pr[α|β] stands here for the probability of the event β after the ex-
periment α. This should not be confused with the notation of conditional probabilities.

The notion capturing one-wayness is termed as “inversion” rather than “preim-
age”, merely because of the different sampling rule for the challenge image (see [9,
Ap. B] for a discussion).

Definition 4 (Inversion for Dithered Compression Function). The ad-
vantage of A in inverting f is

Advinv
f (A) = Pr

[
E

$← Bloc(κ, µ), h+ $← Range(fE), d ∈ D,

(h,m, d) $← A f(h,m, d) = h+

]
.

Let Adv be any of the advantages defined above. For q ≥ 0, we write
Adv(q) = maxA (Adv(A)), where the maximum is taken over all adversaries
making at most q oracle queries. The definitions for hash functions apply as well
for dithered hash functions, where a random blockcipher is used, and a given
dither sequence is considered.

4 Collision Resistance

4.1 Blackbox Bounds

Theorem 1 (Collision Resistance of dPGV Hash Functions). Let H be a
hash function built on a dithered PGV scheme f /∈ C2, where MD-strengthening is
applied. Then the best advantage for a q-bounded adversary in finding collisions
is

Advcol
H (q) ≤ q(q + 1)

2n
, for f ∈ C1,

Advcol
H (q) ≤ (δ2 + δ)(q2 + q)

2n+1
, for f ∈ C+3 ,

where δ = |D| is the number of valid dither values.

This gives for C1 schemes a bound on collision resistance independent on the
dither sequence used. But for C3 schemes the bound depends on the size of the
dither domain D: Clearly, when D is large (e.g. when δ = |D| = 2n) this bound is
not relevant. However, it makes sense for example for Rivest’s dithering proposal,
for which δ ≤ 215.

We prove Theorem 1 by first upper bounding Advcol
H by a collision-finding

advantage for the compression function (see Lemma 1), then bounding this ad-
vantage in the blackbox model (Propositions 1 and 2).

Lemma 1 (Dithered Extension of MD Theorem). Let H be a hash func-
tion built on a dithered PGV scheme f ∈ C1 ∪ C+3 and using MD-strengthening.
Then Advcol

H (q) ≤ Adv∆col
f (q). Furthermore, if f ∈ C1, then Advcol

H (q) ≤
Advcol

f (q).

This lemma states that the security of the hash function built on a dPGV
scheme can be reduced to the security of its compression function, except for C2
functions. We show later a counter-example of C2-based hash functions which are
not collision resistant, despite having a collision-resistant compression function.

Proof. Assume given an arbitrary colliding pair (m̄, m̄′) for a HE with random
E ∈ Bloc(n, n), and set ` = |m̄|, `′ = |m̄′| (in blocks). We distinguish two cases:

1. ` = `′: If m` 6= m′
` or h`−1 6= h′`−1, then we get a collision on f with the

distinct tuples (h`−1, m`, d`) and (h′`−1,m
′
`, d`); otherwise, h`−1 = h′`−1 and

m` = m′
`; we then work inductively with the same argument backwards until

a collision is found, which necessarily exists, because m̄ 6= m̄′ by hypothesis.
Therefore, Advcol

H (q) ≤ Advcol
f (q) for messages of same length.

2. ` 6= `′: Since MD-strengthening is applied, we have m` 6= m′
`′ , that neces-

sarily leads to distinct ∆-colliding tuples for f with distinct message block,
thus Advcol

H (q) ≤ Adv∆col
f (q). If d` = d`′ , we even get a collision on f (with

same dither value). Furthermore, for C1 functions, the pairs (h`−1 ⊕ d`,m`)
and (h`′−1 ⊕ d`′ ,m`′) form a collision for the original (undithered) scheme,
hence Advcol

H (q) ≤ Advcol
f (q) in this case.

