UNIVERSITE .l)
PARIS 7 - DENIS DIDEROT V (ﬂ!

FEDERALE DE LAUSANNE

A Novel Asymmetric Scheme with Stream
Cipher Construction

Jean-Philippe Aumasson

Master’s thesis

September 2006

Responsible:
Prof. Serge Vaudenay
LASEC, EPFL

LAZSEL

i

"Tout ce qui a pu se dire contre la science ne saurait faire oublier
que la recherche scientifique reste, dans la dégradation de tant
d’ordres humains, l'un des rares domaines ou I’homme se con-
trole, s’incline devant le raisonnable, est non bavard, non violent
et pur. Moments de la recherche certes constamment interrom-
pus par les banalités du quotidien mais qui se renouent en durée
propre. Le lieu de la morale et de l’élévation ne se trouve-t-il pas

désormais au laboratoire 2"
Emmanuel Levinas (Le Monde, 19/20 mars 1978)

il

v

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Serge Vaude-
nay, his outstanding care and concern for students is exemplary. I am also
grateful to Matthieu Finiasz for his assistance and many INTEX tips.

I address many thanks to Willi Meier for his relevant remarks and kind-
ness, and to his student Simon Kiinzli for fruitful discussions about TCHO.

My officemates Salvatore Bocchetti, Jean Monnerat, Florin Oswald, and
Raphael Phan shall also be mentionned here, for their sporadic help and
constant sympathy.

On the personal side, I am deeply indebted to my parents for making
this expatriation possible, and finally my most tender thanks go to Paula,
for her support.

Abstract

This work is based on the public-key stream cipher TCHO designed by Fini-
asz and Vaudenay, which relies on the hardness of finding a low-weight mul-
tiple of a given high-degree polynomial over the field % of arbitrary weight,
and on the noisy decoding of the linear code spanned by a linear feedback
shift register (LFSR). The encryption procedure is non-deterministic: it in-
volves two LFSR’s, and a source of random bits of a given bias, whereas
decryption consists in an exhaustive search algorithm and simple linear al-
gebra operations.

Until now, stream ciphers were only symmetric, and asymmetric schemes
were somewhat difficult to employ in constrained environments, like portable
devices or passive RFID tags. In that sense, a secure public-key cryptosystem
with stream cipher-like design would be a breakthrough.

We first implement TCHO in software with a high-level language, and
create several algorithms to compute a pseudo-random bitstream of given
bias from a source of uniformly distributed random bits. We also adapt an
optimized algorithm computing the output of a large LFSR, and briefly study
the problem of testing the primitivity of a high-degree polynomial over .
Experimental results stress out a prohibitive key generation and decryption
time, in addition to limitations on the length of a plaintext, and a too high
failure probability in decryption.

Then, by viewing the encryption as the communication of a codeword
of some cyclic linear code over a binary symmetric channel, we generalize
the construction and create derived scheme, called TCHO2. We suggest to
use other codes than arbitrary LFSR ones, and study the remarkable case
of block repetition codes, which allow a decryption algorithm exponentially
faster, along with a sharp estimation of the error probability.

We prove the semantic security of both TCHO and TCHOZ2, and pro-
pose two hybrid constructions to build an IND-CCA secure system. We also
introduce a new adversary model (ICCA), weaker than CCA, and study a
construction for which TCHO2 is IND secure in this model. Eventually, we
exhib secure asymptotic parameters, and compare to RSA.

In the ultimate chapter, we present some weaknesses of the pseudo-
random generator ISAAC.

Part of this work lead to a submitted paper.

vi

Résumé

Ce travail est basé sur un nouveau systéme a clé publique proposé par Finiasz
et Vaudenay, possédant une construction de chiffrement de flux propice a
une implantation matérielle, se démarquant ainsi des systémes asymétriques
courants nécessitant des opérations arithmétiques non triviales, banissant de
ce fait 1'utilisation de protocoles basé sur des schemas asymétriques dans
certains environnements, comme les tags RFID passifs.

La sécurité du systéme repose essentiellement sur la difficulté de retrouver
un multiple de poids faible d’un polynéme de haut degré et de poids quel-
conque sur le corps Fo. L’algorithme de chiffrement est non-déterministe, et
nécessite deux LFSR ainsi qu'une source de bits pseudo-aléatoires d’un biais
donné. Le déchiffrement consiste en un algorithme de recherche exhaustive
et de simples opérations d’algébre linéaires.

Nous implémentons tout d’abord TCHO dans un langage de haut niveau ;
plusieurs algorithmes sont crées pour la production de la séquence pseudo-
aléatoire, et un algorithme optimisé est adapté pour le fonctionnement de
LFSR longs de plusieurs milliers de bits. Experimentalement, le temps d’une
génération de clé et d’un déchiffrement s’avérent prohibitifs, de plus certaines
limitations sur la taille d’'un message clair, ainsi qu'une probabilité d’erreur
non négligeable dans le déchiffrement et une grande expansion du chiffré,
rendent le systéeme inutilisable en pratique.

Nous proposons ensuite une variante, nommée TCHO?2, réduisant expo-
nentiellement le temps de déchiffrement, pour laquelle nous calculons pré-
cisement le taux d’erreur. La sécurité sémantique de ce nouveau systéme est
prouvée sous certaines hypothéses, et nous proposons deux constructions hy-
brides garantissant I'indistinguabilité des chiffrés dans des attaques & chiffré
choisi adaptives. Un nouveau modeéle d’adversaire est présenté (ICCA), dans
lequel nous étudions la sécurité de TCHO?2 et certaines de ses variantes. Fi-
nalement, nous étudions le comportement asymptotiques des paramétres du
systéme, et comparons avec RSA.

Enfin, le dernier chapitre présente plusieurs faiblesses observées sur le
générateur pseudo-aléatoire ISAAC.

Une partie de ce travail a donné lieu a un article soumis & publication.

vil

Note: Comme il est d’usage & 'EPFL, le rapport est rédigé en anglais,
pour une meilleure accessibilité.

viii

Notations

Notation

ged(z,y)

log =

Name

set of integers

set of prime numbers

finite field with g elements

ring of polynomials over F,

vector space of dimension n over [

d-th Mersenne number: 2¢ — 1

probability of the event E, with contextual probability law
probability of the event F' conditioned to E’s occurrence
affectation

randomized affectation (uniform law)

floor: max{n|n < z,n € Z}

ceil: min{n|n > z,n € Z}

nearest integer: n € Z,Vk € Z,|x — n| < |z — k]

division operation

division predicate: dz,x X z =y

greatest common divisor of z and y

the transcendental number: e =3 -, 57 ~ 2.7182818

n!

binary logarithm: logs x

X

Inx

natural logarithm: log, z

factorial: []7_ok

binomial coefficient: ﬁlk)'

some polynomial function in n

transpose of the matrix M

degree of the polynomial P

order of the polynomial P: min{k, X¥ =1 mod P}

weight: number of non-zero coefficients of the polynomial P
concatenation of the bitstrings and y

Hamming weight: number of non-zero bits in the bitstring «
bitstring = left-shifted of k bits “4 la C” (neither circular nor expanding)
LFSR with feedback polynomial P

1dem, but initialized with the bitstring x

bitstream generated by Lp(x)

random bitstream with bias

bitstream S truncated to its first ¢ bits

product of a polynomial and a bitstream

Contents

Acknowledgements v
Abstract vi
Résumé vii
Notations viii

1 Preliminaries 1
1.1 Terminology 1
1.2 Information and coding 2
1.3 Stream ciphers oo 4
1.3.1 Generalities 4

1.3.2 The linear feedback shift register 4

1.4 Public-key cryptography 8
1.5 Security definitions00 8

2 The TCHO scheme 12
2.1 Computational problems 12
2.1.1 Finding a sparse multiple of a high-degree polynomial 13

2.1.2 Decodinga LFSRcode 14

2.1.3 The hidden correlation problem 15

2.2 The public-key scheme L. 16
2.2.1 Key generationo 16

2.2.2 Encryption and decryption 17

2.2.3 Parameters selection 17

2.3 Conclusion. 18

3 Implementation of TCHO 19
3.1 Linear feedback shift register 19
3.1.1 Algorithm L. 19

3.1.2 Analysis 20

3.2 Pseudo-random generation with given bias 21
3.2.1 Choice of a random source 22

x1

3.2.2 Algorithm G1
3.2.3 Algorithm G1+
3.24 Algorithm G2 L.
3.2.5 Algorithm G3
3.2.6 Algorithm G4
3.27 Conclusion o0
3.3 Primitivity testing of a high-degree polynomial
3.3.1 Proportion of primitive polynomials
3.3.2 Known deterministic tests
3.3.3 Using a non-primitive polynomial
3.3.4 A filter for primitive polynomials
3.3.5 Conclusion L
3.4 Key generationo
3.5 Encryption and decryption.o
3.6 Experimental results

The TCHO2 scheme
4.1 Presentation oL
4.2 LFSR codes with trinomials
4.3 Block repetition codes L.
4.3.1 Description and reliability
4.3.2 Experimental results
4.4 Asymptotic parameters
4.5 Comparison with other cryptosystems
4.6 Conclusion L

Security

5.1 One-wayness and non-malleability

5.2 Semantic securityo
5.2.1 A sufficient condition
5.2.2 Distinguishing a noisy LFSR from random

5.3 Hybrid encryption IND-CCA secure
53.1 KEM/DEM
5.3.2 Fujisaki-Okamoto revisited
5.3.3 Practical concerns

Derived constructions

6.1 TCHO2over F,
6.1.1 Descriptiono
6.1.2 Reliability o

6.2 A weakly secure scheme with reduced expansion

6.3 Towards IND security against chosen-ciphertext adversaries .
6.3.1 Definitions of ICCAand IPA
6.3.2 Notion of valid ciphertext and IND-ICCA security . . .

xil

42
42
43
43
43
45
46
47
47

48
48
49
49
49
50
50
ol
52

53
53
93
53
95
56
o6
99

Conclusion
References

Appendices
A Weak initial states in ISAAC

B The Blum-Goldwasser asymmetric stream cipher
C Number of irreducible and primitive polynomials

xiii

Chapter 1

Preliminaries

This chapter introduces the background knowledge required to understand
the developments following. The reader familiar with cryptology may skip
most of the chapter.

1.1 Terminology

The logarithm in base 2 is denoted log, and the natural logarithm In. The
floor and ceiling of a real number r are respectively denoted [r] and [r],
while the nearest integer is denoted |r].

An element of F, is called a bit hereafter. An element of Fj is called a
bitstring, where n may be finite or infinite. Its length |x| is its number of
bits. Its Hamming weight wp(x), or simply weight, is its number of ones.
The Hamming distance between two bitstrings x and y of equal length is the
number of positions where = and y differ. The concatenation of x and y is
z|ly. The sum over F, is denoted +, and the product - or x. A bitstring
x can be written (z1,z2,...,2y,), and (0,...,0) can simply be denoted 0.
The sum of two bitstrings of equal length returns a bitstring, and is defined
as a sum component by component. It is symbolized as the usual addition
by the sign +, we will sometimes use the neologism “to xor” to denote this
operation. A bitstream is a bitstring of potentially infinite length produced
by some device or bit source, and shall be denoted by the symbol & with
contextual subscript. The symbol S refers to the bitstream S truncated to
its first £ bits.

Elements of the ring F»[X] are simply called polynomials hereafter. To
lighten notations, a polynomial P(X) is written P. The degree of a polyno-
mial P is denoted deg(P), and its weight w,(P) is its number of non-zero
coefficients.

If we speak about random bits, or random sequence, etc., it is either
uniform or non-uniform randomness, and specified only where the meaning
can be ambiguous. When no probability ditribution or space is specified,

randomly chosen means randomly chosen among all the objects of that kind,
with respect to a uniform probability law. We may simply call uniform bits
a sequence of uniformly distributed random bits, and biased bits a sequence
of random bits with a certain bias.

The statistical distance between two probability ensembles Dy and Do
over {0,1}" is defined as

D= > |Bile] - Prlal]

D
zef0,1)n

We shall use the acronyms CCA, CPA, IND, NM, and OW, respectively
standing for the usual notions of adaptive chosen ciphertext attack, cho-
sen plaintext attack, indistinguishability, non-malleability, and one-wayness.
Corresponding definitions are recalled in a further section.

Finally, we introduce the natural values ceasy and charq, chosen such that
an algorithm of time complexity below 2% ig considered as feasible, but
intractable over 2%ard (choosing ceasy = 40 and cparg = 80 seems reasonable
today).

1.2 Information and coding

We recall that the length n of a code C is the fixed number of symbols of
a codeword, while the distance d of a code (or minimum distance) is the
minimal Hamming distance between two codewords. We will only consider
binary codes, i.e., where the alphabet is {0, 1}.

Introduced in 1948 by Claude E. Shannon |Sha48|, information theory
is strongly related to coding and decoding problems, some of its results are
essential in the security of TCHO. In Shannon’s theory, any information can
be coded as a sequence of bits, so as to be transmitted from an transmitter
(encoder) to a receiver (decoder) over a communication channel, which may
be noised. We consider the model of the binary symmetric channel: each bit
sent is modified with a given probability, unchanged otherwise, and no bit is
added nor deleted. A random source can be defined by its bias:

Definition 1. A random source of bits with bias —1 < v < 1 produces a
zero with probability py = (v +1)/2 (and a one with probability 1 — p.).

That is, 7 is equal to the difference between the probability to output
a zero and the probability to ouput a one. We can limit us to the case of
positive biases without loss of generality.

Definition 2. The amount of randomness, or information entropy, of a
random bitstring of length £ with bias v is

- H(py)

where H(py) is the information entropy function:

H(py) = —pylogpy, — (1 — p,)log(1 —p,)

It thus captures the concept of information contained in a random bit-
string, by measuring its level of uncertainty .

Definition 3. The rate of a code of fized length n and m words is the value

n_ logm

n

Clearly, R <1 (we cannot have more than 2" distinct words in a code of
length n). Hence a code reaches R = 1 when no redundancy has been added
in the code, in this case no error can be detected.

Definition 4. The capacity of a binary symmetric channel noised with bias
v 18 the value

C, =1+ pylogpy + (1 —py)log(l —p,),

Informally, the channel capacity, is the amount of discrete information
that can be reliably transmitted over a channel.

This fundamental theorem states a bound on the ability to decode on a
noisy channel (see [Sha48] for the proof):

Theorem 1 (Shannon, informal). Let us be given a channel of capacity C,
with information transmitted at a rate R. There exists a way to decode with
an arbitrary small error probability if and only if R < C.

We now define a broadly used family of codes.

Definition 5. A linear code of length n is a subspace of F3'. The dimension
of this subspace is called the dimension of the code, and usually denoted k.
If the code has distance d, it is called a (n,k,d) linear code.

As a consequence, any linear code has a n X k generator matriz G of full
rank, and any matrix row equivalent to G also generates the code.

Definition 6. A linear code C of length n is cyclic if, for any c = (c1,...,¢,) €
{0,1}",
ceC = (ep,c1y...,0q-1) € C.

We now give some results on the ability to detect and correct errors;
by considering the spheres centered on each codeword (i.e. all the words
at a given distance from a given codeword), the following theorem is quite
intuitive:

!The story goes that Shannon did not know how to call this measure, so he asked Von
Neumann, who said “You should call it entropy (...) [since] no one knows what entropy
really is, so in a debate you will always have the advantage”, see [TM71] for more details.

Theorem 2. A code of distance d can correct up to Ld;QIJ errors.

Proof. The spheres of radius L%J centered on each codeword do not over-
lap, thus any codeword with at most this amount of errors belongs to a single
sphere, and decoding only consists in choosing the center of this sphere. [J

The following bounds on linear codes are given without proof.

Theorem 3 (Hamming). If C' is a (n,k,d) linear code, with d =2t + 1 or

2t 4+ 2, then
t
n
C <2"
| E() <

Theorem 4 (Singleton). For any (n,k,d) linear code, d <n —k+ 1.

Those definitions are the minimal requirements for the understanding of
the coding related parts of this report, for further theory one can refer to the
reference [Rom92|, [HWLT91] for a concise introduction to the subject, or
even [MS77| for an intermediate approach, also dealing with pure information
theory.

1.3 Stream ciphers

1.3.1 Generalities

Stream ciphers used to be symmetric ciphers, producing a bitstream (called
the keystream) defined by the secret key, combined with the message to build
the ciphertext, and can thus be depicted as keystream generators, devices
producing a random looking bitstream from a certain key. The combination
is the most often defined as a simple XOR, but more general definitions exist.
Stream ciphers can often be seen as pseudo-random generators. The stream
cipher paragon is the Vernam cipher [Ver26], proved unconditionnally secure
by Shannon in 1949, under the condition that each random sequence is used
only once, introducing the notion of perfect secrecy. One can wonder why
we do not simply use pseudo-random generators as stream ciphers; the main
difference is that stream ciphers’ bitstreams must be defined by a unique key,
belonging to a large enough key space, satisfy several statistical properties
to be declared cryptographically secure, and reach good hardware and/or
software performances so as to be effectively used.

Stream ciphers can be either synchronous or self-synchronous: in the
first case, the keystream only depends on the key, whilst in the second it
also depends on the previous encrypted bits (for example, the CFB operation
mode of block ciphers). Some famous stream ciphers are A5/1 (used in GSM
encryption), EO (used in Bluetooth protocol), RC4 (used in SSL and WEP),
SEAL, SOBER, SNOW, Phelix, etc.

1.3.2 The linear feedback shift register

The linear feedback shift register (LFSR) is a structure widely used in the
design of stream ciphers, either in its original form, or under variants like the
self-shrinking generator [MS94| or the Galois LFSR. Here, after short pre-
liminaries, we introduce our formalism and state some remarkable properties
of the LFSR and its outputs.

On polynomials

We call binary polynomial an element of the ring F»[X]. Each binary poly-
nomial can be written under the normal form

00
E CiXZ,
=0

where the number of non-zero coefficients is finite. We will only deal with
binary polynomials, and simply call them polynomials.
These two routine definitions are essential for the following developments:

Definition 7. The order of P € F,[X] is the smallest integer k > 1 such
that X¥ =1 mod P.

Definition 8. P € Fy[X] is said to be primitive if its order is 29°8(P) — 1
(the mazimal possible order for this degree).

More precisely, an irreducible polynomial of degree d is said to be prim-
itive if its root in the splitting field Fyq is a generator of the multiplicative
group ;.

The next proposition is just the application of a famous theorem of La-
grange:

Proposition 1. The order of any irreducible binary polynomial P of degree
d divides 2% — 1.

