
On the Cryptanalysis of the Hash Function Fugue:
Partitioning and Inside-Out Distinguishers

Jean-Philippe Aumassona, Raphael C.-W. Phanb,

aNagravision SA, route de Genève 22, 1033 Cheseaux – Switzerland
bElectronic & Electrical Engineering, Loughborough University – UK

Abstract

Fugue is an intriguing hash function design with a novel shift-register based compression
structure and has formal security proofs e.g. against collision attacks. In this paper,
we present an analysis of Fugue’s structural properties, and describe our strategies to
construct distinguishers for Fugue components.

Keywords: Hash functions, cryptanalysis, Fugue

1. Introduction

Fugue is a hash function designed by Halevi, Hall and Jutla of IBM Research, and is
one of the 14 candidates in the second round of the US National Institute of Standards &
Technology (NIST)’s public competition [1] to select a new cryptographic hash standard
(SHA-3), in the same manner as the encryption standard AES. Among these 14, Fugue
has one of the least successful third-party analysis published1.

Fugue follows a novel type of design, which allows for formal security arguments
against collision attacks and distinguishing attacks on a dedicated PRF mode [2]. How-
ever, no formal argument is given in favour of its “random” behavior when the function
is unkeyed, as in many hash function applications.

Fugue-256 (the version of Fugue with 256-bit digests) updates a state S of 30 words
of 32 bits using a transform R parametrized by a 32-bit message block. R essentially
consists of two AES-like transforms called SMIX applied to 128-bit windows of S, and
thus can be easily distinguished from a random transform. As Fugue adopts a “little at
a time” strategy wherein small message blocks are processed with a cryptographically
weak function, it needs strengthening via a stronger output function.

To achieve pseudorandomness Fugue-256 relies on a much stronger transform than
R, called the final round G, computed after all message blocks are processed through
the R transform. G returns a 256-bit digest from the 960-bit state by making 18 rounds

Email address: r.phan@lboro.ac.uk (Raphael C.-W. Phan)
1See the SHA-3 Zoo wiki: http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.

Preprint submitted to Information Processing Letters March 7, 2011



involving 36 calls to SMIX (this versus just two calls to SMIX in R). Unlike R, G
does not have trivial distinguishers.

Our preliminary results on Fugue-256 have been presented informally at the second
SHA-3 conference without proceedings. As a sequel, this paper analyzes specific proper-
ties of Fugue-256’s structure and discusses cryptanalysis strategies that we optimized to
construct distinguishers for Fugue-256’s output function G. Indeed, since R is weak by
design, the crux of Fugue’s security lies in G. First, §3 presents our cryptanalysis strate-
gies for constructing a distinguisher for G’s G1 rounds that needs only two unknown
related inputs. Then, §4 shows how we construct an efficient distinguisher for the full G
using chosen inputs.

The latter distinguisher consists in exhibiting tuples of inputs and outputs satisfying
some “evasive” property. Paraphrasing [3], such a property is easy to check but impos-
sible to achieve with the same complexity and a non-negligible probability using oracle
accesses to an ideal primitive—in the present case, a fixed-input-length random oracle.
Such distinguishers are for example relevant to disprove indifferentiability of permutation
constructions [4, 5], or to invalidate indifferentiability claims of hash constructions [6].
These distinguishers often use an inside-out strategy [7, 8] to determine inputs and out-
puts satisfying an evasive property; the distinguisher in §4 is inspired by that strategy.

2. Fugue-256

The hash function Fugue-256 processes a message m by appending it with zeros
and an 8-byte encoding of its bit length to obtain a chain of 32-bit words denoted
m0,m1, . . . ,mN−1. This is processed by updating the 30-word state S = (S0, . . . , S29)
as S ← R(S,mi) for i = 0, . . . , N − 1, where S is initialized to a fixed IV. The output
digest is G(S).

For conciseness, we omit the description of the round transformation R, as our crypt-
analysis is irrespective of this. The reader is referred to [2] for more details of R. It is
sufficient to note that one R is analogous to two AES rounds. In contrast, G is analogous
to 36 AES rounds.