This covers all possible cases, showing reductions to the security of the dithered
compression function f , which completes the proof. ut
For functions of C2, the advantage cannot be bounded by Advcol

f (q) since the
case mi ⊕ di = m′

j ⊕ d′j may occur, for di 6= d′j , which does not necessarily lead
to a collision on the original undithered scheme. To prove such inequality, one
should add the assumption that the dither and the message length padded in the
last block do not overlap; e.g. consider the dither coded on the n/2 first bits of
the blocks, while at most n/2 bits are dedicated to encoding the message length.

Proposition 1 (Collision Resistance of dPGV Schemes). Let f be a dithered
PGV scheme. Then the best advantage of a q-bounded adversary in finding col-
lisions in f is Advcol

f (q) ≤ q(q + 1)/2n.

Proof. For ease of exposition, consider the dithered MMO schemes, instantiated
with a random E: From arbitrary colliding inputs (h,m, d) and (h′,m′, d) with
image h+, we can construct colliding inputs (h?,m?) and (h′?,m

′
?) for the original

undithered scheme as follows:

h? h′? m? m′
? h+

?

dMMO1 h⊕ d h′ ⊕ d m m′ h+

dMMO2 h h′ m⊕ d m′ ⊕ d h+ ⊕ d
dMMO3 h h′ m m′ h+ ⊕ d
dMMO4 h h′ m⊕ d m′ ⊕ d h+

A similar method applies for all dithered PGV schemes. The proposition now
follows from the bound q(q + 1)/2 given in Lemma 3.3 of [9]. ut

Proposition 2 (∆-Collision Resistance of dPGV Schemes). Let f be a
dithered PGV scheme. If f ∈ C1 ∪ C2, then the best advantage of a q-bounded
adversary in finding ∆-collisions in f is Adv∆col

f (q) = 1. If f ∈ C+3 , then
Adv∆col

f (q) ≤ (δ2 + δ)(q2 + q)/2n+1.

The idea of the proof of Proposition 2 for f ∈ C+3 is similar to the one of the proof
of [9, Lemma 3.3]. In short, we first show that any collision for a C+3 scheme can be
used to find values (xr, kr, Ekr (xr)) and (xs, ks, Eks(xs)) satisfying a particular
relationship, then we bound the cost of finding such values. The proof strategy
is fairly standard. The simulator used for E and E−1 is described in [9, Fig. 4].

Proof. For f ∈ C1 ∪C2, we simply show how to construct a collision: For f ∈ C1,
pick an arbitrary triplet (h,m, d) such that d ∈ D. Then construct (h′,m′, d′) by
choosing an arbitrary d′ ∈ D distinct from d, and setting h′ = h⊕d⊕d′, m′ = m.
For f ∈ C2, a similar method can be applied with h′ = h, and m′ = m⊕ d⊕ d′.
In both cases the constructed pairs map to the same image.

For f ∈ C+3 , we just give the proof for MMO dithered variants (a similar one
can easily be derived for any C+3 scheme): First, observe that dMMO2 (∈ C5) and
dMMO3 (∈ C3) are in C+3 , while dMMO1, dMMO4, dMMO5 are not in C+3 . Hence,
the proof considers only dMMO2 and dMMO3.

Then, observe that for both dMMO2 and dMMO3 finding a ∆-Collision is
equivalent to finding a tuple (h, h′,m, m′, d̃) such that (Eh(m)⊕Eh′(m′)⊕m⊕
m′) ∈ D⊕, for

D⊕ =
{

d̃ = d⊕ d′, (d, d′) ∈ D2
}

, and δ⊕ = |D⊕| .