Corollary 1. If 2¢ — 1 is prime, then any irreducible binary polynomial of
degree d is primitive.

Definition

A binary LFSR Lp of length n is a device aimed at producing a bitstream,
composed of a register of n bits (s;, ..., Si+n—1), and a linear feedback func-
tion, characterizing the update the register. We only consider LFSR’s where
the register values are elements of 5, but one can also build LFSR’s on [F,,
for some ¢ = p™, p € P. The register content is usually called the state
of the LFSR, and (sg,...,s,—1) the initial state, which entirely determines
the bitstream produced. The feedback function is defined by a polynomial

P=3%> pi X" of degree n, called the feedback polynomial, of degree equal
to the LFSR length. The offsets where P has non-zero coefficients are of-
ten called taps. The update of the state is described by the following linear
operation?:

ss \' /0 0 0 p si+1\"
1 0 D2 ;
0 1 : =)
: -0 ppo1 :
Si+n—1 0 0 1 p, Sitn

and so the bitstream produced with an initial state xz € ' is

SLP(I) = (So,... ,Si,...).

A LFSR is a weak source of random information; bits are strongly cor-
related, and the sequence is condemned to be ultimately periodic, since the
number of distinct states is finite: only 2 — 1 (the all-zero state is dis-
carded). A LFSR is called optimal when its period is maximal, i.e. equal
to the number of possible non-zero states. By representing the keystream
as a generating function, some routine calculus leads us to the following
proposition (one will refer to any good book or lecture notes for the proof):

Proposition 2. The period of a LFSR is equal to the order of its feedback
polynomial.

Corollary 2. A LFSR of size n achieves its mazimal period 2™ — 1 if and
only if its feedback polynomaial is primitive.

Thus for any non-zero initial state, if the feedback polynomial is primive,
then all the non-zero states will appear in a period.
Properties of the bitstream

Definition 9. The product of a binary polynomial K =32 ki X of degree
d and a bitstream SN = (sq,..., 844 N_1) is defined as

K @SN = (sp,...,8_1)

with
s; = siko + sit1k1 + - + Sipaka-

2One may also find in literature different formalisms where the polynomial is reversed,
i.e., where it is the reciprocal of the characteristic polynomial of the recurrence, but both
are canonical, and equivalent.

The operator thus defined is distributive over the bitstring sum and the
polynomial sum, it verifies

(PQ)®S=PR(Q®S)and PR Sz, (z) =0

for all P,Q € ;[X], any bitstream S, and any bitstring x of length deg(P).
As a consequence we have:

Fact 1. VP,Q € F[X] with non-zero constant term, VR € FB[X], Vx €
FSeE ") vy e B9 we > deg(QR),

This result will be used to "delete" a LFSR bitstream, in the decryption
procedure of TCHO. We now state a bridge with coding theory:

Fact 2. Let P be a polynomial of degree dp. The set {Sﬁp(x),:n c T} is a

cyclic linear code of length ¢ and dimension at most 2%.

Security of LFSR-based stream ciphers

In practice, one never uses the textbook LFSR as a stream cipher, but one or
several LFSR’s combined with non-linear operations, such as permutations,
boolean functions with high algebraic degree, or more exotic constructions.
Examples classical design techniques are the non-linear combination gener-
ator, the non-linear filter generator, or the clock-controlled generator.

Basically, the goal of an attacker is to recover all or part of the initial
state of the LESR (or any information related), from a source of information
depending on the security model considered. Generally, an attack is per-
formed when a few bits of the keystream are known, successive or not. Note
that an attacker gains nothing in chosen ciphertext attack compared to a
chosen plaintext attack or a known plaintext attack, since the information
obtained on the secret (the keystream bits) is exactly the same (this stands
only when the combination can be inversed, e.g. if it is a simple XOR). The
problem of finding the minimal polynomial producing a given LFSR stream
has also been investigated, and lead to the well-known Berlekamp-Massey
algorithm |Ber68|.

Brute force attacks Assuming that the construction does not allow us to
easily recompute the initial state of a LFSR from all or part of the keystream,
the first naive attack to retreive this secret is the try-and-test approach, the
so-called ezhaustive search. A secure stream cipher is often defined as one
where it is the best possible attack, the Grail of cryptographers. The average
time complexity of this attack is clearly in Q(2"~!), where n is the number
of secret bits. As usual, time-memory trade-off can reduce this cost (cf.
dictionary and codebook attacks).

Correlation attacks This famous attack was discovered by Siegenthaler
in 1985 |Sie86], then improved by Meier and Staffelbach |[MS88| who pre-
sented it as a decoding problem; the general idea is to find a statistically
biased distribution between the keystream and a bitstream produced by
another source, typically a LFSR. It can lead for example to reduce the
attack to the noisy decoding of the code spanned by another LFSR. Sev-
eral decoding algorithms have been proposed; maximum likelihood, Gal-
lagher’s iterative decoding of low-density parity-check codes, turbo codes,
etc. In particular, correlation attacks were used to attack the widely used
EO0 [LV04a, Ekd03, HN99|, and even the RC5 block cipher [MNTO02].

Other attacks Below, for historic purposes, we give a non-exhaustive list
of known attacks on stream ciphers (LFSR-based or not):

e key reuse (medieval)

e correlation (Siegenthaler, 1984),
e guess-and-determine (Giinter, 1988),
e resynchronization (Daemen et al., 1993),

e time-memory tradeoffs (Babbage, 1995)

Y

Y

e backtracking (Golic, 1997)
e algebraic (Shamir et al., 1999),
e side channel (Kocher et al., 1999),

e binary decision diagrams (Krause, 2002).

1.4 Public-key cryptography

Public-key cryptography was discovered by Diffie and Hellman [DH76| in
19763, Since, dozens of cryptosystems appeared, based on hard problems like
integer factorization, discrete logarithm, lattice reduction, knapsacks, etc.,
in various algebraic structures. A public-key (or asymmetric) cryptosystem
consists of an encryption procedure, requiring an element pk, along with the
associated decryption procedure which requires an element sk. The element
pk is made publicly available, and called the public key, while sk is kept
secret, and called the private key. The system must satisfy the property
that it is computationally infeasible to recover sk from pk. More formally,
we give the following definition.

Ellis |ENI70] discovered it independently in 1970, but his works were classified by a
British government agency until 1997.

Definition 10. A public-key cryptosystem is defined by three sets and three
algorithms. The sets are:

o M, the plaintexts space, finite or infinite.
e C, the ciphertexts space, finite only if M is finite.

e R, the random coins space, finite, and non-empty only if encryption is
probabilistic.

The three algorithms are:

e The key generation algorithm G, which outputs a pair (pk,sk) of match-
ing public and private keys, on input 1%, where k is the security param-
eter.

e The encryption algorithm &, which, given a plaintext m € M and a
public key pk, outputs a ciphertext ¢ € C of m. This algorithm may be
probabilistic (involving random coins).

e The decryption algorithm D, which, given a ciphertext ¢ € C and a
private key sk, returns the matching plaintext m € M, or L if the
given ciphertext is not valid.

Asymmetric systems are seldom used alone, but as part of an hybrid
encryption scheme, to encrypt the secret key of a symmetric scheme, which
encrypts the message. This technique is often refered as a key encapsulation
mechanism and data encapsulation mechanism (“KEM/DEM?”). We will meet
such constructions later.

Public key cryptosystems are also closely related to the notions of one-
way and trapdoor functions, but it comes out of the scope of this report (see
for example [BHSV98, Yao82|).

1.5 Security definitions

An adversarial model is the statement of what an adversary (i.e one or
several probabilistic algorithms querying oracles) can and cannot do when
attacking the encryption scheme, so as to study the security of the system.
For public-key schemes, anyone can encrypt any message, so the basic attack
is the chosen plaintext attack (CPA). The number of queries is limited to a
polynomially bounded number. For symmetric schemes, CPA attacks are
modeled using encryption oracle, whilst in the most basic attack the adver-
sary only has a ciphertext of an unknown message. The best security level
is achieved in the following model:

Definition 11. An adversary is called an adaptive chosen ciphertext (CCA)
adversary if she can query the decryption oracle whenever she wants, to de-
crypt any ciphertext except the given challenge(s). The number of queries
must be polynomially bounded. If the ciphertext given to the oracle is not a
valid one, the oracle returns 1, and the attack continues.

In literature, this model is sometimes denoted CCA2, and CCA is standing
for non-adaptive adversaries, where queries to the decryption oracle do not
depends on the challenge.

Now we review fundamental security notions: one-wayness, indistin-
guishability, real-or-random security, non-malleability, and semantic security.
We recall that in CCA model, the adversary cannot query the decryption or-
acle with the ciphertext computed by the challenger.

Definition 12 (OW security). Let A% = (A$", A$") be an adversary in-
volved in the following game:

1. (pk,sk) « G(1¥): a key pair is generated.

2. 0 «— A"(pk): the adversary queries oracle(s) and return a state.

3. m & M: a plaintext is randomly picked by the challenger.
4. ¢ = E(pk,m): the challenger encrypts m and sends c to the adversary.
5. m «— A3"(o,c):
The advantage of an adversary A°Y against one-wayness is
Adv® = Pr[m = m].

We say that a cryptosystem is (t,e)-OW secure when any adversary running
in time less than t gets an advantage less than €.

Definition 13 (IND security). Let A" = (A" Aind) be an adversary in-
volved in the following game:

1. (pk,sk) < G(1¥): a key pair is generated, and pk sent to A,

2. (mg,m1,0) « Ad(pk): the adversary returns a pair of plaintests of
equal length, and a state o.

3. b {0,1}: a random bit is picked by the challenger.

4. ¢« E(pk,my): the challenger encrypts my, and sends ¢ to A9,

5. b« .Aé"d(mo,ml,a, c): the adversary guesses the message which was
encrypted.

10

The advantage of an adversary A against indistinguishability is
Adv™ = 2Pr[b=b] — 1.

We say that a cryptosystem is (t,e)-IND secure when any adversary running
in time less than t gets an advantage less than €.

Definition 14 (ROR security). Let A" = (A", AY") be an adversary in-
volved in the following game:

1. (pk,sk) « G(1¥): a key pair is generated, and pk sent to A"

2. mg S M, b & {0,1}: the challenger picks a random plaintezt and a
value b.

3. (m1,0) «— A (pk): the adversary chooses a plaintext, sent to the
challenger.

4. ¢ — E(pk,mp): the challenger encrypt my, and sends it to A"

5. b «— AP (my,0,c): the adversary guesses whether her message or an-
other one was encrypted.

The advantage of an adversary A™" in a real-or-random game is
Adv® = 2Pr[b=b] — 1.

We say that a cryptosystem is (t,£)-ROR secure when any adversary running
in time less than t gets an advantage less than €.

Definition 15 (NM security). Let A" = (A", A5™) be an adversary in-
volved in the following game:

1. (pk,sk) « G(1¥): a key pair is generated, and pk sent to AT™.

2. (M,o) «— A7{™(pk): a distribution of plaintexts M and a state o are
returned by A™.

3. (m,m) S M: the challenger picks two independent random plaintexts
according to the distribution M.

4. ¢ — E(pk,m): m is encrypted and sent to A",

5. (R,y) «— A5™(m,o,c): the adversary computes a binary relation R
and a ciphertext y.

6. v — D(sk,y).

11

The advantage of an adversary against non-malleability is
AdV" =Prly#cAz# LAR(z,m)—Prly#cAx# LAR(x,m).

We say that a cryptosystem is (t,e)-NM secure when any adversary running
in time less than t gets an advantage less than €.

This last definition models the informal notion of non-malleability: an
adversary cannot compute a ciphertext meaningfully related to the message
matching a given distinct ciphertext. And so a malleable cryptosystem does
not guarantee integrity of the ciphertexts, but may ensure privacy.

A cryptosystem is told to be X-Y secure if it guarantees X security in the
attack model Y. In our context, we simply call X-Y secure a system which is
(t,e)-X-Y secure, with ¢ > 2¢ad and e negligible (i.e. ¢ < 27%ad) where X
can be either IND, OW or ROR, and Y can be either CPA, or CCA.

The two following results are proved in [BDPR9S|:

Proposition 3. NM-CPA security implies IND-CPA security.
Proposition 4. NM-CCA security is equivalent to IND-CCA security.

More generally, NM-Y = IND-Y = OW-Y, for all adversarial model Y,
and X, X-CCA security implies X-CPA security, for all security notion X. The
next proposition is proved in [BDJRI7]:

Proposition 5. ROR-CPA security is equivalent to IND-CPA security.

The important notion of semantic security introduced by Goldwasser
and Micali [GM82] is equivalent [GM84| to IND-CPA security; it guarantees
that the ciphertext reveals no more information about the plaintext to a
polynomially bounded adversary. Note that semantic security implies OW-
CPA security, the weakest level of security.

To summarize, we obtain the followin relationship:

NM-CPA < NM-CCA
Y)

Semantic < IND-CPA « IND-CCA

4 4
OW-CPA < OW-CCA

12

Chapter 2

The TCHO scheme

A trapdoor stream cipher sounds like a premiere in cryptography, but it is
not exactly one: in 1984 Blum and Goldwasser [BG85| used the Blum-Blum-
Shub |BBS86| pseudo-random generator to build a probabilistic public-key
stream cipher based on the hardness of factoring a RSA modulus, and on
the security of the generator (see Appendix B for details and discussion).
However it is more or less as computationally expensive as RSA, not well
fitted for hardware as many streams ciphers do, and not really a trapdoor
stream cipher in the strict sense. The idea of putting a trapdoor in a LFSR-
based stream cipher has been brought by Camion, Mihaljevic and Imai three
years ago |CMI03|, but no explicit cryptosystem followed. As a response, the
system TCHO! aims at providing a secure trapdoor stream cipher hardware-
friendly, and being the first real asymmetric stream cipher. Encryption is
probabilistic, and can be described as the transmission of a codeword over
a noisy channel, as depicted in Figure 2.1: one small LFSR encodes the
message, while a large one randomly initialized, along with a source of biased
random bits, produces the noise. A ciphertext is the XOR of the three
bitstreams. The private key is used to “cancel” the bitstream of the second
LFSR, thereby reducing the noise over the coded message, so as to be able
to decode the cyclic linear code spanned by the small LFSR.

PRG

m ——= ENCODER c

Figure 2.1: TCHO encryption scheme.

'See http://www.tcho.fr for the origins of this name.

13

2.1 Computational problems

The security of TCHO relies on the hardness of two distinct computational
problems; one dealing with sparse multiples of primitive polynomials over [,
and a famous one related to some decoding problems, strongly linked with
the stream ciphers cryptanalysis field. The two problems are then merged
into a single one. In this section we introduce these problems, and state
hardness assumptions in terms of their parameters, regarding to the known
attacks of these problems.

2.1.1 Finding a sparse multiple of a high-degree polynomial
This problem formalizes the key recovery problem in TCHO:

Low WEIGHT POLYNOMIAL MULTIPLE (LWPM)

Parameters: Three naturals w, d and dp, such that 0 < dp < d and w < d.
Instance: P € [5[X] of degree dp.

Question: Find a multiple K of P of degree less than d and weight less
than w.

Unlike integers, efficient methods are known to factorize a polynomial over a
finite field (Berlekamp’s generic deterministic algorithm runs in polynomial
time in the input’s degree, whereas the cheapest method known for integers
is the super-polynomial GNFS), but finding a multiple of degree and weight
below certain bounds can be hard. This problem, or its variants, has been
important in LFSR cryptanalysis since some attacks are possible only when
the feedback polynomial or one of its multiple is sparse [MS88, CT00]. A
few works [GMO1, MGV05, Jam00| study the distribution of multiples of a
given weight, but consider the problem of finding a sparse multiple without
the constraint on the degree. If d is greater than to the order n of P, a
trivial solution is the polynomial X™ + 1, choosing primitive polynomials
would avoid this concern.

We can compute the average number Ny of solutions of a TWPM instance.
The probability that exists a multiple of P with degree d and weight w is

heuristically
d
gd—dp (w21) _ g-dp d
2d w—1)"

and so 4
_ {
Nam2 3 3 ()
1=1 j<d,j<w J

In [GMO01], an exact enumeration formula is given for the number of multiples
of weight v (of unbounded degree, with constant term 1) of any primitive
polynomial of given degree. Although this expression is useless here, since we
need a multiple of a specific degree, it gives an idea of the problem hardness.

14

Example 1. A primitive polynomial of degree 10 has about 10'® multiples
of weight 10 with constant term 1, but only 339 of weight 3.

We now present strategies to solve LwpM. The following are suggested
(refer to [FV06] for more details):

1. Birthday paradox: memory O (2dP/2), time O (dp2dp/2) for a single
solution, and O (Llog L) for all solutions with L = ((w_dl)/2).

d
2. Generalized birthday paradox [Wag02|: time O <2a+a_f1>, if there ex-

i d dp/(a
ists an @ > 2 such that ((w—1)/2a) > odp/(a+1),
w—1
3. Syndrome decoding [CC98, LBSS]: time O <7>oly (d) (%) >

4. Exhaustive search: time O (Poly (d) 2d_dP) for all solutions.

An analysis of these strategies leads to a first assumption:

Assumption 1 ([FV06]). When P is randomly chosen among the primitive
factors of an unknown sparse polynomial, if (wil) < 29P gnd wlog% >
Chard, then LWPM s hard, on average.

2.1.2 Decoding a LFSR code
Our second problem goes as follows:

Noisy LFSR DECODING (NLD)

Parameters: P € F>;[X]| of degree dp, a natural ¢, a bias 0 <y < 1.
Instance: y = Sﬁp(x) + S,l;.

Question: Recover x.

The following strategies are suggested:

1. Information set decoding: the idea is to randomly pick dp bits of y,
and solve the linear system induced by the LFSR. To recover x, we
need to pick only bits with no error. The probability of this event is
pleP. Ifvy < 21=¢hard/dP _ 1 it requires over 2¢hard iterations.

2. Maximum likelihood decoding (MLD): this brute force technique con-
sists in trying every possible initialization, and return the one minimiz-
ing the Hamming distance between y and the stream produced. The
algorithm has a time complexity in O (€ : 2dP) (it can be decreased to
O (dp - 2%7) by using a fast Walsh transform [LV04a]).

15

3. Iterative decoding: the idea of this approach is to find low weight
multiples of P forming some parity check equations, and then decode
in the low-density parity-check code associated (see [CT00]). For dp >
2Chard, decoding is impossible.

A second assumption can thus be formulated:

Assumption 2 (|[FV06]). If dp > 2charg and v < ol=Chard/dP _ 1 then NLD
18 hard.