The final round G transforms the internal state (S0, . . . , S29) by doing five G1 rounds:

ROR3; CMIX; SMIX

ROR3; CMIX; SMIX

followed by 13 G2 rounds:

S4+ = S0;S15+ = S0; ROR15; SMIX

S4+ = S0;S16+ = S0; ROR14; SMIX

where ROR3, ROR15 and ROR14 right-rotate S by 3, 15 and 14 words, respectively,
and where + denotes bitwise exclusive-or (XOR). CMIX is defined as:

S0+ = S4; S1+ = S5; S2+ = S6;

S15+ = S4; S16+ = S5; S17+ = S6.

2



SMIX bijectively transforms the 128-bit vector (S0, S1, S2, S3). Inspired by the AES
round function, SMIX views its input as a 4×4 matrix of bytes. First each byte passes
through the AES S-box, then a linear transformation called Super-Mix is applied. Unlike
AES’ MixColumn, Super-Mix operates on the whole 128-bit state rather than on each
column independently, which makes SMIX stronger than the original AES round. Super-
Mix is the only Fugue component that provides bytewise mixing within word borders,
the other Fugue components only provide wordwise mixing. We refer to [2] for a detailed
description of Super-Mix.

G finally returns as hash value the eight words

S1, S2, S3, (S4 + S0), (S15 + S0), S16, S17, S18.

G thus makes in total 36 calls to SMIX.
Throughout this paper, we will let Sj

i denote the value of Si at the input of G’s round
(j + 1) ≥ 1. For example, S0

5 is the word S5 of the initial state S0, i.e. to be input to
round 1. If the context is clear, we may omit the round index j for simplicity of notation.

3. Partitioning distinguisher for G1 rounds

We show how to construct a distinguisher that applies to all the five G1 rounds of G,
and analyze the specific Fugue properties that we exploit. Note that a G1 round offers
more diffusion than a G2 round, i.e. CMIX in a G1 round involving three XORs diffuses
more words than the two XORs in a G2 round.

3.1. Analysis of Fugue properties

The first property we exploit is the fact that the 32-bit wordsize of Fugue has a fairly
large domain, meaning that more effort is required within the design to ensure that full
bitwise diffusion is achieved, i.e. that a change in any bit affects all output bits after
some Fugue internal component. What this means is, even if a change in an input word
is said to affect all output words, this may not be entirely true at the bit level for all bit
positions within the corresponding words. The partitioning distinguisher that we present
in this section exploits this.

The second exploited property is that Fugue respects word boundaries and byte
boundaries, i.e. the boundaries between words and bytes in any state of G do not
become misaligned. Although it is common for word based functions to preserve word
boundaries, Fugue’s preservation of byte boundaries (within words) as well, allows to
trace a word down to the granularity of its component bytes. And this is further ampli-
fied by the fact that Fugue’s operations only perform word-level mixing and no internal
mixing within a word except for the Super-Mix operation of SMIX.

This means that we can trace the different bytes within a word and observe that they
influence bytes at the same byte location within other words. Let a word be decom-
posed as four bytes b0b1b2b3; if the byte at b0 affects another word via ROR3, ROR15,
ROR14, CMIX or the S-box, that effect will also be at byte position b0 within the
latter word. Only Super-Mix performs bytewise mixing but this is still largely traceable
since it is based on matrix multiplication with a constant and sparse linear matrix.

3



3.2. Constructing the distinguisher

We trace the propagation of the input word S0
5 through G, where we denote the bytes

of S0
5 as B0B1B2B3. This S0

5 propagates with probability one to S4
29. In round 5, ROR3

moves this to position S2, which then enters SMIX. Let the bytes after the S-box be
b0b1b2b3. By inspecting the definition of the matrix N of Super-Mix, the corresponding
output words S0S1S2S3 of the S-box are composed of the following bytes:
f(0)f(1)f(0123)f(3), f(0)f(023)f(∅)f(3), f(0123)f(1)f(∅)f(3), f(0)f(1)f(∅)f(0123) where
f(i) denotes some undetermined function of the input byte(s) bi and where f(∅) denotes
no influence of any of the input bi’s.