Indeed, for such a tuple (h, h′,m, m′, d̃ = d⊕ d′), we have that

• (h,m, d) and (h′,m′, d′) form a collision for dMMO3, because

Eh(m)⊕m⊕ d = Eh′(m′)⊕m⊕ d′

• (h,m⊕ d, d) and (h′, m′ ⊕ d′, d′) form a collision for dMMO2, because

Eh((m⊕ d)⊕ d)⊕ (m⊕ d) = Eh′((m′ ⊕ d′)⊕ d′)⊕ (m′ ⊕ d′)

We have thus shown that for any ∆-collision for dMMO2 (or dMMO3), one can
return two triplets (xr, kr, yr) and (xs, ks, ys) such that xr ⊕ xs ⊕ yr ⊕ ys ∈ D⊕
and yr = Ekr (xr), ys = Eks(xs). Using arguments similar to [9, Lemma 3.3
proof], we will show that this event is unlikely.

As preliminaries, consider an adversary A making q queries (to E or E−1)
and who gets q triplets (xi, ki, yi), such that yi = Eki(xi), i = 1, . . . , q. These
triplets are constructed by the simulator described in [9, Fig. 4]. Following these
notations, A succeeds only if there exists distinct r, s such that (xr ⊕ xs ⊕ yr ⊕
ys) ∈ D⊕, or xr ⊕ yr = h0.

Now, in the process of simulating E (and E−1) we let Ci stand for the event
“xi ⊕ yi = h0 or there exists j < i such that (xi ⊕ xj ⊕ yi ⊕ yj) ∈ D⊕”; in other
words, this is the event “A succeeds”.

The probabilistic argument is that, depending on the oracle queried, either
yi or xi was (uniformly) randomly selected from a set of size ≥ 2n − (i− 1) (see
the definition of the simulator in [9, Fig. 4]). Hence Pr[Ci] ≤ i · δ⊕/(2n− (i−1)),
because there are δ⊕ = |D⊕| values of (xi ⊕ xj ⊕ yi ⊕ yj) for which A succeeds.

It follows that for a number of queries q ≤ 2n−1,

Adv∆col
f (q) ≤ Pr[C1 ∨ · · · ∨ Cq] ≤

∑

0<i≤q

i · δ⊕
(2n − i + 1)

≤ δ⊕
2n − 2n−1

∑

0<i≤q

i,

that is, Adv∆col
f (q) ≤ δ⊕ · q(q + 1)/2n ≤ (δ2 + δ)(q2 + q)/2n+1.

We have proven the bound when f is dMMO2 or dMMO3. As suggested
in §2, a similar proof can be given for any f ∈ C+3 : the only difference will
be in the conversion of the tuple (h, h′,m,m′, d̃ = d ⊕ d′) for which (Eh(m) ⊕
Eh′(m′)⊕m⊕m′) ∈ D⊕ to a collision for f . For instance, consider f2,5(h,m, d) =
Eh(m⊕ h⊕ d)⊕m⊕ h; from the tuple above we can construct the collision

f2,5(h,m⊕ h⊕ d) = Eh(m)⊕m⊕ d = f2,5(h′, m′ ⊕ h′ ⊕ d′, d′).

Similar conversion can be given for the other C+3 schemes. The rest of the proof
is then independent of the scheme considered, hence apply as well to any f ∈ C+3 .

ut

Proof (Theorem 1). The result follows directly from Lemma 1 and the bounds
given in Propositions 1 and 2. ut

4.2 Finding Collisions for C2 Hash Functions

We describe an attack for 8 of the 12 schemes of C2 (namely f5,2, . . . , f12,2),
when the dither sequence scheme is the one of HAIFA [6], i.e. where di is the
number of message bits hashed so far, and when MD-strengthening is applied.
The attack exploits the structure of the compression function, and computes a
pair of message colliding for any choice of a blockcipher.

The method is inspired from slide attacks on blockciphers [7]: Consider an
arbitrary message m̄ = (m1, . . . , m`), split into ` blocks, with {di}0<i≤` the
dither sequence. Compute the fixed-point h0 = h1 corresponding to m1, and
construct the message m̄′ = (m′

1, . . . ,m
′
`−1) by setting m′

i = mi+1 ⊕ di+1 ⊕ d′i,
for i = 1, . . . , ` − 2. The last message blocks m` and m′

`−1 have to follow the
MD-strengthening rule, that is, having the number of bits of the message coded
in their least significant bits. Since we consider a dither sequence coding the
number of message bits hashed so far, the padded values will be equal to d` and
d`−1, respectively. Therefore m′

`−1 = m` ⊕ d` ⊕ d`−1 is a valid last block, and
we end up with h` = h′`−1, giving a collision with m̄. Note that no call to the
compression is needed, nor to the blockcipher.