We can also state when the problem is solvable?:

Fact 3 (|[FV06]). If dg < Ceasy and 4/ d?_l24 < A", then NLD can efficiently

be solved.

The link with the correlation attacks becomes obvious: Sf:P + S,l; is cor-
related with SZP, with correlation 1 — p,.

2.1.3 The hidden correlation problem
We now merge IWPM and NLD into a single problem.

HippEN CORRELATION (HC)

Parameters: Two coprime polynomials P and @, of degree respectively dp
and dg, a natural £, and a 0 <~y < 1.

Instance: y = SEQ(@ + Sﬁp(r) + Sf;, with 7 an unknown random bitstream
of length deg(P).

Question: Recover x.

Coprime polynomials are required so that the decoding is not ambiguous.
A HC instance can be reduced to an NLD instance: if we multiply y by a
multiple K of P, of degree d, by the we get the stream

0
Q(x) + S’Y)

This bitstream is thus of length £ — d. By linearity, we obtain a stream
produced by Lg with initial state 2/, with noise of bias 4", since each bit a
sum of w bits noised with bias ~:

Scq(n + Syw-

Note that the noisy bits with bias v are correlated, depending on the offsets
of the non-zero coefficients of K. Experiments show that K ® Sf/ behaves

mostly like S,l;ld.

2The lower bound on v follows from an approximation of Shannon’s bound obtained
using C(7y) =~ ~*/In4.

16

The matrix My of the linear application transforming the real initial
state « of Lg to the new initialization 2/ can be calculated, using basic
linear algebra. Let Mg be the generating matrix of L£g (as presented in
Section 1.3.2), and (k;)i=o,... ~o the coefficients of K, then we have

d
My =Y kiMg)* (2.1)

1=0

where the sum operation is the usual matrix addition. Therefore to retrieve
x, given the initial state of the L¢ in z, it suffices to inverse this matrix. It

can be done in time in O (d%) by Gauss-Jordan elimination. To summarize,

we reduced an HC instance to one of NLD with parameters (¢ — d, Q,~v").
Other strategies than this reduction are proposed to solve HC:

e Consider Lp and Lg as a single LFSR, recover its initialization (i.e.
solve an instance of NLD with parameters (¢, P x Q,7)), and deduce
those of each LFSR.

e Multiply the ciphertext by @Q to cancel Sﬁ@ and, recover the initial
state of Lp, by the same process that described above, except that
here the NLD instance has parameters (£ — d, P, y%Q)

By Assumption 2, we cannot solve NLD for Sﬁp + S,l; when dp > 2¢hard

and v < 217carda/dP _ 1 thus these strategies are infeasible for well chosen
parameters.

A last constraint is linked to theoretical concerns; if we suppress the
influence of P using a multiple K of weight w, the information I, one can
get on Sg,(z) 1s bounded:

I, <l -Cyw

It also gives us a large bound on the information one can obtain on z.
Now, what if an opponent computes all the multiples of P of a given weight
w 7 There are at most 2?’—;"1 multiples of weigth w, and we need ones of
degree lower than ¢, then at most (f}) 2717 are suitable. We deduce the total
information one can get, neglecting the cost of finding such multiples:

> [2chard
I:Z[-C,Ywmin<<)2—dP, >
— w fw

We deduce the assumption of HC’s hardness:

Assumption 3 (|[FV06]). When P is randomly chosen among the primitive
factors of an unknown sparse polynomial, if dp > 2¢harq and y < 21~ Chara/dP _
1, and Z < 1, then HC is hard, on average.

17

2.2 The public-key scheme

A public key of TCHO is a high-degree primitive polynomial P, the private
key associated is a polynomial K, sparse multiple of P. TCHO encrypts
blocks of dg bits. The parameters of the system are

® [din, dmax], an interval containing dp,
e d and w, the degree and the weight of K,
e v, the bias of the random source,

e /. the length of a ciphertext of one block,

@, a polynomial of small degree dg (the length of a plaintext block).

2.2.1 Key generation

To find a key pair, one first randomly picks a polynomial of degree d and
weight w, then decomposes it into irreducible factors, and looks for a primi-
tive polynomial of degree in [dpin, dmax] among those factors. Avoiding the
cost of testing primitivity, which is discussed later, the time complexity of

the key generation is in O (Mdz), using the Cantor-Zassenhaus al-

dmax —dmin
gorithm |CZ81a].

Some trick can be used for the second step: the product of all irreducible
polynomials of degree dividing d is X2 — X, so we can compute gcd(XQd -X
mod K, K); if the polynomial computed has degree lower than d, one knows
that K has no factor of degree d, otherwise we factorize the polynomial to
find one. Although this technique speeds up the process for a single degree,
in the worst case we would have to perform it for each degree in the range
(for a single iteration), that too much increases the time complexity of the
algorithm induced.

2.2.2 Encryption and decryption

Let = be a plaintext, i.e., an element of {0,1}9@. A ciphertext of z is defined
as

TCHOenc (#,7) = St () + St p(ry) + Sy (r2)

r1)

where r = r1||ry is a random bitstring of sufficient length, so the encryption is
clearly non-deterministic (it is necessary to guarantee the semantic security).
One inherent weakness of TCHO is its high message expansion; to suit
the constraints dg have to be much smaller than /.
Let y be a ciphertext, i.e., an element of {0, 1}5. To recover the plaintext
we first compute

 ol—d (—d
Koy~ SEQ(I,) + 8w

18

where 2’ is the image of z by some invertible linear application f. Then, we
perform a maximum likelihood decoding (MLD) to recover a’, and finally
compute z = f~1(z'). As stated previously, if M is the generating matrix
of L, the matrix of f is

d
My =" ki(Mg)*™,

1=0

which can be inversed in time O <d%) Note that this matrix does not

depends on the ciphertext received, thus it can be precomputed.

The cost of MLD is in O ((£ —d)-29%), and O (dg -2%) using a fast
Walsh transform [LV04b|. The soundness of the system is not guaranteed,
since S,‘; can take any value of {0, l}l with non-zero probability, and so decod-
ing may fail if the pseudo-random bitstream has a high weight. Indeed every
element of {0,1}* has a non-null probability to be obtained by encrypting
some plaintext, since Sf; takes all values in {0, 1}£ with non-null probabil-
ity. Thus the ciphertext space is {0,1}*. However, not all ciphertexts are
decrypted successfully, and for a given key pair, the ciphertext space can be
partitionned into two sets: those which are correctly decrypted (the sound
ciphertexts), and the others (the non-sound ciphertexts). We do not employ
the adjective valid since it usually stands for an object that cannot have been
produced by the encryption algorithm.

Since the complexity of decoding is not linear in dg, we can think we
had better use a small polynomial @ (i.e. smaller blocks), but the matter is
that the ciphertext expansion factor does not linearly grow in terms of dg.
Thus we would encounter some problems of time-memory trade-off, and the
choice of a set of parameters may depend on the user’s requirements in time
and amount of data encrypted.

2.2.3 Parameters selection

Refering to the above-stated assumptions, we give security constraints on
the parameters.

e In order to decrypt successfully, we must be able to decode a codeword
of length £ — d of a random LFSR code, noised with bias v, so we

need
doln4
dg < Ceasy and 4/ EQ nd < A% (2.2)

e Message recovery is assumed to be hard if

Chard

v <2 Tmn — land 7 < 1. (2.3)

19

e Finally, the private key K must be impossible to recover. It is assumed
to be the case as soon as

< d >§2dmi“ and wlog
w—1

> Chard- (2'4)

max

Example 2. For chag = 80, the following parameters meet these constraints:
v = 0.98,f = 13080, dmin = 6000, dpax = 6600,d = 11560,w = 99,dg =
20.

2.3 Conclusion

Although the design of TCHO is very simple and well fitted for an hardware
implementation, some major disadvantages are its prohibitive decryption
time complexity, of exponential cost, and the absence of an estimate of the
error probability in decryption. Experimentally, for some parameters suiting
the assumptions, this probability is small, as predicted, but not enough to
be neglected. Exhibiting an exact formula or even an approximation of the
theoretical failure probability is difficult. A lower bound could be given if
the minimum distance of a truncated LFSR code was known, but finding
this distance is hard, and the bound one could obtain would anyway be too
loose to be significative.

20

Chapter 3

Implementation of TCHO

In this chapter we review algorithms for an implementation of TCHO, and
present the performances obtained. TCHO was implemented in C++, and
compiled with g++ 3.3.5. We gained a precious time using Shoup’s library
for number theory [Sho05| (NTL), which efficiently implements all common
operations in F[X], using a confortable and flexible representation. It was
also used for computing polynomial factorization and gcd. Some help was
also found in [Arn05, PTVF92|. All performances were measured on 1.5 GHz
Pentium 4 computer.

3.1 Linear feedback shift register

When implementing LFSR’s, the naive bit-per-bit approach is clearly uneffi-
cient and very slow, especially for huge registers like ours, so we had to find
a better algorithm.

3.1.1 Algorithm

Inspired from [CMO03, CMO01], this algorithm produces blocks of arbitrary
size from a LFSR of any larger length. We first introduce some notations:

e b: the length of a block (in bits),

e n: the length of the LFSR,

m = [#]: the number of blocks (i.e bitstrings of length b) used by the
LFSR,

P: the feedback polynomial, p; its i-th coefficient, from zero (constant
term) to n, and P[i] denotes the i-th block, of b bits, of coefficients,

B: the new block we want to compute,

21

e S: the state of the LFSR; a sequence of blocks, S[1],...,S[m] of size
b.

e M: bit-to-bit XOR operator,

e X bit-to-bit AND operator.

The algorithm is based on the leap-forward technique, whose basic idea
is to build the block B by considering independently each tap, and recording
the future bits located at its offset. The main procedure is composed of two
stages:

1. build the block considering the taps involving only bits of the current
state (i.e. taps over b),

2. finalize the block bit by bit while considering the taps t; € [1,b0] (we
may need some of the first bits of B to build its last ones).

These steps respectively corresponds to the first two loops of the Algo-
rithm 3.1, and the final loop aims just at updating the LFSR state. The
taps in [1,b] are treated separately since the future bits at their offset are
not all known yet, and need to be computed dynamically.

Here the particular case of a LFSR of length non-multiple of b is im-
plicitely handled, and the case with taps in the first block of the state leads
to the second step described above.

3.1.2 Analysis

The time complexity of the Algorithm 3.1 to build a block of b bits is in
O (w,(P)); we loop over all the taps of P above b, and then make b iterations
to process the first taps. In contrast, the naive bit-per-bit looks the d bits
of the register to compute each output bit, so the algorithm runs in time
O (bn) = O (b- deg(P)) when computing b bits, thus our algorithm requires
in average 2b times less operations.

We did not found any better technique for software implementations of
LFSR in the literature. Moreover, we used several precomputations, not
mentionned in the Algorithm 3.1, to speed up the generation; we build two
lists of the taps multiples and non-multiples of b, then treat them separately
in the algorithm, it leads to a gain of about 3 x dp/32 logical operations per
block computed. The average number of elementary operations (<, >, H, X)
required to build a block in our implementation is estimated to

2 ! 6b

n(2 — %) + 6.
In the particular case where the taps are all on a boundary (i.e. p; # 0 =
blp;), and when no one (except the constant term) has an offset lower than

22

Algorithm 3.1:

INPUT: S, P
OurpuT: B
: B<—0
:fori=b+1,...,ndo
if p; then
B — BH (S[t] < (—i mod b)) 8B (S[; — 1] > (i mod b))
end if
end for
kEe—1<(b—-1)
fori:=0,...,b—1do
buf «— (B[0] < i) B (B> (b—1))
if wy,(P[0] X buf) is odd then
B— BHE
end if
k—k>1
end for
: fori=m,...,1do
Sli] < S[i —1]
end for

. return B

e e e e e e e e
e L - el

b, this time complexity is reduced to

Table 3.1 gives some examples of time complexities achieved with this
algorithm (the field f.b. is ticked when there are no taps in the first block).
We see that we had better using larger blocks for our large LFSR Lp, and
choosing small blocks combined with a trinomial without taps below the
block size for the small LFSR Lg. However technical concerns must be
considered: operations on the natural type of C++, int (32 bits) are much
faster than on longer emulated types, and so we shall choose b = 32.

A C implementation of this LFSR algorithm independent of TCHO can
be found at http://www.131002.net.

3.2 Pseudo-random generation with given bias

This is a big issue; weak pseudo-random generators (PRG) have often lead
to unsecure systems in practice, even if it was secure on the paper, where
the PRG is assumed to be ideal. We present several algorithms producing a

23

deg(P) | wp(P) | b | fb. | cost
20 3 | 8| v | 6
20 3 8 61
6 000 3000 | 32| / | 3187
6 000 3000 | 32 12098
6 000 3000 | 64 | / | 3093
6 000 3000 | 64 12337

Table 3.1: Number of operations to build a block.

bitstream of pseudo-random bits with a given bias from a source of uniform
bits. The essential concerns are the time complexity, the number of uniform
pseudo-random bits required to produce one bit, and the soundness with the
theoretical bias, expressed as the statistical distance to the ideal distribution,
with the assumption that the uniform generator used is ideal.

3.2.1 Choice of a random source
The candidates
The three following sources are suggested:

1. The rand () function of the C language, based on a linear congruential
generator. Its seed is 32 bits long only, so there are only 232 distinct
bitstreams (note 32 < Ceasy)-

2. The PRG ISAAC [Jen96al: “ISAAC requires an amortized 18.75 in-
structions to produce a 32-bit value. There are no cycles in ISAAC
shorter than 219 values. The expected cycle length is 2829 values” |Jen96al.
It is designed to be cryptographically secure!, but is not proved to be.
The only attack published is a known plaintext one |[Pud01], and runs
in time complexity 4.67 - 101240 Its seed is 8 192 bits long.

3. The file /dev/urandom, physical entropy source on Unix systems.

The third proposal can already be dismissed: it cannot be seeded, thus we
cannot reproduce a random string, and it requires I/O system calls, slowing
the generation. Also, some weaknesses of this generator were pointed out by
the analysis performed in |GPRO06].

Statistical tests

We use the program ENT [Wal98], displaying minimal statistical results: it
is a good tool to compare generators, but the criteria considered are quite

'A PRG can be declared cryptographically secure when it passes the next-bit test, i.e.,
when no polynomial-time adversary can predict the k-th bit from the £ — 1 previous bits
with probability greater than 1/2.

24

superficial, and cannot be used to valid cryptographic generators. We use
samples of one megabyte (223 bits). Table 3.2 presents the most significative
results of ENT, and time records: we display the entropy of both bytes
and bits, the error percentage in Monte-Carlo 7 estimation, the correlation
coefficient (0 when totally uncorrelated), and the average time for computing
one megabyte of pseudo-random bits.

PRG | ent.(bytes) | ent. (bits) | m error | correlation | time
rand () 7.999 1.0 030 % | —5.7-10~* | 17 ms
ISAAC 7.999 1.0 0.04 % | —2.8-10"* | 6 ms

Table 3.2: ENT results.

The Diehard battery of tests [Mar95a| is a set of empirical tests that
must be passed by a cryptographically secure PRG, (here a huge period
does not suffice, ¢f. the Mersenne Twister [MN98|): “Most of them seem to
present a major leap in sensitivity to detect particular statistical defects in
sequences of bits over the so called standard tests such as Chi Square, bias,
various correlation tests, enthropy test, picturing randomness and so on.
Diehard tests are thereefore often reffered to as stringent tests.” [Mar95a].
Here samples of at least 226 bits are required. ISAAC successfully passed all
the tests, while rand () did not even passed one. Moreover, it is known that
the lower-bits of numbers produced by a linear congruential generator are
“less random” than higher-bits, and that linear congruential generators are
far from being secure [Ste87].

Final choice

ISAAC is clearly a better PRG than rand (), moreover it is a cryptograph-
ically secure generator suitable for real applications, also used as a stream
cipher in some cases. Both the algorithm and the implementation provided
by its author are in public domain. We shall seed the generator using the
file /dev/urandom.

Last minute addition: we found dramatic flaws in ISAAC, see Appendiz
A for details. To replace ISAAC we suggest to use the keystream genera-
tor QUAD [BGP06], both proved secure and practical, but requiring 1Mo of
memory.

3.2.2 Algorithm G1

This is the algorithm suggested informally in [FV06|. The parameters are n,
the length of the block produced, and B, the maximal precision allowed (e.g.
it would be 32 using the type float, representing floating point numbers with
precision less than 2732). The basic idea is to build a binary tree where the

25

leaves are some words of fixed length n. We first describe the precomputation
steps, then the generation algorithm.

Precomputation

Given a bias 0 < v < 1, we have to build a rooted binary tree representing
the probability law induced, to do this, we follow this procedure:

1. Compute the probability associated with each word. For a word of
weight k, it is pz_k(l —py)k. This step is achieved in O (n) operations
(the probability is computed once for all words of a given weight?).

2. Decompose each probability as a sum of inverse powers of 2, with a
precision bound B (i.e. we do at most B divisions by 2, for a precision
of 27B). Tt requires O (Bn) atomic operations.

3. Build the tree, where each leave is a word (not necessarily distincts),
and a word appears at depth k if and only if its decomposition in
powers of 2 contains 27%. This process is clearly deterministic, and
runs in time O (23) (the maximal number of nodes of the tree).

It gives a global cost in O (Bn + 2B). An example of tree is represented in
Figure 3.1. There are at least 2" leaves (as much as distinct words), and at
most B - 2™.

ANA

01/l 10,1
00,"L 01,1 10,1 11,L

16 16 16 " 16

Figure 3.1: Tree of G1 for v = %, B=4n=2

*This requires the computation of /2 binomial coefficients (since (}) = (,",)). For
an exact result, computing n! requires n — 1 integer products, and the computation of
all the k! does not requires additional cost, since recorded during the computation of n.
Finally n/2 divisions are realized, and so the cost of computing all the binomials is in
O (n) operations. However the number of bits in memory is in O (log(n!)).

26

Word generation

To pick a word w, one just goes through the binary tree by successive coin
flips until a leaf is met, as described in Algorithm 3.2 (r; is the i-th bit of r,
the function root return the root node of a tree, leftChild and rightChild return
respectively the left or right child of a node, which is a node too, and the
function label returns the word corresponding to a leaf). Since the number
of nodes is finite, the algorithm always finishes. Its correctness follows from
the decomposition of the probability distribution.