These words then become S3S4S5S6 after ROR3 and subsequently CMIX XORs
S4S5S6 with S0S1S2 (which up to this point has not been influenced by S0

5 at all),
to form the new S0S1S2. Thus, S0S1S2S3 entering the second SMIX of round 5 are
influenced by the the same bytes of S0

5 that had entered the first SMIX of round 5,
except the order is shifted, i.e. the S0S1S2S3 inputs to SMIX at this point are:
f(0)f(023)f(∅)f(3), f(0123)f(1)f(∅)f(3), f(0)f(1)f(∅)f(0123), f(0)f(1)f(0123)f(3) and
after SMIX we have S0S1S2S3 of the form:
f(•)f(•)f(•)f(•), f(013)f(•)f(013)f(•), f(•)f(•)f(•)f(•), f(•)f(•)f(•)f(•) where f(•)
denotes some undetermined function of all the input bytes b0b1b2b3.

Observe that the first and third bytes of SMIX output word at S5
1 are only influenced

by b0b1b3 and not by b2. This property has been empirically verified using the Fugue
source code submitted to NIST’s hash competition.

This property can be exploited as a distinguisher: we obtain just one pair of inputs
to G such that only the byte B2 of S0

5 varies while the other bytes are constant, and
check that after five rounds the first and third bytes in S5

1 remain unchanged. Note that
this does not require the cryptanalyst to know what the input values to G are, nor that
s/he be able to choose or know the difference between the inputs (as would differential
cryptanalysis). Instead, the cryptanalyst only needs to vary the input byte B2, e.g. flip
one bit. This is akin to a partition on the input space (where only the byte B2 of S0

5 is
non-constant) that leads to an output partition of colliding values (first and third bytes
in S5

1 are constant) indexed by these two constant byte positions. This distinguisher
succeeds with probability one and is sufficient to distinguish all five G1 rounds from
random by just looking at one output word S5

1 , more specifically in fact two bytes.
This result is surprising since SMIX which is seen to be stronger than one AES

round, unfortunately is not used optimally within a G round although the same bytes
of S0

5 enter SMIX twice within round 5 and yet do not fully influence all bytes of the
final 128-bit SMIX output. In contrast, AES achieves full diffusion on its 128-bit output
state, i.e. each output byte is influenced by all input bytes after two rounds.

One of the reasons for this is because the constant matrix N used by Super-Mix within
SMIX is too sparse. Furthermore, if we analyze this bytewise, this sparsity causes some
output bytes of Super-Mix to not be influenced by any of the four bytes composing a
particular input word Si.

4



4. Inside-out distinguisher for full G

We will now show how to construct a distinguisher for the full 18 rounds of G, which
consists in an efficient method to find pairs of initial states (S, S′) that differ in 66 bits
on average, and such that G(S) and G(S′) remain constant for all pairs found. To the
best of our knowledge, such a distinguisher type (i.e. where the distinguishing output
pattern consists of checking for pairs with a constant difference) is novel. Along the way,
we make explicit the particular Fugue properties that we exploited.

We first present probability-one differential characteristics for 15 rounds of G which
will later be used to construct our full round distinguisher. The Fugue analysis in [2,
§12.4.2] considered a difference to be induced in the right half of the input state such that
after one G1 round, differences exist in the last few words. This difference propagation
was then traced through five G1 rounds before G2 and it was concluded that if done this
way then no differences enter the SMIX for most of the subsequent G2 rounds. In fact,
differentials need not necessarily start from the initial round; it is common to construct
differentials for some middle rounds and then exploit this in distinguishers that cover
more rounds.

For an arbitrary state S, we consider instead an arbitrary input difference ∆ in S5

(left half of the state) and no difference in the other Si’s. Then after four G1 rounds
followed by 11 G2 rounds (thus 15 rounds in total), the state S always has a difference
∆ in S18 and no difference in the other Si’s. The strategy here is to keep in mind that
SMIX, CMIX and addition are the only Fugue components that provide diffusion, so
the trick is to avoid having a difference enter any of these operations.

4.1. Constructing the distinguisher for 18 G rounds

To construct the 18-round distinguisher, we take the inside-out strategy, i.e. start
from the middle of G. This is possible because a hash function as is Fugue is unkeyed, i.e.
it is not dependent on any secret, so any component can be computed by the cryptanalyst
starting from the middle of G moving outwards to both ends of G.

More precisely, we start from the output of round 16, i.e. S16. In the forward direction
we move through rounds 17∼18. In the other direction, we move through rounds 16∼1
backwards, firstly by applying the 15-round probability-one characteristic to rounds 2∼16
in reverse and then further inverting round 1 to get to the initial state.