When MD-strengthening is not used, this technique can be applied for any
dither sequence, for the 8 schemes f5,2, . . . , f12,2. This concerns for instance

Rivest’s dithering, that uses a special dither for the last block instead of MD-
strengthening. The fact that a secure compression function (i.e. a provably secure
PGV scheme) can lead to a weak hash function contrasts with the result of Black
et al. where certain weak compression functions (namely non-preimage-resistant)
are shown to provide collision-resistant hash functions.

5 Inversion Resistance

Theorem 2 below holds for inverting a random range point, rather than the image
of a random domain point (the latter problem being refered as “preimage”).
Quoting [9, Ap. B], though these measures “can, in general, be far apart, it is
natural to guess that they coincide for ’reasonable’ hash functions”.

Theorem 2 (Inversion Resistance of dPGV Hash Functions). Let H be
a hash function built on a dithered PGV scheme f , where MD-strengthening is
applied. Then the best advantage of a q-bounded adversary in inverting H is

Advinv
H (q) ≤ q

2n−1
, for f ∈ C1 ∪ C2,

Advinv
H (q) ≤ δ · q

2n−1
, for f ∈ C+3 .

Proposition 3 (Inversion Resistance of dPGV Schemes). Let f be a
dithered PGV scheme. Then the best advantage of a q-bounded adversary in in-
verting f is Advinv

f (q) ≤ δ·q/2n−1. Furthermore, if f ∈ C1∪C2, then Advinv
f (q) ≤

q/2n−1.

Proof. For C1 and C2, just observe that a preimage oracle for the C1 or C2 version
of a PGV scheme can be used to solve the preimage problem for the original
scheme, whose bound is q/2n−1, from [9].

For C+3 , the problem is equivalent to finding h and m such that (F (h,m) ⊕
h+) ∈ D, with F the original (undithered) scheme, for a fixed h+. This equa-
tion is satisfied for a random permutation and arbitrary h,m, h+ with proba-
bility δ/2n. We can use the same strategy as for proving Proposition 1: e.g. for
dMMO3 ∈ C3, let Ci be the event “the i-th query (xi, ki, yi) satisfies (yi ⊕ xi ⊕
h+) ∈ D”, i ∈ {1, . . . , q}; then we have Pr[Ci] ≤ δ/(2n − (i − 1)). By the union
bound, we get

Advinv
f (q) ≤ Pr[C1 ∨ · · · ∨ Cq] ≤ δ · q

2n−1
.

ut

Proof (Theorem 2). An oracle inverting H can be trivially used for inverting
its dithered compression function. The result of the theorem then follows from
Proposition 3. ut

6 Conclusions

Among the 56 dPGV schemes studied,

• 12 inherit the bounds on collision and inversion resistance of the the
original (undithered) constructions, independently of the dither sequence
considered (these are of the form fi,1, i ∈ [1, 12])
• 37 have the “fixed-point” attribute (fi,j , i ∈ [5, 12])
• 8 lead to weak hash functions for HAIFA’s dithering (fi,2, i ∈ [5, 12])

It appears that the most reliable schemes have the dither value simply xored
with the initial chaining value h (subset C1). Nevertheless, the schemes of C2
fail to achieve similar security just because the overlap of dither and padding
might allow collisions, for particular dither sequence. This problem can be easily
avoided in practice, e.g. by encoding the dither in big-endian, and the message-
dependent padding in little-endian, such that the two values do not overlap. In
this case, C2 becomes as secure as C1, with the added benefit that it requires no
change in the implementation of the hash function (whereas all other Ci’s do).