Algorithm 3.2:
InPUT: 7 € {0,1}2, T (the tree)
OuTpPUT: w € {0,1}"
1: currentNode < root(T)
2: of fset «— 0
3: while currentNode is not a leaf do
4: if r; =0 then
5: currentNode «— leftChild(current Node)
6: else
7 currentNode « rightChild(currentNode)
8: end if
9: i+—1+1
10: end while
11: w « label(current Node)
12: return w

Complexity

The Algorithm 3.2 clearly runs in time O (B). In [FV06] the average number
of unbiased bits required to build one biased word is lower than n + 2, so the
cost for a single bit is

2
RGlzl—l-—.
n

Example 3. Forn =32, Rg; = 1.0625.

Statistical distance

Let W be the random variable of the word outputed by G1, Prg1[X = w| be
the probability that G1 outputs the word w, and Pr;[W = w] the theoretical
probability associated with that word. The statistical distance of G1 from
an ideal generator [is thus

27

In average, the theoretical probability differs from the effective of ?, and
S0
DG]_ [2n_B_1.

3.2.3 Algorithm G1+

We remark that in the previous algorithm, words of equal weight have the
same probability of occurence, thus we can propose an alternative algorithm,
where the leaves are not words anymore, but weights in {0,...,n}.

Precomputation

Although the asymptotic time complexity remains the same than for G1,
the average one is reduce for the third step. Thus to build the tree we follow
these steps:

1. Compute the probability associated with each weight. For the weight
k € [0,n] this probability is (this follows a (n,1 — p,) binomial distri-

bution)
- n
Py "(1—py)t <k> :

It requires O (n) operations, using a non-naive algorithm for binomials.
2. Decompose each probability, like for G1, still in O (Bn) operations.

3. Build the tree, in O (2B) operations.

Now the tree has at least n leaves, and at most Bn, instead of 2" and B -2".

Word generation

Like for G1, we first randomly pick a leaf of the tree, using Algorithm 3.2,
where the word returned is now on [log n] bits instead of n (at most [logn]
bits are required to code an integer in [0,n]). Then we randomly pick a word
of the weight k found: we can use the Algorithm 3.3 (random(n) returns a
random integer in [0, n[), or use another tree to pick the word.

Complexity

The word generation algorithm still runs in time O (n). Compared to G1, the
number of leaves is exponentially reduced, thus the average cost to select a
weight is about logn+2. To build a word of given weight, picking each offset
one by one has an average cost of nlog 3, but we reach a lower cost using

28

Algorithm 3.3:
INPUT: k (a weight)
OuTpPUT: w € {0,1}"
1 i« 0,w « (0,...,0)
2: while ¢ < k do
3. of fset < random(n)

4 if w; =0 then
5 w; — 1

6: 1+— 1+ 1

7 end if

8: end while
9: return w

a binary tree: there are in average (n74) possible words, thus the number of

bits to choose one is about log (n74) + 2. It gives a total cost of less than

log (n(n74)) +4

n

Rgi4 =
for a single bit.

Example 4. For words of n = 32 bits, Rgy = 1.06, and Rg;+ ~ 1.01.

Statistical distance

Let W be the word outputed by G1+. First observe the following fact: for
a random word w,

Gfil;[W = wlwi(X) = wa(w)] = Pr[WV = wlwy (X) = wp,(w)]-

That is, once a weight is picked, we assume that the algorithm randomly
picking a word of this weight behaves as an ideal one. So the statistical
distance from G1+ to an ideal generator is

29

Dgi+ = we{zo;l}n Gf;ﬂ_[W =w|—]?}r[W = w]‘

=) (Pr[W =w|wp(W) = wy(w)]

we{0,1}"

<[& a9 = w0 = Brlwa9) = w01
~ 27871 Z PIr[W = w|wp (W) = wp(w)]

we{0,1}7
-1

_ 9—B-1 n
=2 we%,:l}" <Wh(w)>
= (n+1)-2787

Conclusion

Our variant of G1 achieves a much better statistical distance, and reduced
requirement in time an memory, however its construction is a bit more com-
plex, and this may not be worth its cost for some hardware implementations.
Like previously, this kind of algorithm operating on bits is tedious to handle
in software, we will present another kind of algorithm reproducing the two
stages of G1+ a bit differently.

3.2.4 Algorithm G2
Description

This is another block-oriented algorithm, based on the same idea than G1+.
It produces a random block in two steps:

1. pick a random weigth % (following a (n,1 — p,) binomial law),
2. pick a random word of weight &k (uniformly).

The Algorithm 3.4 outputs a word w of size n with respect to a bias 0 <y <
1; the function distribution(vy) returns a list of rational numbers (0;)i=—1,0,...n,
0=o0_1 <0y < -+ <o, =1, describing the weights probability distribution:

0; — 0;—1 :pz_z(l —p«/)2<z>,\V/Z € 0, ,n.

The function frandom() returns a uniform rationnal number in [0, 1], with
precision 278, The probability distribution is precomputed, then the number
of random bits required to produce a word of size n is roughly

30

e B to pick a weight k with precision 278, B > 1,

e klogn, to choose a word of weight k (logn bits are required to pick an
offset in the word of length n).

Algorithm 3.4:

INPUT: n (block size),~ (a bias)
OurpuT: w € 0,1"
(04)i=0,....n < distribution(~y)
1 «— frandom()
1« 0,weight «— —1
while weight < 0 do
if r < 0; then
weight «— 1
end if
1—1+4+1
end while
i« 0,w <« (0,...,0)
: while 7 < weight do
of fset < random(n)
if w; = 0 then
Wi 1
1+— 1+ 1
end if
end while
: return w

e e e e e e
S S el

Complexity

The precomputation consists in partitioning the interval [0,1] C Q into n+1
subintervals of magnitude

for k =0,...,n. This requires O (n) operations. The Algorithm 3.4 runs in
time O (n). To produce a block of n bits with precision B and bias ~, the
cost in terms of uniform random bits is

B+ (1—p,)nflogn]

That is, for one bit, a cost of
B
Raz =+ (1-p,)[logn].

31

The additional cost due to offsets collisions was neglected here, since neg-
ligible for our high biases. Indeed, the expected number of collisions when
picking a word of weight w = (1 — p,)n is

Il -12 0 21— 1)

iz’-j i (@ — 1)@ —2)

Example 5. For B =n = 32 bits and v = 0.98, Rge = 1.05 =~ Rgy. The
expected number of collisions s 0.033.

Statistical distance

Like in G1+, we get
Dgz ~ (n+1).2787%

3.2.5 Algorithm G3
Description

We propose a different kind of generator, which does not produce blocks but
directly a stream of fixed length, with a weight depending of the bias; for a
sequence of ¢ bits, we will have in average p, - £ zeros, and thus will build
a sequence of weight exactly |(1 — py) x £]. We will develop this idea in
the following (this technique comes from an idea of Serge Vaudenay). The
technique suggested above has another advantage: it would guarantee that
the decoding will not get harder, i.e. that the sequence won’t contain more
ones than predicted in average. An obvious drawback is that it reduces the
number of possible sequences (of length ¢ and bias v) to

(a-r-1)

We now describe a generic algorithm (Algorithm 3.5) producing a bitstring
of length ¢ and weight p (here random(n) returns a uniform random integer
in [0,n], and w; still denotes the i-th bit of the word w).

Complexity

The time complexity of Algorithm 3.5 is clearly in O (n), and we do n calls
to the function random. At each loop, the value p 4+ ¢ decreases from one,
thus the total number of uniform random bits required is

)4
> [logk] < £+ [log(e)].

k=1

32

Algorithm 3.5:

INPUT: / (stream length),~ (a bias)
OuTtpuUT: a word v € {0,1}*

1: p <« M'p—y-‘

2. q—Vl—p

3: fori=1,...,n do
4: j =random(p + q)
5. if j < p then

6: w; <— 0

7: p—p—1

8: else

9: Wi 1

10: q—q—1

11: end if

12: end for

13: return w

That is, for one bit, a cost of less than

log(¢!)

1
Ty

uniform pseudo-random bits.
Since TCHO shall require bitstring of small weight (high +), we had
better using the strategy, by picking offsets in the word, thus requiring

Rgs = (1 —py)[log (]
uniforms bits per biased bit.

Example 6. For £ =10000,v = 0.98, Rg3 ~ 0.13 < Rgas.

Statistical distance

The difference between the theoretical probability and the probability in-
duced by our construction to output a 0, is
1€ % py]

D3 ~ =1 —py.

Flaw

The problem of distinguishing between a bitstream produced by G3 and an
ideal biased generator is trivial: one only has to count the ones in the stream,
and pick the bit sequence which has exactly [- p,]| zeros. The advantage
is equal to the probability that the ideal random source does not match this
exact value.

33

Example 7. For v =0.95, £ = 100, we should have |{ x (1 —p,)| =3 ones
in the sequence produced by G3. An ideal biased generator deviates from this
number with probability

100
1—pd(1 —pw)?’(5 > ~ 0.78,

which 1s the advantage of an adversary on the distinguishing problem.

Such a weakness is alarming for a PRG, and so we cannot use G3 a prior:
in TCHO. But it could be part of a variant of the cryptosystem, taking
advantage of the properties of this generator; for instance, it guarantees that
the bias does not deviate too much.

3.2.6 Algorithm G4

Description

This generator mixes G2 and G3: a bitstring of length ¢ is directly gen-
erated, by first choosing a weight, then a word of the chosen weight. It is
equivalent to G2 with a block size n = £.

Complexity

Like for G2, the precomputation requires the computation of ¢/2 binomial
coefficients, achieved in O (¢(log £)?) operations.
The number of random bits required for one biased bit is in average

B
Raam 7+ (1= p,)log],

by neglecting additional cost induced by the collision (e.g. for £ = 10000
and 7 = 0.985 we get in average of ~ 0.0004 random bits per biased bit
produced). Here the expected number of collision is (¢f. Section 3.2.4) is

less than)
(1 - p’y) ¥4
—

The time complexity of the algorithm ouputing a biased bitstring of length
¢ is clearly in O (€(1 — py)).

Statistical distance

Like G2 the statistical distance to an ideal generator is

Dgs ~ (£+1) 27871

34

Example 8. For ¢ = 40000,v = 0.985, B = 64, the expected number of
collisions is about 1.13, leading to an additional cost of about 0.0004 ran-
dom bits per bit produced. Neglecting this cost, we get Rgy ~ 0.117, and
Dgy =~ 2735 The theoretical number of random bits per biased bit required
is (information entropy)

—pylogp, — (1 — py)log(1l — p,) =~ 0.081.

Optimality
Let p = py. The function % + (1 — p)log ¢ has a unique minimum value,

reached when

2 (1=
loge+(p)l =0,

that is, for
B

(1-p)loge
For example, for the previous example we get ¢ = 5914, and a cost Rgs =~

0.108.
By substituting in the expression of Rg4, we get

(1 —p)(log B —log(1 —p)),

(=

which reaches the theoretical optimal value (the theoretical amount of in-
formation contained in a bitstring, that is, the binary entropy of p, ¢f. Sec-
tion 1.2) when

plogp

log B = .
0g -

Since the maximum of % on]0,1[C R is

1
m 298P 1 440,
p—>1 p— 1

a quasi-optimal cost will not be achieved for large enough values of B. In
particular, if we tolerate a statistical distance as large as (£+1)-27871 =1,
we can choose B = log/, and so the cost reaches the theoretical minimal

value when
plogp

loglog ¢ —
p—1
is close to zero, which requires £ = 3 to be below zero.

In the case where a large number of biased bits is required, one often had
better choose £ = B/((1 — p)loge) as “block size”, to get the lowest cost in
terms of random bits.

To conclude, this generator is very cheap in terms of random bits re-
quired, but can never reach a quasi-optimal cost. One may be careful to

35

the statistical distance induced (i.e. B = 32 would lead to a high distance
for common TCHO2 parameters). Compared to G2, the precomputation is
much more costly: computing ¢! naively is required for an exact estimation
of the probability distribution, and division of numbers on about ¢ bits must
be performed; we had better use the following Algorithm 3.6, used in the
GMP library [Gra06|, based on the recurrence relation

<Z> :n_Tlm(/cﬁl)'

It requires less than ¢? products and divisions of numbers on log ¢ bits.

Algorithm 3.6:

INPUT: n, k. k <n/2
OutrpuT: (})
cbe—n—-k+1

1

2: fori=2,...,k do
33 b=bx(n—k+1)
4: b:b/Z
5: end for
6: return b

If we tolerate a slight loss of precision, we can first estimate In(n!), In(k!),
and In((n — k)!) using the Gamma function, defined by the integral:

F(z):/ t* e tdt.
0

Hence for a natural n, I'(n) = (n—1)!. The value InT'(n+1) can be approxi-
mated in constant time [PTVF92], thus approximating a binomial coefficient
requires a constant number of multiplications and exponentiations (the ex-
ponentiation of e can be reduced to an exponentiation of the integer 2 to an
integer power, with three additional products of small rational numbers, so
as to avoid expensive floating point arithmetic). For instance we computed
2000000! in about three seconds, whereas the best exact algorithms using a
database of prime factors (Schoenhage, Luschny) takes about one minute for
2000000!, and the best without a prime factors (split recursive) list takes
about two minutes (see [Lus06]).

3.2.7 Conclusion

We overviewed several algorithms for biased random generation: G1 has a
somewhat low cost in terms of unbiased bits, but is not well suited for a
software implementation, like its variant G1+. The algorithm G2 is more
software-friendly, for roughly the same cost in time and random bits. The

36

Algorithm G3 is nsecure, but requires only a few uniform random bits, and
its properties may be exploited by some variant of TCHO2. The last al-
gorithm G4 requires less uniform random bits than bits produced, with a
low-complexity and simple implementation. A precision bound B = 64 or
larger shall be required, depending on the values of £. However the pre-
computation is much more expensive than for G2, so we will finally use
the latter, since we can reasonnably allow us a higher number of random
bits from ISAAC, and we may encounter large values of £, where G4 exact
precomputations may become too costly.

3.3 Primitivity testing of a high-degree polynomial

Here we briefly study the problem of testing the primitivity of a high-degree
polynomial, since required in the key generation procedure.

Testing primitivity of a binary polynomial is hard. We recall that an
irreducible binary polynomial of degree d is primitive if and only if its order
is equal to 27 — 1. Otherwise, its order is a divisor of 2¢ — 1 (and so is odd).
Thus testing primitivity by computing the order is as hard as finding a factor
of 2¢ — 1. Indeed, the three problems of computing order of an element in
a group, finding and recognizing a primitive element in a finite field, are all
listed as open problems in [AM94]. But in our particular case of polynomials
over [y, maximal orders are Mersenne numbers, which have some properties
relative to primality testing and factoring; we present some results about
these numbers, deduce selection criteria for our polynomial P, factor of K.
We start by an estimation of the primitive polynomials proportion.

3.3.1 Proportion of primitive polynomials

The proportion of primitive polynomials among the irreducibles is approxi-
mated in [FV06] to 8/72 ~ 81 %, where 7 is introduced via Buffon’s needle
problem. So the probability for K to have a primitive factor of degree dp is

about %. Given an interval [dyin, dmax), We get a probability of
d
max 8
1-— 1-—
i—ld_[- (w2 X z)

that K has a factor of degree in this interval.

However, we can doubt of the accuracy of the estimation 8/7%: the exact
enumeration formula (see Appendix C) give a proportion of primitive poly-
nomials among irreducible, for degrees below 100, of 70 %. Unfortunately
we cannot compute this value for the large degree ranges, since the full fac-
torization is required in the formula (to compute Euler’s totient and Mdébius
functions). Indeed, the probability that a random irreducible polynomial of

37

degree d is primitive is exactly

¢(2 — 1)

The number of irreducible polynomials of degree d can be sharply approxi-
mated to 2¢/d, but there is no way to simply estimate the number of primitive
ones.

3.3.2 Known deterministic tests

When 2% — 1 is prime, we know for sure that any irreducible polynomial of
degree d is primitive (Corollary 1). Thus by testing for My primality, we can
trivially prove primitivity in some cases. However, prime Mersenne numbers
are seldom, and it suffices to store in memory the exponents of primes (they
are only two exponents of Mersenne primes in [5000, 1 000]: 9689 and 9941),
and we do not have to use primitivity tests. In the case where primality has
to be tested, several properties of Mersenne numbers may help.
When 2% — 1 is composite, the naive method is:

1. Get the full factorization 2¢ —1 = [[2, pS, where p; is the i-th prime,
and only a finite number of a; is non-zero.

2. Compute X@'=1/k mod P, where k ranges over all the prime factors
of 27 — 1 until we find 1 (otherwise P is primitive).

Rieke et al. [RSP98] improved this generic algorithm, but finding a single
factor of 2¢ — 1 still has a superexponential time cost in d with the best
known algorithms, thus it is clearly infeasible for our degree ranges (d >
6000). Matsumoto |[MN98| builds another kind of algorithm for the binary
polynomials, based on bit to bit operations, but again it is too costly to be
applyed in TCHO. All the other known methods require factoring 2¢ — 1 or
computing discrete logarithms in F,q4, both notoriously difficult.

There exist fast deterministic techniques to compute elements of high
order in some finite fields [GvP98|, but they are not suitable in our case.
Some works focus on trinomials, and algorithms were built to find “almost
primitive” high degree trinomials |[BLZ03, BZ03] . So there is no magical
test avoiding the order computation, even if, as we see further, Mersenne
numbers induce a slight advantage.

When d is prime, the following theorem gives a criterion on the prime
factors of My:

Theorem 5 (Fermat, Euler). Let p and q be odd primes. If p divides 29—1,
then p=1 mod ¢q and p=+1 mod 8.

38

Proof. If p divides 2¢ — 1, then 29 = 1 mod p, and the order of 2 in (Z,)*
divides ¢, thus it must be ¢, because it is prime. By Fermat’s Little Theorem,
the order of 2 in (Z,)* divides p — 1, so p — 1 = 2¢k. It gives

2(P=1/2 = 9k =1 mod p

so 2 is a quadratic residue modulo p, and it follows p = £1 mod 8, which
completes the proof. O

This result can be used to adapt the Pollard’s p-1 algorithm, and Er-
atosthene’s sieve. When d is not prime, the Elliptic Curve Method is well
adapted, but not efficient enough to get the full factorization in a reasonnable
time for our ranges of exponents.

3.3.3 Using a non-primitive polynomial

Let’s consider the case where P is of unknown order: in [FV06] the primi-
tivity quality is required so as not to have X" — 1 as a trivial solution, when
the order is n < d, and a period long enough. The period would be shorter
than ¢ with probability about ¢/M, which is close to zero.