4.1.1. Forwards: constant G(S) and G(S′)

In more detail, recall that after its last (18th) round, G extracts 256 bits from the
960-bit final state by returning S18

1 , S18
2 , S18

3 , (S18
4 +S18

0 ), (S18
15 +S18

0 ), S18
16 , S

18
17 , S

18
18 to form

its output. This output digest does not depend on the values of S16
7 ∼ S16

13 and S16
21 ∼ S16

28

entering the 17th round.
This exploits the fact that G uses truncation on the round 18 output S18 to produce

the output digest, so the round 18 output words that are truncated out (and thus the
corresponding S16 words that affect these S18 words) do not affect the output digest.

5



Thus we can fix S16
0 ∼ S16

6 , S16
14 ∼ S16

20 , and S16
29 to ensure that G(S) and G(S′) remain

unchanged while varying the other words (recall that S′ is S after setting a difference in
S16
18). This observation allows us to find the values of distinct pairs of states (S16, S

′16)
before round 17 such that their respective digests (G(S),G(S′)) are constant for all pairs
found (and thus their difference is constant as well).

4.1.2. Backwards: characteristic and sparse initial differences

Having determined a pair of states (S16, S
′16) entering the 17th round with a difference

∆ in S18, it is guaranteed that after inverting 11 G2 rounds and then four G1 rounds
backwards to the state after round 1, one obtains a pair of states (S1, S

′1) with only
a difference ∆ in their S5 word, as they follow the 15-round characteristic backwards
with probability one. Since there is only one G1 round left to invert in order to get
to the initial state, most of the state is unaffected by ∆: it is easy to show that the
corresponding pair of initial states (S0, S

′0) will have difference ∆ in S10 and S25, caused
by the first inverse CMIX, and undetermined differences in S0, S27, S28, S29, caused by
the second inverse SMIX.

Therefore, only six words of the initial state have nonzero differences, and if ∆ is
chosen of minimal Hamming weight (i.e. 1), then the two states have on average 66 bit
differences (assuming that the inverse SMIX causes in average differences in half the bits
of its input; this seems a reasonable assumption, as the linear layer of the inverse SMIX
has a much denser algebraic description than the original, as shown in [2, Fig. 5]). Our
experiments did not contradict that estimate.

5. Final Remarks

Summarizing, the fact that word and byte boundaries are preserved, no internal
mixing within a word, except for Super-Mix and the fact that the diffusion matrix N is
very sparse facilitate the task of tracing bytes within words. The fact that there is heavy
truncation of intermediate state to form output digest allows to vary the omitted state
words to obtain (via inverting) the different input states that would preserve the output
digest values.

[1] NIST, Cryptographic Hash Competition, http://www.nist.gov/

hash-competition, accessed October 2010.

[2] S. Halevi, W. E. Hall, C. S. Jutla, The Hash Function Fugue, Submission to NIST
(updated), 2009.

[3] H. Gilbert, T. Peyrin, Super-Sbox Cryptanalysis: Improved Attacks for AES-like
permutations, Cryptology ePrint Archive, Report 2009/531, 2009.

[4] Y. Dodis, P. Puniya, On the Relation Between the Ideal Cipher and the Random
Oracle Models, in: TCC, LNCS, Springer, 184–206, 2006.

6



[5] J.-S. Coron, J. Patarin, Y. Seurin, The Random Oracle Model and the Ideal Cipher
Model are Equivalent, Cryptology ePrint Archive, Report 2008/046, full version of [9],
2008.

[6] J.-P. Aumasson, W. Meier, Zero-sum distinguishers for reduced Keccak-f and for the
core functions of Luffa and Hamsi, NIST mailing list, 2009.

[7] A. Biryukov, D. Wagner, Slide Attacks, in: FSE, LNCS, Springer, 245–259, 1999.

[8] L. R. Knudsen, V. Rijmen, Known-Key Distinguishers for Some Block Ciphers, in:
ASIACRYPT, LNCS, Springer, 315–324, 2007.

[9] J.-S. Coron, J. Patarin, Y. Seurin, The Random Oracle Model and the Ideal Cipher
Model are Equivalent, in: CRYPTO, LNCS, Springer, 1–20, 2008.

7