Another desirable property concerns all 56 schemes considered: The fact that
efficiency is no longer affected by the length of dither values allows to use a large
counter, which provides better protection against attacks as [17, 20, 24] than
schemes with short dithers [12]. An additional feature which can be derived from
our constructions is randomized hashing, e.g. by choosing a random starting point
for the counter. This would avoid extra changes to the compression function, like
the RMX transform [21].

Eventually, we stress that dithering not only protects against generic short-
cut attacks for second-preimage—which we might live with, since they remain
much slower than collision search—but also provides a safety net against more
elaborate attacks, and is expected to complicate some existing dedicated attacks.

Further work may consider the existence of generic second-preimage attacks
for dPGV schemes instantiated with particular dither sequences, as well as re-
finement of our proofs at the light of Stam’s recent improvements [46].

Acknowledgments

Particular thanks to Africacrypt anonymous referee #4 for his/her constructive
criticism, and to referees #1, #5 and #6 for their pointing out several ways to
improve readability.

References

1. Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan Hoch, John
Kelsey, Adi Shamir, and Sebastien Zimmer. Second preimage attacks on dithered
hash functions. In Nigel Smart, editor, EUROCRYPT, LNCS. Springer, 2008. To
appear.

2. Paulo Barreto and Vincent Rijmen. The Whirlpool hashing function. First Open
NESSIE Workshop, 2000.

3. Daniel J. Bernstein. The Rumba20 compression function.
http://cr.yp.to/rumba20.html. Function introduced in [4].

4. Daniel J. Bernstein. What output size resists collisions in a xor of inde-
pendent expansions? ECRYPT Workshop on Hash Functions, 2007. See
http://cr.yp.to/rumba20.html#expandxor.

5. Eli Biham. Recent advances in hash functions - the way to go, 2005. Presented at
the ECRYPT Hash Function Workshop, 2005.

6. Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278, 2007. Previously presented at the
second NIST Hash Function Workshop, 2006.

7. Alex Biryukov and David Wagner. Slide attacks. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 245–259. Springer, 1999.

8. John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of
highly-efficient blockcipher-based hash functions. In Cramer [15], pages 526–541.

9. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of
the block-cipher-based hash-function constructions from PGV. Cryptology ePrint
Archive, Report 2002/066, 2002. Full version of [10].

10. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Moti Yung, editor,
CRYPTO, volume 2442 of LNCS, pages 330–335. Springer, 2002.

11. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining colli-
sion resistant hash functions. In Dwork [18], pages 570–583.

12. Charles Bouillaguet, Pierre-Alain Fouque, Adi Shamir, and Sebastien Zimmer. Sec-
ond preimage attacks on dithered hash functions. Cryptology ePrint Archive, Re-
port 2007/395, 2007. See also [1].

13. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of LNCS. Springer, 1990.

14. Donghoon Chang, Kishan Chand Gupta, and Mridul Nandi. RC4-Hash: A new
hash function based on RC4. In Rana Barua and Tanja Lange, editors, IN-
DOCRYPT, volume 4329 of LNCS, pages 80–94. Springer, 2006.

15. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of LNCS.
Springer, 2005.

16. Ivan Damg̊ard. A design principle for hash functions. In Brassard [13], pages
416–427.

17. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Prince-
ton University, 1999.

18. Cynthia Dwork, editor. Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 2006, Proceedings, volume 4117 of LNCS. Springer, 2006.

19. Decio Gazzoni Filho, Paulo Barreto, and Vincent Rijmen. The Maelstrom-0 hash
function. In 6th Brazilian Symposium on Information and Computer Security,
2006.

20. Praveen Gauravaram and John Kelsey. Cryptanalysis of a class of cryptographic
hash functions. Cryptology ePrint Archive, Report 2007/277, 2007.

21. Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized
hashing. In Dwork [18], pages 41–59.

22. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS,
pages 306–316. Springer, 2004.

23. John Kelsey and Tadoyoshi Kohno. Herding hash functions and the Nostradamus
attack. First NIST Cryptographic Hash Function Workshop, 2005.

24. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In Cramer [15], pages 474–490.

25. Lars Knudsen. Hash functions and SHA-3. Invited talk at FSE 2008.
26. Lars Knudsen and Vincent Rijmen. Known-key distinguishers for some block ci-

phers. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages
315–324. Springer, 2007.

27. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl
hash functions. In Alex Biryukov, editor, FSE, volume 4593 of LNCS, pages 39–
57. Springer, 2007.

28. Xuejia Lai and James Massey. Hash function based on block ciphers. In Rainer A.
Rueppel, editor, EUROCRYPT, volume 658 of LNCS, pages 55–70. Springer, 1992.

29. Wonil Lee, Mridul Nandi, Palash Sarkar, Donghoon Chang, Sangjin Lee, and
Kouichi Sakurai. PGV-style block-cipher-based hash families and black-box anal-
ysis. IEICE Transactions, 88-A(1):39–48, 2005.

30. Stephen Matyas, Carl Meyer, and Jonathan Oseas. Generating strong one-
way functions with cryptographic algorithm. IBM Technical Disclosure Bulletin,
27(10A):5658–5659, 1985.

31. Ralph C. Merkle. One way hash functions and DES. In Brassard [13], pages
428–446.

32. Ilya Mironov. Hash functions: From Merkle-Damg̊ard to Shoup. In Birgit Pfitz-
mann, editor, EUROCRYPT, volume 2045 of LNCS, pages 166–181. Springer, 2001.

33. Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. New 128-bit hash function. In
4th International Joint Workshop on Computer Communications, pages 279–288,
1989.

34. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pages 33–43. ACM, 1989.

35. Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-
functions don’t exist. In Moni Naor, editor, EUROCRYPT, volume 4515 of LNCS,
pages 23–33. Springer, 2007.

36. Ken Pohlmann. Principles of Digital Audio. McGraw-Hill, fourth edition edition,
2005.

37. Bart Preneel, Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Collision-
free hash functions based on block cipher algorithms. In Carnahan Conference on
Security Technology, pages 203–210, 1989.

38. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Douglas R. Stinson, editor, CRYPTO, volume
773 of LNCS, pages 368–378. Springer, 1993.

39. Jean-Jacques Quisquater and Marc Girault. 2n-bit hash-functions using n-bit sym-
metric block cipher algorithms. In EUROCRYPT, pages 102–109, 1989.

40. Michael Rabin. Digitalized signatures. In Richard Lipton and Richard DeMillo,
editors, Foundations of Secure Computation, pages 155–166. Academic Press, 1978.

41. Ronald Rivest. Abelian square-free dithering for iterated hash functions. ECRYPT
Workshop on Hash Functions, 2005. Also presented in [42].

42. Ronald Rivest. Abelian square-free dithering for iterated hash functions. NIST
Hash Function Workshop, 2005.

43. Philip Rogaway and John Steinberger. Security/efficiency tradeoffs for
permutation-based hashing. In Nigel Smart, editor, EUROCRYPT, LNCS.
Springer, 2008. To appear.

44. Victor Shoup. A composition theorem for universal one-way hash functions. In Bart
Preneel, editor, EUROCRYPT, volume 1807 of LNCS, pages 445–452. Springer,
2000.

45. Thomas Shrimpton and Martijn Stam. Building a collision-resistant compres-
sion function from non-compressing primitives. Cryptology ePrint Archive, Report
2007/409, 2007.