If P is not primitive, and the order n known, it is less than d with
probability about d/My, which is also close to zero. So the trivial solution
cannot be used. But one may factorize its order. For instance, if n = 3p,
we can build a multiple of weight 3 and degree 2n/3, but the probability
that this number is lower than ¢ is close to zero again. A result on the
factorization of X™ — 1 may be used:

Theorem 6. Considering polynomials in the ring E,[X], with p prime,

X" —1=]]®m(X)
mln

where the m-th cyclotomic polynomial is defined by

B, (X) = H(Xd _ 1)u(m/d)
dlm

with p is the Mébius function (m is not necessarily prime).

Proof. The result follows from the M&bius inversion formula (see [LP98] Ch.
3, §13). 0

The order n has an expected value close to 2¢~1 (under the reasonnable
assumption that orders are roughly uniformly distributed in [3,2¢ — 1]).
When possible, exploiting the previous result would need to get the full
factorization of n, and compute a number in O (2”(”)) of combinations of
the factors to hope finding some “good” multiple, which is infeasible for our
values of d (v(n) is the number of divisors of n).

We conclude that a non-primitive polynomial can be use with no signi-
ficative risk.

39

3.3.4 A filter for primitive polynomials

Here we briefly describe a filter for non-primitive polynomials. In the fol-
lowing P is a randomly chosen irreducible polynomial, non-primitive, of ar-
bitrary degree d chosen among non-Mersenne prime exponents (i.e. 2¢ — 1
is composite). A polynomial passing this test would be declared probably
primitive. Our test is based on the following trivial property:

Property 1. Vk € Z, X*orP) =1 mod P.

So if X2dT71 # 1 mod P for a given prime k less than 2¢ — 1, we know
that k divides the order of P. Conversely, if it is 1 modulo P, then P is not
primitive, and v (2% — 1) — 1 > v (ord(P)), where, vg(n) is the multiplicity
of the prime k in n. If 2% — 1 is square free, then X$ =1 mod P
implies k|ord(P). It is conjectured [Guy94]| that all prime exponent Mersenne
numbers are square free, but we cannot use this result, since primes are
seldom.

The idea of our algorithm is to look for small prime factors of My, up

d_
to a certain bound B, and check x5 # 1 mod P with k ranging over all
these factors, so that we find 1 only if P is not primitive.

Algorithm The algorithm 7' is simply this procedure:

1. Find out all the distinct prime factors py, ..., pr of 2¢ — 1 less than B.

2. Fori=1,...,r:

d

27 -1
If X » mod P =1, then return 0.

3. return 1.

Correctness and complexity This algorithm is clearly deterministic.
Trivially, for a random P, if P is primitive, then T(P) = 1. If P is not
primitive, T'(P) = 1 if and only if P’s order has all the p;’s as factors. Let p
be the probability that T'(P) = 1 for a non-primitive P.

All the p; can be found in time O <\/§ . d2> using Pollard’s rho method

(exponential cost in terms of the input’s length) . There are at most d
241
such factors, and in average Inln B. Computing all the X »i mod P thus

requires O (d3) operations in the worst case (and O (d2 Inln B) on average).
What remains to find is a bound on p.

40

Reliability It is known [HR17| that the average number of prime factors
of an integer m is in average Inlnn, and Inln B for factors less than B (for
high B), however Mersenne numbers may not behave like arbitrary integers;
in 1964 Gillies |Gil64] made a conjecture about the distribution of prime
divisors of Mersenne numbers, based on this Wagstaff [Wag83| estimates the
expected number of prime factors of My between A and B to

1
;m ~ lnlnB —lnlnA

where the sum extends over all integers k such that A < 2kd+ 1 < B. Note
that for A = e, we find the average estimate for arbitrary integers. Thus the
expected number of distinct prime factors less than B is

InlInB—1Inln3

since My is odd, and the expected number of prime factors of M is

In My

~Ind—Inln2 —Inln 3.
In

In

Estimating the failure probability from an assumption on the orders dis-
tribution is far from being trivial, so we will use a more algebraic approach
of the problem.

In the decomposition field Fy[X]/(P), has its d distincts roots (X, ..., X2 ~1).
This field has 2% elements, and thus is isomorphic to K = Fyq, and P roots
are 9,02,...,92d_1 for a certain #. The set (1,6,602,...,0971) is a linearly
independent family, and spans K as a d-vectorial space.

By definition, P is primitive if and only if each of its roots generates
K*. In that case all its roots are also generators of K*, since s order is
maximal, and they form a set stable by the Frobenius automorphism.

Let F C K be the set of all the 6 such that (1,6,602,...,69"1) is a linearly
independent family. Elements of K\ F' have their minimal polynomial of
degree d’ < d, and span a subfield of K; hence their order divides PR
and d'|d. Conversely, if the order of 6 divides 2¢ — 1 for some d'|d, then
0 ¢ F. We have

2d _ 1

* d’
— <
#{0 € K, ord(0)]2 — 1} < T

so the fraction of # € K* not in F is less than log d/(2\/3 —1).

The probability that a random 6, such that 92 =1/pi for § = 1,...,r, is
not a generator of K, is the probability that a random « € Z/Qd — 17 is not
invertible given the fact ged (o, p;) = 1. This probability is less than ﬁ,
let A be this event. We deduce

41

d B r P

7000 [2?9 | 37 [<33-107%
7000 | 230 | ~ 48 | <2.2-1077
7003 20| 2 | <33-107%
7003 [230 | ~4 | <2.2-1077

Table 3.3: Filter failure probability.

PrING(6)] 4] < L P

~ Blog B’
where NG is the predicate “not a generator”.
Finally,
logd
|IPr[NG(0)|A,0 € F] — Pr[NG(0)|A]| < Pr[f ¢ F] <)
2vd 1
and so
d log d

p = Pr[P not primitive|T(P) = 1] < Blog B + i1

For common values of d in TCHO2, A negligible failure probability can
be reached (note that the bound is not tight, since we considered the case of
d factors, whereas they are only Inln B in average), c¢f. Table 3.3.

This algorithm easily generalizes for polynomials over the field F,, with
p prime.

3.3.5 Conclusion

We have shown that testing primitivity was as hard as factoring a Mersenne
number, which is an infeasible task for our exponents, and so we cannot
deterministically test for primitivity. Moreover, no probabilistic polynomial
time technique is known at this day to test primitivity. We suggested a de-
terministic filter, that finds with high probability non-primitive polynomials
when the bound is sufficiently large. We also saw that even with an oracle
returning the order of P and the full factorization of My, the probability of
exploiting these values is clearly negligible.

Finally, we choose not to test primitivity at all, but we still have to check
that P has no common factor with @, for the decoding not to be ambiguous.

3.4 Key generation

We follow the process described in Section 2.2.1: first pick a random K
of given degree and weight, then look for an irreducible factor of degree in

42

[dmin, dmax]- When such a polynomial is found, we have to test whether it is
primitive or not; the probabilistic filter mentionned in the previous section
could be use, but we also show that an irreducible P coprime with) suffices,
thus testing primitivity is not necessary.

We first perform the square-free factorization of K, which is a straight-
forward operation for polynomials: we start by computing the ged of K and
its derivate, then recursively build a decomposition of the form

K=]]x

where the K are pairwise coprime square-free polynomials. At this stage
we look for a suitable P, but finding our factor here will seldom occur,
regarding to the parameters used. Then we apply the Cantor-Zassenhaus
algorithm |CZ81b|, the distinct degree factorization, to get the full factor-
ization of K into powers of irreducible factors, from the square-free factors.
This is a probabilistic algorithm for factoring on finite fields, of asymptotic
time complexity in O (n2+0(1) In 2), which is the best asymptotic complex-
ity for a factorization algorithm today (the best deterministic algorithm runs
in [Sho90] O (q1/2 (In q)2n2+0(1)), where ¢ is the cardinality of the finite field).

Example 9. [t takes on average about 2 seconds to get the full factorization
of a polynomial of low-weight degree 5000, and between 20 and 30 seconds
for a polynomial of degree 11560 (default parameter of TCHO).

The public and private keys, represented as bitstrings, are respectively
of length (dp + 1) and (d + 1) bits. To reduce this length, one can store
the offsets of the non-zero coefficients, it requires w[logd]| bits. If coding
numbers on an arbitrary number of bits is not practical (e.g. in software),
one can store the polynomial K/P on d — dp bits, then recover K with one
polynomial multiplication (cost in O (d3)).

Example 10. A polynomial K of degree 13000 and weight 99 can be stored
on 99 x [log 13000] = 1386 bits, instead of 13000 naively.

3.5 Encryption and decryption

A ciphertext is the XOR of three bitstreams; Sgp, Sc,,, and S,. In our
implementation, these streams are arrays of 32 bit words, which are first
computed independently, then xored word by word (there is a total of [£/32]
words).

Decryption is not as easy as the encryption: the bitstream K ® y, of
length £ — d, is computed using bit operators on low-level representations of
the stream and K in time O (d - (£ — d)). The matrix M -1 is precomputed,
and its inversion is performed with a function of the NTL, implementing the

43

Gauss-Jordan algorithm. The product by this matrix is performed after the
MLD, with an algorithm running in time O (d%)

Although TCHO is clearly a stream cipher (see Subsection 1.3.1), we
meet a problem inherent to the block ciphers, when the message’s length is
not a multiple of the block size. A broadly solution is to systematically add a
one to the message, then add zeros until a block is filled. It has the drawback
to add one block of data to the cipher of messages whose length is a multiple
of the block size, and thus can induce an expansion of the message. The
ciphertext stealing technique can solve this problem when the block size is
the same for plain and cipher messages, it is not the case here. So we have
to use the first solution.

3.6 Experimental results

This section gathers practical information about our implementation, and
benchmarks’ results, based on the final version of the program. Table 3.4
gives the average time required to compute one a bitstream from a LFSR of
one megabyte, and £ = 15000 bits, in seven different scenarios, depending
on the feedback polynomial:

I degree 30,
IT degree 6000,
IIT degree 6000, with only taps on block boundaries,

IV degree 6000, sparse (weight 50).

scenario 1 Mb ¢ bits rate

I]290.0ms | 452 us | 3530 Kb/s
11 6.8 s 11.0 ms 150 Kb/s
111 1.1s 2.1 ms 930 Kb/s
v 1.0s 1.8 ms | 1024 Kb/s

Table 3.4: LFSR performances.

Table 3.5 gives average time required to compute £ bits for £ = 15000 and
¢ = 50000, along with the rate achieved, using algorithm G4 for different
biases.

An alternative approach to compute a LESR output is to use a precom-
puted look-up table: given a polynomial P of degree dp, we can compute a
table of £ - dp bits, containing the bitstreams produced by each initial state
of Lp of weight equal to one. Computing such a table takes less than a sec-
ond using optimized algorithms, then the generation of a bitstream requires

44

roughly % X dTP XOR operations (in our implementation, with a 32 bits
processor). Experimentally the time gain is not significant, since memory
access takes a non negligible time (about 70 megabytes are precomputed for
common parameters).

~ L time rate
0.98 | 50000 93 ps | 64 Mb/s
0.98 | 15000 42 ps | 42 Mb/s
0.60 | 50000 | 1400 pus | 4 Mb/s
0.60 | 15000 440 ps | 4 Mb/s

Table 3.5: PRG performances (using G4).

In Table 3.6 we present three sets of parameters satisfying the security
constraints, and show in Table 3.7 the time required for the full key gener-
ation, the number of trials (number of candidates for K tried), the time for
a full factorization, and for encryption and decryption.

scenario | dg dp y w d 14 Chard

I|16 | €[5600,6200] | 0.98 | 87 | 11800 | 12600 | 80
IT | 20 | € [6000,6600] | 0.98 | 99 | 11560 | 13080 | 80

IIT | 20 | € [7000,7700] | 0.98 | 105 | 13950 | 15900 | 80

Table 3.6: Scenarios.

scenario | key generation | trials | fact. | encryption | decryption
I 160 s 6 19 s 12 ms 3s
II 270 s 12 23 s 12 ms 68 s
I 290 s 8 38 s 12 ms 87 s

Table 3.7: Key generation and encryption performances.

The high values for decryption are due to the exponential cost in dg of the
MLD. The time necessary for the matrix inversion is neglectable regarding
to the cost of the MLD, for these parameters. This implementation does
not use the improvement of the Walsh transform, which should reduce the
theoretical time complexity of a factor ;_—Qd, but may require non negligible
additional computations.

45

Chapter 4

The TCHO2 scheme

We present a variant of TCHO, resulting of our study: we first show what
kind of codes can be used to encode the message, and suggest much better
codes than arbitrary LFSR ones for our encryption scheme. Another in-
novation of TCHO2 is that the need for P to be primitive is obviated (cf.
discussion in Chapter 3).

4.1 Presentation

TCHO?2 differs from TCHO in the coding applied to the plaintext. In TCHO,
a code spanned by an LFSR with an arbitrary primitive polynomial) was
used, leading to an expensive decryption procedure. In TCHO2 we will
instead use a code C of dimension k£ and length ¢ for which an efficient
decoding procedure exists, and denote C'(x) the codeword of x in C. This
code is subject to many constraints and cannot be chosen at random. In
the decryption process of TCHO, the ciphertext is multiplied by K to cancel
Sﬁp. In this process, the noise source Sf; becomes Sf;;d, but SﬁQ(x) also

becomes Sf:;c(lw,). In the case of TCHO2, the multiplication by K being a

linear operation, we will have K ® C(z) = C(z), where C is a new linear
code of dimension k and length ¢ — d. This means that when decrypting a
ciphertext, one will have to decode in the modified code C. The only case
where decoding in C' can be efficient for any K is when C is a truncated
cyclic linear code, that is, C is the output of an LFSR. In that case, as
for TCHO, K @ C(z) is equal to C(2’) truncated to ¢ — d bits, where 2’ is
obtained from x exactly as with TCHO. TCHO?2 is thus at the same time
a generalization of TCHO as things are seen from a more general point of
view, but also a particular case as the only efficient solutions were already
included in the scope of the original TCHO.
TCHO2 encrypts a plaintext x in the following way:

TCHO2enc (7, 71[72) = C(x) + S 1) + Sy (12)-

46

Let y be a ciphertext of some plaintext z. Decryption works as follows:

1. K is used to delete Sg, in y:
K®y%é’(m)+5€5d =19

where C(x) is equal to a truncated codeword C(z), with 2/ = f(z) for
a certain linear application f.

2. 9/ is decoded to find 2/, and z = f~!(z') is recovered.

Note that the matrix of f~! can still be precomputed, since it only depends
on K and the code C' used.

4.2 LFSR codes with trinomials

A first proposal, by Willi Meier, was to use, instead of an arbitrary primitive
polynomial, a trinomial as feedback polynomial of the LFSR encoding the
plaintext. In that case, decoding algorithms more efficient than MLD exist;
the Algorithm B in [JJ99] or Gallagher decoding as used, e.g., in [Wag02]
for fast correlation attacks, can be applied. The success probability of these
algorithms depends on the correlation value pyw, and the ratio between the
length of known output and the size of the LFSR for which the initial state is
searched for. Again, concerning the reliability of these iterative algorithms,
only experimental results seem to be available. For trinomials it can be seen
from Table 3 in [JJ99] that, for example, correct decoding is expected if
the known output has length 100 times the LFSR-length, and p,» is 0.6 or
larger. This clearly improves the complexity of the decoding, but we see in
the next section that it can be reduced again.

4.3 Block repetition codes

4.3.1 Description and reliability

These codes offer straightforward encoding and decoding algorithms: for a
block repetition code of dimension k and length ¢ = mk, the codeword of
a bitstring = of length k is formed of m contiguous repetitions of =, and so
the minimum distance of the code is m (m is also equal to the expansion
coefficient). Decoding is performed using majority logic decoding (MJD),
which is equivalent to MLD for these codes, but runs in time O (¢ — d),
instead of O (k; . 2’“). This complexity gap allows to encrypt blocks larger
than ceasy, and even any length less than £ —d. Note that using a repetition
code is equivalent to setting @ = X9 + 1 in TCHO (with dg = k).

Here C has minimum distance m’ = |(£—d)/k], but decoding more than
|(m'—1)/2] errors (the theoretical bound for deterministic error correction)

47

will be possible. The probability of erroneous decoding is exactly the prob-
ability that at least one bit is more frequently erroneous than correct, that
is (if we assume that the correlation in S,» induced by the deletion of S,
has no consequence here):

’

o i i (T
prel—| > plu(l—pw) <Z> . (4.1)

i=[m’ /2]

This probability can also be expressed using the central limit theorem (sum-
ming k times on the m/ bits). If 7 is the random variable of the number of
errors on a single bit, the probability that an error occurs in the decoding of
this bit is Pr[r > m’/2], which is equal to

—m/ (1 = pow w — 1
pr | m (1= pye) >Vm/ Py 2 %1—<p(\/ﬁn)
\/m/p'y“’(l _p'y“’) p’y“’(l_pvw)

with n =~4%/4/1 —~42*. And so the failure probability obtained is
p k- p(—nvm'). (4.2)

Here ¢ is the cumulative distribution function of a standard normal distri-

bution:
(2) = —— / ~1*/2g,
z) = € .
? V2T) o

If the generator G3 was used, the error probability would be expressed
differently; if ¢ = |({—d)(1—pyw)]) is the exact weight of the pseudo-random
bitstring, then the probability that given bit is badly decoded becomes

(500

hence the probability of bad decoding is
p>1—(1-V)

The value obtained is just a lower bound, since it considers the k bitstrings
of length m/ independently, whereas they are not. Even so, this bound is
close to the exact value, and experimentally it is also close to the value of p
found in (4.2).

We can now ask the question: what error probability can we accept 7 We
must be careful in that choice, indeed a value as low as 2723 (=~ 10716) looks
small enough, but it implies in average one error for 223 blocks of length £,
that is, for £k = 64, an expectancy of one error for 64 megabytes of data
encrypted. In 1943, the mathematician Emile Borel informally introduced

48

four different scales [Bor43], to state that a given probability is negligible;
at the terrestrial scale, even 1/1000 is negligible, but at the cosmic scale we
should only neglect a probability lower than 107°°. He defines an event with
negligible probability as one "which shall never happen, or, at least, shall
never be observed”'. In our case, we must already make some assumptions:
will TCHO2 be used daily to cipher dozens of hard disks, or only monthly
to encrypt 128 bits of some secret key 7 The second affirmation sounds
more realistic, regarded to the cost in space and time of TCHO2. We should
also remember that requiring an error probability smaller than the one of
hardware failure would be somewhat stupid. So we should be able to tolerate
a failure probability of 107'° at our “cryptographic scale”, that is, a wrong
decryption of a block every 500 Mb of data encrypted, or one key of 128 bits
over 100000 000.

k dp d w ~y 1 —pyw l p

1|32 €[6600,7200] |13470|890.9832| 0.39 |32000|1.0-1076
IT| 64 | €[9000,9900] |17550|97[0.9877 | 0.35 |30000 |4.0-10"*
11| 128 | € [5900,8200] |24420 |51 |0.9813 | 0.31 |48000|2.9-1076
IV | 128 | € [5600,10400] | 20300 | 83 | 0.9837 | 0.37 |62000 | 1.7-1074
V | 128 | € [8500,9075] | 17996 [81]0.9870 | 0.36 |68000 |7.0-10~1
VI [128 | € [5800,7000] |25820|45|0.9810| 0.29 |50000|8.9-107°

Table 4.1: Examples of parameters for TCHO2 with repetition codes.

Table 4.1 shows some parameters suiting the security constraints (cf.
Assumptions 1 and 4), for chag = 80. When a high security is not required,
and a somewhat high error probability can be tolerated, much more practical
parameters may be obtained.

4.3.2 Experimental results

Table 4.2 shows performances for the repetition codes scenarios described
in Table 4.1, based on the implementation of TCHO. Encryption time is
roughly equal to the time needed to compute Sﬁp(n) (in all scenarios Sf/ is
computed in less than 1 ms), while for decryption the most expensive op-

'"He then develops this thought: “When we stated the single law of chance, "events
whose probability is sufficiently small never occur”, we did not conceal the lack of precision
of the statement. There are cases where no doubt is possible; such is that of the complete
works of Goethe being reproduced by a typist who does not know German and is typing at
random. Between this somewhat extreme case and ones in which the probabilities are very
small but nevertheless such that the occurrence of the corresponding event is not incredible,
there are many intermediate cases. We shall attempt to determine as precisely as possible
which values of probability must be regarded as negligible under certain circumstances. It is
evident that the requirements with respect to the degree of certainty imposed on the single
law of chance will vary depending on whether we deal with scientific certainty or with the
certainty which suffices in a given circumstance of everyday life.” (Chapter 3, Ibid.)

49

eration is the multiplication by K (majority decoding and product by the
precomputed matrix always require less than 1 ms). We give average times
for a key generation, and the average number of polynomials factorized (tri-
als) during the procedure. The theoretical error probability p was accurately
verified experimentally, and so is not repeated here.

encryption | decryption | key gen. | trials
I 29 ms 73 ms 330 s 12
I1 37 ms 53 ms 360 s 6
111 42 ms 47 ms 360 s 3
v 56 ms 170 ms 213 s 2
V 80 ms 215 ms 805 s 10
VI 55 ms 70 ms 682 s 4

Table 4.2: Performances of TCHO2 with repetition codes.

Results in Table 4.2 show that, while selecting parameters, a trade-off
must be made between key generation time, encryption and decryption time,
and ciphertext expansion. Indeed we cannot obtain both a fast key genera-
tion, a low error probability, and fast encryption/decryption; the prohibitive
time required by a key generation can be reduced by using larger degree
ranges, thereby increasing p and the time of encryption and decryption,
whilst a small degree range allows better success probability but dramati-
cally slows down key generation. Increasing ¢ reduces p but induces a huge
expansion and a high time of encryption and decryption. We review the pros
and cons of each 128 bits scenario proposed:

IIT A large interval [dmin, dmax] is chosen, so the key generation time is
reduced, but p is high.

IV Compared to III, d is reduced, thus key generation is faster, but p is
higher.

V Here we use a small interval and a larger ¢, to reach a much lower
failure probability, but key generation becomes much slower.

VI A high degree is chosen for K, it allows to reduce its weight, and the
length ¢ of a ciphertext, but key generation is still long.

So far our software implementation of TCHO2 is much slower than op-
timized ones of cryptosystems like NTRU [Sho05], RSA-OAEP |Wal98|, or
elliptic curves-based systems [Gra06], but may perform much better on a
dedicated ASIC, since no complex arithmetic is required, and both LFSR
and pseudo-random generators are known to be very fast in hardware (an
LFSR implementation in hardware requires about as many gates than the
register’s length, and outputs one bit per clock cycle).

50

4.4 Asymptotic parameters

Here we show that secure parameters can be expressed only in terms of the
dimension k and cparq, by giving expressions involving constant values in the
constraints formulas. For instance, set w = Chard, d = Chard2k, { = oud,
dmin = Chard%, dmax = @2Chard?, and ¥ = 1 — 3/chard. The security constraints
are satisfied provided that a; > 1, ap > 1, and # > In4, with the constraint
that k = O (¢hard) and k and cparg are large enough.

Indeed, the constraint on the hardness of LwpMm, wlog ﬁ
be rewritten £ > 2a which always holds for a reasonnable ay. We also need

__ Chard
v < 2" duin | that is, 1 — P

2 Chard, Can

C
<1-2lp2-ard
Chard Chard

and so we need § > In4. Some routine but tedious calculus shows that
the failure probability p is asymptotically bounded with such parameters.
However the parameters thus obtained for TCHO2 may not be practical for
small values of k and cparq, since not tight with the security constraints. With
the parameters above, key generation runs in time O (Chard4k2); encryption
in O (chard2k), and decryption in O (chard?’k + /<;2), for parameters providing
semantic security against adversaries running in time less than O (2¢hard).

In comparison, RSA with modulus of & bits offers key generation in time
@ (k‘4), encryption in O (kz) decryption in O (k3), and OW-CPA security
(namely, the infeasibility to factorize the modulus) against adversaries run-
ning in time

O (e(%k)l/?’(ln k)2/3)

(GNFS complexity), and so 2¢rd security holds with cpaq = O (k1/3), whereas
in TCHOZ2 the block size and the security level are almost independent pa-
rameters (we only need k = O (chard))-

4.5 Comparison with other cryptosystems

Although software performances of with our implementation are clearly worse
than other asymmetric cryptosystems’, TCHO2 may be much more compet-
itive in hardware. Indeed, hardware implementation of RSA |[RSAT7S8| is
much more complex [Koc95|, for example it requires Montgomery method
to reduce the number of modular reduction, which is also non-trivial to
implement. NTRU [HPS98] also requires modular reductions, and uses a
special kind of product between two polynomials with integer coefficients,
whereas TCHO?2 only works over F», much more hardware-friendly. Elliptic
curve based systems implementation is also non-trivial (it works on a large
finite field). Another singularity of TCHO2 is the independence between
a ciphertext length and the security (). which contrast with RSA, NTRU,
McEliece [ME78|, and GGH |[GGH97| for example.

ol

One may notice that TCHO2 looks like McEliece: encryption is “encode
and add noise”, decryption is “reduce noise and decode”. Like TCHO?2 it
involves a matrix product, a precomputed inversion of matrices related to the
private key. McEliece is based on Goppa codes instead of LFSR codes, and
mostly relies on the NP-hardness of the problem of decoding an arbitrary
linear code. But it suffers from a huge public key (typically 2! bits for
secure parameters, whereas TCHO2’s is about 2'3). Since majority decoding
is much more simple than decoding Goppa codes, we are convinced that
TCHO?2 is more appropriate than McEliece. In addition, both public and
private key are much smaller than in McEliece, and decryption requires one
matrix-vector product instead of two. Our huge ciphertext expansion is
clearly a drawback, but may be acceptable when ciphertexts are not to be
kept in memory, and the sole purpose is to encrypt secret keys of a symmetric
scheme.

4.6 Conclusion

This variant of TCHO with repetition codes is much more efficient: encryp-
tion and decryption algorithms are faster, larger blocks can be encrypted, a
precise estimate of the decryption failure probability is given, and experimen-
tal results are much better than for TCHO. Besides of that, a huge expansion
is required to reach both a negligible error probability and an assumed 289
security (assuming that choosing cpaq = 80 is reasonnable today).
Eventually, the bitstream Sz, 4 S, can be regarded as trapdoor pseudo-
random generator, where the trap allows to reduce the noise enough in order
to decode the noised codeword, Other generators of this kind would make
it possible to use other codes (not only linear ones), if the use of the trap
does not alter the noised pattern. The Blum-Goldwasser [BG85| cipher is an
example of trapdoor PRG, where the trap allows to recover the seed of the
generator, and thus the entirely cancel the pseudo-random bitstream.

02

Chapter 5

Security

In this chapter we prove semantic security of TCHO and TCHO2, and design
two hybrid encryption schemes offering IND-CCA security.

5.1 One-wayness and non-malleability

Let’s begin with the weakest security level:
Proposition 6. TCHOZ2 is (2¢herd 27 Chard) OW-CPA secure.

Proof. It directly follows from the security assumptions 1, and 2 that a
plaintext cannot be recovered with probability greater than 27%ard in time
less than 2¢ad. Hence TCHO2 is (2¢hard | 27 Chard)-OW-CPA secure. O

We now state two negative results on TCHO2 security:

Proposition 7. TCHO is not (O (¢) ,1—¢)-OW-CCA secure, for some small
e>0.

Proof. Given a sound ciphertext, it suffices to modify one bit and ask an
oracle to decrypt it to get with high probability the plaintext corresponding
to the original ciphertext, thus the algorithm runs in constant time, with
exactly one query to the oracle. The positive value ¢ is the probability that
a ciphertext of some random message is not sound, that should be small for
well chosen parameters. O

As a consequence, it is not IND-CCA secure either, nor NM-CCA secure.

Proposition 8. TCHOZ2 is not (O (£),1)-NM-CPA secure.

Proof. 1f y is a sound ciphertext of , then y+2/|| ... ||z is a sound ciphertext
of x4 2/, for any 2’ € {0,1}*, with probability 1, thus TCHO2 is malleable
in constant time, without any encryption query.]

93

Also remark the property that the sum of n sound ciphertexts is a sound
ciphertext, with the same parameters except the bias now equal to v*. How-
ever the obtain ciphertext shall be impossible to decrypt, even if n = 2, for
well chosen parameters.

We can define a non-strict notion of sound ciphertezt for a given key:
at decryption, when performing MJD, if the average proportion of correct
bits for all the offset does not match with the bias v (for a random bitstring
we get in average as many zeros as ones for a given offset), then with high
probability this is not well constructed ciphertext. However, independently
of a key pair, any bitstring of length ¢ may be a valid ciphertext. Recall
that we talk abound sound ciphertexts instead of valid ones, since the latter
adjective is commonly used for objects that could not have beed produced
by the encryption algorithm.

5.2 Semantic security

The results in this section are stated for TCHO2, but hold for TCHO as
well.

5.2.1 A sufficient condition

Theorem 7. If Sﬁp —{—Sf; cannot be distinguished from Sg in time t with an
advantage larger than €, then there exists p such that TCHOZ2 is (t — u,€)-
IND-CPA secure.

Proof. We proceed by reduction: let A" = (A", A®") be an adversary in
a real-or-random game, which, given a chosen plaintext z = AP (1%) and a
bitstring z of length ¢, decides whether z is a ciphertext of x or of an unknown
randomly chosen plaintext z’; this adversary returns A% (z) € {0,1}, and
succeeds with an advantage e, in time ¢. Since a ciphertext of TCHO2
consists of some bitstring noised with a random source, the ciphertexts space
is equal to {0,1}*, so there are no trivial instances of the problem, and every
element of {0,1}¢ can be a ciphertext of one or several messages.

We build an adversary against the problem of distinguishing Sf:P + Sf/
from Sé in the following way: given an unknown instance S¢, choose a plain-
text x = AP(1%) independently of S¢, and compute z = C(z) + S, then
return AKX (z). If S¢ is random, then so is z, otherwise z is a sound ciphertext
of x, therefore we got an adversary distinguishing a noised LFSR stream from
random with exactly the same advantage than a real-or-random one, in time
greater than ¢. As real-or-random security implies [BDJR97| with no loss
semantic security, TCHO2 is IND-CPA secure unless a significant advantage
can be obtained on the above problem. O

o4

5.2.2 Distinguishing a noisy LFSR from random

Let P be a random polynomial, such that deg(P) < £. In order to determine
whether a bitstring is Sﬁp + Sf/ or Sg, one can try to decode it (i.e. recover
the initial state of Lp). It is impossible (¢f. Assumption 2) when dp > 2¢harq
and v < 21=¢nara/dP _ 1 Another strategy consist in multiplying the stream
by P, and deciding whether the obtained stream has bias y*F or not. It is
impossible to distinguish a random source with bias v*“? from a uniform one
as soon as WP < 2~¢ard/2 Instead of multiplying by P, one can multiply
by multiples of P of lower weight and degree less than ¢ and exploit the
obtained bits'. For a random P there are in average (3:22)2_6“9 multiples of
weight v and degree ¢ with non-zero constant term, each multiple requiring
at least (¢ — t)v operations. Hence the total number of bits of bias 4V one
can obtain using all the multiples of weight v is approximately (for the worst

P)
l
t—2 -1
NU ~ 2_dmax . ~ 2_dmax . 1
Se-o(;73) () e

t=v
The cost of finding these N, bits can be lower-bounded by vN,. If 7Y is
small, the advantage of the best distinguisher is [BSW89|

Adv ~ v"\/N,/(27).

Now, a distinguishing attack will be possible if the complexity vV, required
to obtain N, bits giving an advantage Adv of 1 is smaller than 2%%ad. The
value of v for which Adv =1 is

dmax
= . 2
7 log(t7%€) — 108 dinax (5:2)

It leads to a new assumption.

Assumption 4. If dp > 2¢harq, 7 < 21 "ad/dP 1 gnd vN, > 2% where
Ny and v are given by equations (5.1) and (5.2), then Sﬁp —i—S,l; cannot be
distinguished from S§.

Note that the examples of parameters given in Table 4.1 satisfy this
constraint. We deduce the following result.

Theorem 8. Under Assumptions 1 and 4, TCHOZ2 is (2¢hard, 27 Chard)_[ND-
CPA secure.

5.3 Hybrid encryption IND-CCA secure

In [FV06] the classical Fujisaki-Okamoto construction [FO99] is applyed to
TCHO. Here we propose to build an IND-CCA secure scheme based on

'The same idea was used in Section 2.1.3 to compute Z.

95

TCHO2 using two generic hybric constructions, with different requirements.
Roughly, the basic KEM /DEM needs a stronger encryption scheme and more
random bits than the Fujisaki-Okamoto variant, but the latter requires two
random oracles instead of one, and the message has to be encrypted before
encapsulating the key.

5.3.1 KEM/DEM

Here the generic KEM/DEM construction [CS04| is used to build an IND-
CCA secure scheme. Under Assumptions 1 and 4, TCHO2 is OW-CPA se-
cure [FV06]. It is known [Den02] that a OW-CPA secure asymmetric scheme
leads to a IND-CCA secure KEM, so it allows us to build a IND-CCA hy-
brid encryption scheme with the generic KEM/DEM construction [CS04],
using Sym, a symmetric cipher that guarantees indistinguishability under
non-adaptive chosen plaintext and ciphertext attacks, and a random oracle

H:

Encryption. Given a message x:

1. Choose uniformly a random o in {0,1}*, and a random bitstring r of
sufficient length.

2. Compute the symmetric key: ¢ <« H(0).
3. Encapsulate the key: x <« TCHO2¢nc (o, 7).
4. Encrypt the message @1 y < SyMgnc(y) (7).

5. Output the ciphertext (x,y).

Decryption. Given a ciphertext (x,y):
1. Compute the encapsulated key: ¢ < H(TCHO2gec(x))-
2. Decrypt the message: = < Symgecy) (y)-

3. Output the plaintext x.

5.3.2 Fujisaki-Okamoto revisited

In [AGKO05, AGKS05] the Fujisaki-Okamoto construction is converted to a
tag-KEM/DEM framework. The encryption scheme obtained offers IND-
CCA security when the public encryption scheme is OW-CPA and I'-uniform
(see definition in [FO99]), and the symmetric cipher one-time secure (OW).
For instance, one can simply choose Symency) (x) =z + F(¢) for some ran-
dom oracle F, but Sym can be either a stream cipher or a block cipher.

o6

The construction requires two random oracles H and G. The IND-CPA se-
curity of TCHO2 implies OW-CPA security, and the proof of I"-uniformity of
TCHO [FV06] applies to TCHO2 as well. So the following hybrid encryption
scheme is IND-CCA secure.

Encryption. Given a message x:
1. Choose a random ¢ uniformly in {0, 1}*.
2. Compute the symmetric key: ¢ «— G(0).
3. Encrypt the message x: y < Symenc(y (7).
4. Encapsulate the key: x « TCHO2¢nc (0, H(o||y)).

5. Output the ciphertext (x,y).

Decryption. Given a ciphertext (y,y):
1. Compute the encapsulated key: ¢ < G(TCHO24ec(x))-
2. Decrypt the message: @ < Symgec(y) (Y)-

3. Output the plaintext x.

5.3.3 Practical concerns

Like for a KEM/DEM, only the key of the symmetric scheme is encrypted
with TCHO2, and so parameters shall be chosen in function of the key length.
Table 4.1 shows example of parameters for a key of 128 bits, a typical length
for symmetric schemes. So the two constructions encrypt a message with an
overhead of as many bits as in a ciphertext of TCHOZ2.

On a 4 MHz processor (0.25 us cycle time), a message is encrypted using
an hybrid construction with an overhead of ¢ bits, which is computed in less
than 15 ms for £ = 50000, when a fast source of random bits is available.
The additional cost of the symmetric encryption shall not be an obstacle,
and decryption should also be very fast for repetition codes, since it only
consists of some simple bitwise operations, and of the counting of the bits in
the truncated codeword.

In our software implementation, we may use as symmetric cipher the
PRG ISAAC, already used by the generator of biased pseudo-random bits,
with as symmetric key a seed on 128 bits.

o7

Chapter 6

Derived constructions

We first present a variant of TCHO2 over a larger finite field, then two other
variants, one reducing the expansion but not semantically secure, and one
achieving indistinguishability of ciphertexts against some chosen-ciphertext
adversaries, called ICCA.

6.1 TCHOZ2 over F,

6.1.1 Description

Here K, P € F,[X], LFSR register elements and output are elements of F.
Again, K has degree d and weight w, P has degree dp € [dy,, dpy].

A plaintext is now an element of IF‘Z, where k is the dimension of the
repetition code.

&, is redefined: it produces a stream of elements of Fy; 0 with probability
P, otherwise a random element of Fy, so each b € F; appears with probability
(1 —py)/q, thus 0 effectively appears with probability p, + (1 — py)/q.