46. Martijn Stam. Another glance at blockcipher based hashing. Cryptology ePrint
Archive, Report 2008/071, 2008.

47. Wikipedia. Dither — Wikipedia, The Free Encyclopedia, 2007. Accessed 22-
November-2007.

A Definitions

Definition 5 (Collision for Hash Functions). Let H be a blockcipher-based
hash function. The advantage of A in finding collisions in H is

Advcol
H (A) = Pr

[
E

$← Bloc(κ, n), m̄ 6= m̄′,

(m̄, m̄′) $← A HE(m̄) = HE(m̄′)

]
.

Definition 6 (Collision for Compression Functions). Let f be a blockcipher-
based compression function. The advantage of A in finding collisions in f is

Advcol
f (A) = Pr

E
$← Bloc(κ, µ), (h,m) 6= (h′,m′),

(h,m, h′,m′) $← A [
fE(h,m) = fE(h′, m′)

or fE(h,m) = h0

]

 .

B Near-Collisions for dPGV and PGV Schemes

For the 32 schemes of C+
3 , which can be rewritten as f(h, m, d) = F (h,m)⊕ d,

near-collisions might be easily found, depending on the structure of D: sup-
pose there exists d, d′ ∈ D such that d ⊕ d′ has weight w. Then, f(h,m, d) ⊕
f(h,m, d′) = d⊕ d′ and has weight w as well. This trivial property seems not to
imply any weakness on the hash functions, since an adversary has no freedom
on choosing the dither value for a given iteration count.

In the “known-key” scenario for blockciphers, Knudsen and Rijmen [26]
presents a distinguisher for 7-round Feistel blockciphers based on the finding
messages m, m′ such that Ek(m) ⊕ m ⊕ Ek(m′) ⊕ m′ = 0 . . . 0‖x, where x
is a random n/2-bit value. As they observe, it can be applied to find “half-
collisions” on MMO (f1) instantiated with a similar blockcipher; indeed, MMO
sets f(h,m) = Eh(m)⊕m, thus one can choose a h which shall play the role of
the “known-key” (note that in [26] the key cannot be chosen). We observe that
a similar method can be applied to the other PGV schemes f2, . . . , f8 (for some
of them, by conveniently choosing the null value for h or m).

C Origins of Dithering

The use of the term “dither” in the context of hash functions finds its origin
in signal processing, which itself borrowed it from engineers, who adapted the
ancient word “didder” to a mechanical problem. The three quotes below give a
bit more details about this story.

Quoting Rivest [41]: “The word ‘dithering’ derives from image-processing,
where a variety of gray or colored values can be represented by mixing together
pixels of a small number of basic shades or colors; this is done in a random
or pseudo-random manner to prevent simple visual patterns from being visible.
We adapt the term dithering here to refer to the process of adding an additional
’dithering’ input to a sequence of processing steps, to prevent an adversary from
causing and exploiting simple repetitive patterns in the input.”

Quoting Wikipedia [47]: “Dither is an intentionally applied form of noise,
used to randomize quantization error, thereby preventing large-scale patterns
such as contouring that are more objectionable than uncorrelated noise. (. . .)
Dither most often surfaces in the fields of digital audio and video, where it is
applied to rate conversions and (usually optionally) to bit-depth transitions; it is
utilized in many different fields where digital processing and analysis is used—
especially waveform analysis.”

Quoting Pohlman [36]: “one of the earliest [applications] of dither came in
World War II. Airplane bombers used mechanical computers to perform navi-
gation and bomb trajectory calculations. Curiously, these computers (boxes filled
with hundreds of gears and cogs) performed more accurately when flying on board
the aircraft, and less well on ground. Engineers realized that the vibration from
the aircraft reduced the error from sticky moving parts. Instead of moving in short
jerks, they moved more continuously. Small vibrating motors were built into the
computers, and their vibration was called ‘dither’ from the Middle English verb
‘didderen,’ meaning ‘to tremble.’ Today, when you tap a mechanical meter to
increase its accuracy, you are applying dither, and modern dictionaries define
‘dither’ as ‘a highly nervous, confused, or agitated state.’ In minute quantities,
dither successfully makes a digitization system a little more analog in the good
sense of the word.”