We still have K ® Spp, = 0, and K ® (Sg, +Sy) = Syw. We will note
p = pyw hereafter.

At decryption, we obtain

K®(Sep+8y+a|z|...||z) =Sy +2']]... |2

for some x’ € IE‘Z. As usual, z is repeated m = £/k times, while 2’ is repeated
m’' = (£ —d)/k times.

The linear application transforming x to 2’ is defined the same way than
on Fg.

6.1.2 Reliability

Consider 2, the i-th element of the transformed plaintext /. It is repeated
m/ times, the expected number of unnoised elements is p - m’. The other
elements are noised with elements of [, (including 0). So the number of

o8

“clear” elements is p - m’ + 1%1) -m’ on average, where the term =2 . m/ can
be neglected for high enough values of 7y and ¢ (e.g. when v = 0.985, w = 80,
and ¢ = 256).

Unlike on 5, we do not require absolute majority of clear elements, hence
we can allow an error probability greater than 1/2.

By considering an isolated repetition of z}, let (n;);j=o,. 4 be discrete
random variables, where ng is the number of unnoised elements among the
m/ repetitions, and n;, 1 < j < ¢ is the number of elements noised with the
Jj-th element of Fy, for an arbitrary ordering where the first element is 0. The
random variable ng follows a binomial law with parameters (m’,p + %),
while each nj, 1 < j < g, follows a binomial law with parameters (m/, %).

Let puj = Pr[ng < nj], the probability that the unnoised bits “lose” again
the j-th noise element, that is,

m’—1

pj =Y Prlng =r|Prln; > 7],
r=0

and so p; = pjr, V1 < j < j' < q. Let = pg. It can also be expressed with
a standard normal law as

e (Y

where 0 = —p? +p + 2%, and ¢ is is the cumulative distribution function
of a standard normal distribution:

1 2
©(z) = E/ e~ 124t

Thus the probability that the element 2 is bad decoded is less than

(¢—1)p

We deduce a bound on the probability of bad decoding of a word composed
of k elements (z})i=0, x—1:

p<i—(1—(g—Dw".

Basically, we shall decode well the element z when p > 1%}, and p-m’ <
2, since we need at least two occurences of the good element to choose it,
whilst the probability that a given element of F} comes twice is negligible.
Moreover, the polynomial P should not allow one to get an advantage on
decoding, so we need v/ to be small (dm > 2+ Chard)-

The constraints on ITWPM remains with this scheme.

Experiments show that the expansion factor does not get better than for
TCHO2 on [, since the number of bits of a plaintext and a ciphertext are
respectively k - log q and £ - log ¢, if ¢ is a power of 2.

99

Example 11. We found parameters giving a low error probability for K of
degree about 6000, £ = 12000, ¢ = 232 and k = 8, so it encrypt 128 bits in
384000 bits, with a private key on 192000 bits.

Eventually, this variant leads to lower values of d and ¢, but the number
of bits of a key and a ciphertext shall increase. Implementation in hardware
may be harder, however it may speed up LFSR’s processing in software when
using extension fields of degree 8 or 32. The number of random bits in terms
of £ and dp will increase (to randomly pick elements of), however we shall
use smaller ¢ and dp than in TCHO?2.

6.2 A weakly secure scheme with reduced expan-
sion
Assume that the PRG can be seeded with exactly k bits. Let’s call this new

scheme TCHO3. One encrypts a plaintext x on dp bits with the following
algorithm:

1. set r & {0, 1}*,

2. set y — S +C(r) +S4(r),

3. return the ciphertext y.

The decryption algorithm is:
1. recover r from y (usual TCHO2 decryption),

2. compute S, (,) by eliminating S,(r) and C(r)

Y

3. get the initial state x, which is the bitstring formed by the first dp bits
of Sﬁp(:c)a

4. return the plaintext x.

The decryption procedure is almost the same than in TCHOZ2, an adversary
clearly obtains no more information on the codeword from a ciphertext.
Complexities of encryption and decryption do not significatively change.
Like its elder, this new scheme is not OW-CCA secure, for the same rea-
sons. It is also malleable in any adversarial model, since xoring a ciphertext
of z with some S (. results in a sound ciphertext of x + x.
We make a new assumption, on the PRG S,:

Assumption 5. If the PRG S, is seeded on k > charq bits, then, for random
r and 1’ bitstring of length k, Sy(r) + C(r) cannot be distinguished from
S, (r") + C(r) with probability greater than 2~%d and time less than 2%,

60

Proposition 9. If k > chaq and the security constraints of TCHOZ2 are
satisfied, then TCHOS3 is OW-CPA secure.

Proof. If k < cpard, an exhaustive search on r could be performed, hence we
require k > charg. By Assumption 4, a CPA adversary knowing Sp () +S(7)
has no information on x. We also assumed that the pseudo-random genera-
tor behaved like an ideal one, and so r cannot be recovered either (otherwise
we could find 8¢ (), that would contradict the assumption).Moreover, we
proved (cf. Theorem 8) that Sg () + S,(r) +C(r’) does not leak any infor-
mation on r’ to a CPA adversary. Therefore, by Assumption 5, an adversary
cannot extract any information on x nor on r from Sg gy + S, (1) + C(r).
We deduce that TCHO3 is OW-CPA secure. U

Proposition 10. TCHOS3 is not IND-CPA secure.

Proof. In an IND game, where x1 and x5 are the chosen plaintexts, and y the
ciphertext of xp, b € {0, 1} built by the challenger, an adversary can compute

Y = (X 1)@+ Sepen)-

If b =1, then ¢/ ~ 8,2, otherwise it will have bias 0. By computing the
weight of 9/, she thus correctly guess b with high probability, for common
parameters: if there are about as many zeros as ones in 3’, then she returns
x9, otherwise (clearly more zeros than ones), she returns ;. O

The degree dp is not fixed, but belongs to an interval [dyin, dmax], thus
the length of a message block may depend on the key generation outputs.
Against this, we suggest to set dyin to a suitable message length (e.g. a
multiple of 32), and systematically pad with zeros the remaining bits when
dp > dmin-

Compared to the original TCHO2, the ciphertext expansion is clearly
reduced: it allows for example to encrypt 5800 bits instead of 128 in a
ciphertext of 50000 bits (expansion turns from 390 to 8).

6.3 Towards IND security against chosen-ciphertext
adversaries

TCHO2 is not OW-CCA, since the attacker can ask for the decryption of the
challenge ciphertext modified of only one bit, and recover with high prob-
ability the original message. In an adversarial model similar to CCA where
the adversary would not be able to oracle-decrypt if the message returned is
the challenge’s one may prevent this kind of attack: however, since TCHO2
is malleable, one can easily build a ciphertext of + 2’ for any known 2/, and
thus recover the challenge message x by querying the oracle for the plaintext
x+2'. To solve this, we should modify the encryption procedure to introduce

61

a strict notion of walid ciphertext, for example by introducing redundancy
proper to the plaintext, so as to make impossible the forgery of a valid ci-
phertext, of z + 2’ for example (this is a particular case of malleability, and
NM-CCA security is equivalent to IND-CCA security). In the following we de-
fine the model ICCA, and show a construction for which IND-ICCA security
is reached.

6.3.1 Definitions of ICCA and IPA

We introduces a variant of the CCA model:

Definition 16. An adversary is called an irreversible adaptive chosen ci-
phertext (ICCA) adversary if she can query the decryption oracle whenever
she wants, to decrypt any ciphertext except the challenges, and any other
valid ciphertext of their plaintexts. The number of queries and the number
of atomic operations must be polynomially bounded.

This states that the adversary fails as soon as she queries for the de-
cryption of a ciphertext whose matching plaintext is already involved in the
game: the model gives no trivial way for the adversary to guess whether a
ciphertext is a critical one or not; if an attack fails because of the query of
a critical ciphertext, this event is not part of the information obtained by
the attacker, that is, she does not know that the submitted plaintext indeed
encrypts a plaintext of the challenges, but this has a priori no effective sense,
except if the attacker does not know the rules of the game, or if its memory
can be modified, or if she is schizoid. Is the ICCA model really absurd 7
If an adversary queries for the decryption of some message, she probably
does not know the answer. Meanwhile, the challenger wants her not to know
that some messages encrypt some publicly known ciphertext m. Assume
she queries for the decryption of a ciphertext of m: the game will end, im-
plicitely saying to the adversary “you should not know what just happened,
please forget it”, which is indeed absurd. But a concrete way to make this
scenario sound would be one where ciphertexts are sent to the oracle, but not
remembered by the adversary: when the query is legitimate (the ciphertext
does not encrypts m), the oracle would return both the ciphertext and the
plaintext, otherwise it would return nothing, assuming that the attacker did
not keep any copy of the ciphertext emitted.

We now introduce a particular form of the plaintext awareness notion,
introduced in [BR94| (see also [BDPR9S]|), that will help us to prove IND-
ICCA security. Informally, an asymmetric cryptosystem is said to be IPA
(irreversibly plaintext aware) if it is practically impossible for an adversary
to produce a valid ciphertext distinct from the ones already known (e.g.
given by a challenger) without knowing the matching plaintext, while having
access to an encryption oracle (the public key), with the restriction that the
adversary should only build ciphertexts for which the matching plaintext is

62

distinct from all the challenges given in the corresponding game, and from all
the plaintexts matching the known ciphertexts. This implicitly states that
an observer of the adversary recording every information involved in the
construction algorithm should be able to decrypt the ciphertext produced
(otherwise the adversary would not know the plaintext, that contradicts the
initial postulate). In the classical definition, the restriction stated above does
not hold; for instance, RSA is not plaintext aware, since any integer stricly
less than the modulus is a valid ciphertext. We now give a more formal
definition of the IPA notion:

Definition 17. Let A be a Turing machine querying a random oracle, taking
as input

e pk: a public key chosen by a challenger,
e L: a list of ciphertexts of random unknown plaintexts,

such that both |L|, the number of oracle queries, and the number of atomic
operations are in = O (Poly (|pk|)). This machine outputs a bitstring vy,
which is a valid ciphertext of some plaintext not encrypted L (w.r.t. pk) with
probability greater than some & > 0, over all the L, in time t. We call the
machine A a (t,e)-ciphertext creator.

An asymmetric encryption scheme is said to be (e,1)-IPA if and only
if, for all (Poly (|pk|),e")-ciphertext creator A, with € > e, there exists a
deterministic Turing machine A* running in time Poly (|pk|) — the extractor

such that, for all y produced by A with input L and pk,

Pr[A*(A, L, pk) # D(y)] <n,0>n>1,

where D is the (deterministic) decryption algorithm.
The scheme is simply called IPA if and only if both € and 1 are negligible.

The list of ciphertexts £ in the above definition models the capacity of
an adversary to eavesdrop a channel. Note that we assume the existence of
an extractor, but not that any adversary knows, or can easily find it.

Proposition 11. If an asymmetric cryptosystem is both (¢,1)-IPA and IND-
CPA secure, with € negligible and n such that

(1— 1)26'““’ >1-— 21—Chard7
Ui

then it 1s IND-ICCA secure.

Proof. In an IND game, an adversary has access to a decryption oracle,
but only one valid ciphertext the challenge is given, whose query to the
oracle is forbidden. Thus the ciphertext creators feeding the ICCA decryption

63

oracle all have |£| = 0. We show that, for all IND-ICCA adversary with non-
negligible success probability and polynomial running time, we can build an
IND-CPA adversary with equal running time and still non-negligible success
probability.

Consider a (x, £)-IND-ICCA adversary for a (g,7)-IPA scheme. She makes
at most x decryption queries to the oracle. Using the IPA extractor instead
of the decryption oracle leads to a perfect simulation with probability greater

than
(1 - 1)X7
n
that is, the probability that each ciphertext is “decrypted” correctly by the
extractor. Note that the negation of this is not even a proved sufficient
condition for the failure of the attack, but we will assume it. The IND-CPA

adversary built this way hence succeeds with probability greater than

1
— 1+ (1= =)
£—1+(77)

If € is non negligible, so is this last value, as soon as

(1 — l)ZChard Z 1 — 21_Chard‘

n
Thus we built a (x,& — 1+ (1 — %)X)—IND—CPA adversary from a (x,§)-
IND-ICCA adversary, and so is the initial condition on 7 implies that for all
efficient IND-ICCA adversary, the decryption oracle can be replaced by the

IPA extractor. By inversion, IND-CPA security implies IND-ICCA security,
provided that 7 verifies the inequality above stated.]

Proposition 12. Let V(pk,sk) be the number of valid ciphertexts for the key
pair (pk,sk). If an asymmetric scheme is OW-CPA and

V(pk,sk) - 1
90— V(pk,sk) = 2cha’

then it 1s not IPA.

Proof. If the ratio of valid ciphertexts is greater than 1/2¢%ad_then the ad-
versary who randomly picks a bitstring of the same length than a ciphertext
obtains a valid ciphertext with probability greater than 1/2¢%ad In this
simple algorithm, the only information the adversary has is this ciphertext.
Hence if the scheme is OW-CPA, an adversary cannot recover the plaintext,
and so no polynomial time extractor exists. Finally, there exists an adver-
sary able to compute a valid ciphertext with probability greater than 1/2¢herd
such that no polynomial time extractor exists, which contradicts the IPA
definition. U

64

6.3.2 Notion of valid ciphertext and IND-ICCA security
Addition of deterministic redundancy

Among the k bits of the codeword, M contain the plaintext, and R = k— M
the redundancy, defined by a function

% {0,137 — {0, 1}
A ciphertext of x is
Yy =Scpm) + Cal|R(@)) + Sy(r2),

for randomly chosen ry and ro. Given a ciphertext y, decryption is performed
with the following algorithm:

1. recover the coded word z||r,
2. if R(x) = r, return the plaintext z,
3. return L otherwise.

Assume that R is a random injection: in an IND scenario, given x; and
x9, along with the ciphertext ¢ of one of those, the adversary can ask for the
decryption of ¢ + y||R(z1 + y) + R(x1)||...; if the oracle answers z; + v,
then she returns x1, otherwise (for answer L or z € {0,1}M), she returns 5.
Hence no matter how “good” is R, IND-ICCA security will never be achieved.

Addition of non-deterministic redundancy

Now the codeword on k bits contains the plaintext on M bits, followed by
N random bits picked by the encrypter, and finally R = k — M — N bits for
to the image of the function PR, which now takes two arguments, and N,
the latter being the bitstring of N random bits (X must be included in the
codeword in order to check a ciphertext’s validity). We define

R {0,137 x {0,1}V — {0, 1}
A ciphertext of x is
Y= Scpiy) + ClN[[R(2)) + 85 (ra).
The decryption algorithm of y is:
1. recover the coded word z||R||r,

2. if r = R(z, V), return the plaintext z,

3. return L otherwise.

65

The decryption oracle associated would return the plaintext x, but not N
(nor R(z,N)). From now we consider JR as a random oracle, and will call
the encryption scheme TCHOA4.

We recall that, as TCHO2, the system created with non-deterministic
redundancy cannot be IND-CCA, since, in a OW game, a query to the de-
cryption oracle with the challenge ciphertext with only one bit modified
would return with high probability the encrypted message. Since the basic
TCHO2 is IND-CPA secure, it trivially still holds with the non-deterministic
redundancy above described (simply replace z in TCHO2 by z||R||9R(z, R)).

Note the following fact:

N recovered = x recovered,

This implication is trivial (e.g. XOR the ciphertext with z||0||(%R(z,N) +
R(0,N))]]... and look for 0 as decrypted message). However the converse is
not so obvious; if we had “x recovered = N recovered”, an ICCA adversary
would win an IND game trivially: assuming that the plaintext encrypted
is the first of the two challenges plaintexts, one recovers N, if she is wrong
(she can check it by applying the strategy to recover x from X), she returns
the other challenge plaintext, and the one chosen otherwise. Therefore this
implication is sufficient to win the IND game, but maybe not necessary, since
finding N is not formally required. Thus we cannot reduce our problem to
the computation of N from x given a ciphertext of x.

Let’s consider S(x), the set of all ciphertexts build by using X as non-
deterministic seed, and & in place of R(z,R). We can define a binary equiva-
lence relation over S(x) such that two elements are equivalent if and only if
they were built with the same ¢. Therefore S(x) can be partitioned into 2%
subsets of equal size matching the equivalence classes defined by this rela-
tion. Among those classes, only one contains valid ciphertexts (and only valid
ones): the one where £ = 2R(z,N). Hence if an adversary has no information
on R(x,N), there is no way to choose the right class with a significant ad-
vantage. In particular, a triplet (z, R, 9(z, X)) cannot be distinguished from
a triplet (x,R,9),v € {0,1}%, without querying for ®(z,). This argument
is used to prove the following theorem.

Theorem 9. If the constraints required for the semantic security of TCHOZ2
translated to TCHO/ are satisfied, and if R is a random oracle, then TCHO/
is (271, 1)-1PA.

Proof. Consider an IPA adversary A; by querying the oracle R, she gets
triplets (x;, N;, R (2, ;)), ¢ = 1,...,L. Using pk, she also obtains pairs
(ziyyi), © = L+ 1,...,M, with M = O (|pk|%). Let y be the bitstring
returned by A. When D(y) = L or D(y) ¢ {z1,...,2ap}, let’s denote W the
bitstring encoded in C'(W), decomposed in three subbitstrings W = z||N||r.
We can distinguish two cases:

66

1. x ¢ {z1,...,xm}: then A succeeds as soon as r = R(z,N). We have
Pr[r = R(z,N)] < 27%, since R is a random oracle.

2. r # R(x,N): then A fails with probability 1, since W cannot be a valid
ciphertext.

By definition of IPA, z cannot be in {z1,...,2}, so this is the only cases
we consider. Finally, Pr[A succeeds] < 27%. Hence any (Poly (pk),e)-
ciphertext creator with ¢ > 27 needs to query for R(x,R), and so the
extractor succeeds with probability strictly greater than 1 — 27 since it
reads the oracle queries of the creator. It proves that TCHO4 is (2_R, 1)-
IPA. O

Theorem 10. If (1 — 27F)2™ > 1 — 2=%ad then TCHO4 is IND-ICCA

Secure.

Proof. We know that TCHO4 is IND-CPA. By Proposition 11 and Theorem 9,
the result follows. 0

If R is not a random oracle but a given function, it has to satisfy several
properties. If R is linear on N (i.e. R(z, X)+R(z,N) = R(z,R+N')), then in
an IND game, if z is one of the two plaintexts challenges, one only has to XOR
the ciphertext with O||N'[|9R(z,X)||... and query the decryption oracle: if
it answers x, then the adversary returns z, otherwise she returns the second
plaintext. Hence R must be non-linear on X. Moreover, we require that the
number “linear pairs” is small, that is,

HIOUN), R £ N, R(z,R) + Rz, V) £ Rz, RER)} 1
o 9N . (2N _ 1) = Yo

If we XOR the challenge ciphertext with y|[0]|9R(y,X)||..., one may
obtain (z + y)||R||(R(z,R) + R(y,N’)) in certain cases. To prevent this, we
require

max Pr [R(z,R) + R(y,N') = R(z + y,N)] <

y, N xRN — 92Chard ’

The attack against IND-ICCA security mentionned in the previous section
is infeasible as soon as N > c¢parq and

1
Pr [R(z,R) = R(z, V)] < ,
N#N/[() ()] - ZChard
considering an exhaustive search on the random bitstring N.
For instance, if N = chag + 1, we require R > N; so we need k >

2Chard + M, e.g. to encrypt 32 bits with 280 security k should be greater than
192. It induces a ciphertext length of about 60 000 bits.

67

Conclusion

We studied the existing probabilistic encryption scheme TCHO, implemented
and improved it; we designed efficient algorithms for the generation of a bi-
ased random bitstring and a large LFSR output, including an almost opti-
mal one for the former. The new cryptosystem TCHO2 leads to a slightly
faster encryption, and an exponentially faster decryption, while introducing
new security constraints and obviating the need for a primitive polynomial
as public key. We proved, under certain assumptions, that both TCHO
and TCHO?2 could achieve semantic security, and suggest two known hybrid
schemes to reach the strongest level of security, namely IND-CCA security.
We also suggest several variants of our scheme, either sacrificing semantic
security to get a low expansion, or reaching IND-ICCA security at the cost of
a huger expansion.

Applications may be found in embedded environments, to provide a sim-
ple encryption procedure. Passive RFID tags may also find with TCHO2 a
way to use public key cryptography, actually infeasible with other asymmet-
ric primitives on their small architectures; this may solve important problems
of privacy in RFID protocols. The expansion would “only” result in an over-
head of about 5 Kb in an hybrid framework. Moreover, unlike RSA, TCHO2
would not be harmed by a quantum computer, since no feasible quantum al-
gorithm is known to solve the problems it relies on (this kind of cryptosystem
is sometimes called post-quantum).

Finally, as TCHO2 security only relies on heuristic assumptions, further
work could be devoted to giving concrete elements of proof, e.g. concern-
ing the problem LwpM, or finding other models of trapdoor pseudo-random
generators exploiting the error correction capacity of certain codes.

68

Bibliography

[AGKO5]

[AGKS05]

|AM94|

[Arn05]

[BBSS6|

[BDJRI7|

[BDPRYS]

[Ber68|

(BG83

Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa.
Tag-KEM/DEM: A new framework for hybrid encryp-
tion. IACR ePrint archive 2005/027, 2005. Avail-
able at http://eprint.iacr.org/2005/027. Newer version
in [AGKSO05|.

Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor
Shoup. Tag-KEM/DEM: A new framework for hybrid encryp-
tion and a new analysis of Kurosawa-Desmedt KEM. In FEURO-
CRYPT’05, pages 128-146, 2005. Older version in [AGKO05].

Leonard Adleman and Kevin McCurley. Open problems in num-
ber theoretic complexity, II. In L. Adleman and M.-D. Huang,
editors, ANTS-1, volume 877 of Lecture Notes in Computer Sci-
ence, pages 291-322. Springer, 1994.

Jorg Arndt. Algorithms for programmers. Available at
http://www.jjj.de/fxt/, 2005.

Lenore Blum, Manuel Blum, and Michael Shub. A simple un-
predictable pseudo-random number generator. SIAM Journal on
Computing, 15:364-383, 1986.

Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rog-
away. A concrete security treatment of symmetric encryption.
In FOCS’97, page 394. IEEE Computer Society, 1997.

Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Ro-
gaway. Relations among notions of security for public-key en-
cryption schemes. In CRYPT(O’98, pages 26 45. Springer, 1998.

Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill,
1968.

M. Blum and S. Goldwasser. An efficient probabilistic public-key
encryption scheme which hides all partial information. In G. R.

69

[BGPO6]

[BHSV9S]

[BLZ03]

[Bor43|

[BRO4|

[BSWS9]

[BZ03]

|CCog|

[CMO1]

Blakley and D. C. Chaum, editors, CRYPTO’8}, pages 289 302.
Springer, 1985.

Coéme Berbain, Henri Gilbert, and Jacques Patarin. Quad: A
practical stream cipher with provable security. In EUROCRYPT,
pages 109 128, 2006.

Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan.
Many-to-one trapdoor functions and their relation to public-key
cryptosystems. In CRYPTO 98, pages 283 298. Springer, 1998.

Richard Brent, Samuli Larvala, and Paul Zimmermann. A fast al-
gorithm for testing reducibility of trinomials mod 2 and some new
primitive trinomials of degree 3021377. Mathematics of Compu-
tation, pages 1443 1452, 2003.

Emile Borel. Les probabilités et la vie. Presses Universitaires
Francaises, 1943.

Mihir Bellare and Phillip Rogaway. Optimal asymmetric en-
cryption. In A. De Santis, editor, FUROCRYPT’9}, volume 950
of Lecture Notes in Computer Science, pages 92 111. Springer,
1994.

Paul T. Bateman, John L. Selfridge, and Samuel S. Wagstaff.
The new mersenne conjecture. American Mathematical Monthly,
96(2):125 128, 1989.

Richard Brent and Paul Zimmermann. Algorithms for finding
almost irreducible and almost primitive trinomials. Primes and
Misdemeanours: Lectures in Honour of the Sixtieth Birthday
of Hugh Cowie Williams (edited by A. van der Poorten and A.
Stein), 2003.

Anne Canteaut and Florent Chabaud. A new algorithm for
finding minimum-weight words in a linear code: Application
to McEliece’s cryptosystem and to narrow-sense BCH codes
of length 511. IEEE Transactions on Information Theory,
44(1):367-378, 1998.

Sandeepan Chowdhury and Subhamoy Maitra. Efficient soft-
ware implementation of linear feedback shift registers. In
C. Pandu Rangan and C. Ding, editors, INDOCRYPT"01, vol-
ume 2247 of Lecture Notes in Computer Science, pages 297-307.
Springer, 2001.

70

[CMO3]

[CMI03]

[CS04]

[CT00]

[CZ81a]

[CZ81b]

[Den02]

[DHT76]

[Ekd03]

[EN70]

[FO99)

Sandeepan Chowdhury and Subhamoy Maitra. Efficient soft-
ware implementation of LFSR and boolean function and its ap-
plication in nonlinear combiner model. In J. Zhou, M. Yung,
and Y. Han, editors, ACNS’03, volume 2846 of Lecture Notes in
Computer Science, pages 387 402. Springer, 2003.

Paul Camion, Miodrag J. Mihaljevi¢, and Hideki Imai. Two alerts
for design of certain stream ciphers: Trapped LFSR and weak
resilient function over GF(q). In K. Nyberg and H. Heys, editors,
SAC 2002, volume 2595 of Lecture Notes in Computer Science,
pages 196 213. Springer, 2003.

Ronald Cramer and Victor Shoup. Design and analysis of practi-
cal public-key encryption schemes secure against adaptive chosen
ciphertext attack. SIAM Journal on Computing, 33(1):167 226,
2004.

Anne Canteaut and Michaél Trabbia. Improved fast correlation
attacks using parity check equations of weight 4 and 5. In B. Pre-
neel, editor, EUROCRYPT’00, volume 1807 of Lecture Notes in
Computer Science, pages 573-588. Springer, 2000.

David G. Cantor and Hans Zassenhaus. A new algorithm for
factoring polynomials over finite fields. Mathematics of Compu-
tation, 36(154):587-592, 1981.

David G. Cantor and Hans Zassenhaus. A new algorithm for
factoring polynomials over finite fields. Mathematics of Compu-
tation, 36(154):587 592, 1981.

Alexander W. Dent. A designer’s guide to KEMs. Public report
NES/DOC/RHU/WP5/029/1, NESSIE project, 2002. Available
at http://eprint.iacr.org/2002/174.

Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6):644
654, 1976.

Patrik Ekdahl. On LFSR based Stream Ciphers - Analysis and
Design. PhD thesis, Lund University, 2003.

James H. Ellis. The possibility of secure non-secret digital en-
cryption. GCHQ-CESG publication, 1970.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of
asymmetric and symmetric encryption schemes. In M. Wiener,
editor, CRYPTQ0O’99, volume 1666 of Lecture Notes in Computer
Science, pages 537-554. Springer, 1999.

71

[FVO06]

[GGHO7|

|Gil64]

|GMS2]

|GM84

|GMO1]

[Gol01]

[GPROG]

[Gra06]

[Guy94|

[GvP9S

[HN99]

[HPS98]

Matthieu Finiasz and Serge Vaudenay. TCHo: the trapdoor
stream cipher. unpublished, 2006.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key
cryptosystems from lattice reduction problems. In CRYPTO 97,
Lecture Notes in Computer Science, pages 112 131. Springer,
1997.

Donald B. Gillies. Three new mersenne primes and a statistical
theory. Mathematics of Computation, 18:93 97, 1964.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption &
how to play mental poker keeping secret all partial information.
In STOC’82, pages 365-377. ACM Press, 1982.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28:270 299, 1984.

Kishan Chand Gupta and Subhamoy Maitra. Multiples of prim-
itive polynomials over GF(2). In C. Pandu Rangan and C. Ding,
editors, INDOCRYPT’01, volume 2247 of Lecture Notes in Com-
puter Science, pages 62 72. Springer, 2001.

Oded Goldreich. Foundactions of Cryptography, volume 1. Cam-
bridge University Press, 2001.

Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of
the linux random number generator. Cryptology ePrint Archive,
Report 2006/086, 2006. Available at http://eprint.iacr.org/.

Torbjorn Granlund. GNU multiple precision arithmetic library
(GMP), 2006. Available at http://swox.com/gmp/.

Richard K. Guy. Unsolved problems in number theory. Springer,
2nd edition, 1994.

Shuhong Gao, Joachim von zur Gathen, and Daniel Panario.
Gauss periods: orders and cryptographical applications. Mathe-
matics of Computation, 67(221):343-352, 1998.

Miia Hermelin and Kaisa Nyberg. Correlation properties of the
bluetooth combiner. In ICISC’99, Lecture Notes in Computer
Science, pages 17 29, 1999.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A
ring-based public key cryptosystem. In J. Buhler, editor, ANTS-
111, volume 1423 of Lecture Notes in Computer Science, pages
267 288. Springer, 1998.

72

[HR17|

[HWLT91]

[Jam00]

[Jen96a]

[Jen96b]

[1799]

[Koc95]

[LBS8S

[LP9g]

|Lus06]

|LV04a]

[LV04b]

Godfrey H. Hardy and Srinivasa Ramanujan. The normal num-
ber of prime factors of a number n. The Quarterly Journal of
Mathematics, pages 76 92, 1917. also published in "Collected
papers of Ramanujan", Cambridge University Press, 1927.

D. G. Hoffman, Wal, D. A. Leonard, C. C. Lidner, K. T. Phelps,
and C. A. Rodger. Coding Theory: The FEssentials. Marcel
Dekker, Inc., 1991.

K Jambunathan. On choice of connection-polynominals for
LFSR-based stream ciphers. In B. K. Roy and E. Okamoto,
editors, INDOCRYPT 00, volume 1977 of Lecture Notes in Com-
puter Science, pages 9-18. Springer, 2000.

Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE’96,
volume 1039 of Lecture Notes in Computer Science, pages 41
49. Springer, 1996.

Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE’96,
volume 1039 of Lecture Notes in Computer Science, pages 41—
49. Springer, 1996.

Thomas Johansson and Fredrik Joénsson. Fast correlation at-
tacks based on turbo code techniques. In Michael J. Wiener,
editor, CRYPT(0O’99, volume 1666 of Lecture Notes in Computer
Science, pages 181-197. Springer, 1999.

Cetin Kaya Koc. RSA hardware implementation. Technical Re-
port TR801, RSA Laboratories, 1995.

Pil Joong Lee and Ernest F. Brickell. An observation on the
security of McEliece’s public-key cryptosystem. In C. G. Giin-
ther, editor, EUROCRYPT’88, volume 330 of Lecture Notes in
Computer Science, pages 275-280. Springer, 1988.

Rudolf Lidl and Giinter Pilz. Applied abstract algebra, 2-nd ed.
Springer, 1998.

Peter Luschny. Fast Factorial Functions, 2000-2006.
http://www.luschny.de/math/factorial/.

Yi Lu and Serge Vaudenay. Faster correlation attack on Blue-
tooth keystream generator EQ. In Matthew K. Franklin, editor,
CRYPTO’04, volume 3152 of Lecture Notes in Computer Sci-
ence, pages 407-425. Springer, 2004.

Yi Lu and Serge Vaudenay. Faster correlation attack on Blue-
tooth keystream generator E(O. In M. K. Franklin, editor,

73

[Mar95a|

[Mar95b|

[METS]

[MGV05]

[MNOg]

[MNTO2]

[MS77]

[MS88]

[MS94]|

[MS01]

[PTVF92]

CRYPTO’04, volume 3152 of Lecture Notes in Computer Sci-
ence, pages 407-425. Springer, 2004.

Georges Marsaglia. The Diehard Battery of Tests of Randomness,
1995. Available at http://stat.fsu.edu/pub/diehard/.

Georges Marsaglia. The Dichard Battery of Tests of Randomness,
1995. Available at http://stat.fsu.edu/pub/diehard/.

Robert J. Mc Eliece. A public-key cryptosystem based on alge-
braic coding theory. Technical report, Jet Propulsion Lab Deep
Space Network Progress report, 1978.

Subhamoy Maitra, Kishan Chand Gupta, and Ayineedi
Venkateswarlu. Results on multiples of primitive polynomials

and their products over GF(2). Theoretical Computer Science,
341(1-3):311 343, 2005.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Trans. Model. Comput. Simul., 8(1):3-30,
1998.

Atsuko Miyaji, Masao Nonaka, and Yoshinori Takii. Known
plaintext correlation attack against RC5. In CT-RSA 02, Lecture
Notes in Computer Science, pages 131 148. Springer, 2002.

F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-
Correcting Codes. North-Holland, 1977.

Willi Meier and Othmar Staffelbach. Fast correlation attacks
on stream ciphers. In C. G. Giinther, editor, EUROCRYPT’88,

volume 330 of Lecture Notes in Computer Science, pages 301
314. Springer, 1988.

Willi Meier and Othmar Staffelbach. The self-shrinking genera-
tor. In A. De Santis, editor, FUROCRYPT"94, pages 205-214.
Springer, 1994.

Itsik Mantin and Adi Shamir. A practical attack on broadcast
RC4. In M. Matsui, editor, FSE’01, volume 2355 of Lecture Notes
in Computer Science, pages 152-164. Springer, 2001.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 1992.

74

[Pud01]

|[Rom92|

[RSATS]

[RSPIS]

[Sha4s]

[Sho90]

[Sho05]

[Sie86]

[Ste87|

[TM71]

[Ver26|

|Wag83|

[Wag02]

Marina Pudovkina. A known plaintext attack on the ISAAC
keystream generator. TACR ePrint Archive, Report 2001/049,
2001. Available at http://eprint.iacr.org/2001/049.

Steven Roman. Coding and information theory. Springer, 1992.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120-126, February
1978.

Andreas Rieke, Ahmad-Reza Sadeghi, and Werner Poguntke. On
primitivity tests for polynomials. In ISIT’98, 1998.

Claude E. Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27:379-423, 1948.

Victor Shoup. On the deterministic complexity of factoring

polynomials over finite fields. Information Processing Letters,
33(5):261 267, 1990.

Victor Shoup. NTL: A Library for doing Number Theory, 2005.
Available at http://shoup.net/ntl/.

Thomas Siegenthaler. Cryptanalysts representation of nonlin-
early filtered ML-sequences. In Franz Pichler, editor, FURO-
CRYPT’85, volume 219 of Lecture Notes in Computer Science,
pages 103-110. Springer, 1986.

Jacques Stern. Secret linear congruential generators are not cryp-
tographically secure. In In Proceedings of the 28th IEEE Sympo-
stum on Foundations of Computer Science, pages 421-426, 1987.

Myron Tribus and Edward C. Mclrvine. Energy and information.
Scientific American, 225(3):179-188, 1971. (Note: the table of
contents in this volume incorrectly lists this as volume 224).

Gilbert S. Vernam. Cipher printing telegraph systems for secret
wire and radio telegraphic communications. Journal of the IEEE,
pages 109 115, 1926.

Samuel S. Wagstaff. Divisors of mersenne numbers. Mathematics
of Computation, 40:385 397, 1983.

David Wagner. A generalized birthday problem. In M. Yung,
editor, CRYPTO’02, volume 2442 of Lecture Notes in Computer
Science, pages 288 304. Springer, 2002.

6]

[Wal9s]

[Yao82]

John Walker. ENT: A Pseudorandom Num-
ber Sequence Test Program, 1998. Available at
http://www.fourmilab.ch/random/.

Andrew C. Yao. Theory and applications of trapdoor functions.
In Proceedings of the 23rd Annual Symposium on the Foundations
of Computer Science, IEEE, pages 80-91, 1982.

76

Appendices

A Weak initial states in ISAAC

We reproduce below a paper written at the end of the internship.

Abstract. In this note, we study the deterministic random bits generator
ISAAC. We present more than 2813 initial states inducing a strongly biased
distribution of the bits produced at the first round of the algorithm, and a
strong distinguisher requiring 276 samples. We also show 232 states that
can be recovered from the firsts 8 192 bits produced in less than 30 seconds
with a paper an a pen, and point out minor weaknesses of the algorithm. A
modification of the algorithm is proposed to fix some of the flaws presented.

ISAAC is a deterministic random bits generator designed in 1996. Its
author claims |Jen96b| that it has “no bad initial states, not even the state
of all zeros”. We investigated the question, and focus in this note on sev-
eral minor weaknesses and more than 28135 states. We start by presenting
ISAAC, and end with a proposal of a modification of the algorithm.

1 ISAAC

1.1 Presentation

ISAAC is derived from the stream cipher RC4. Although it is “designed to be
cryptographically secure” [Jen96b|, no security proof is given, and it seriously
lacks analysis: only statistical tests argue for its security [Jen96b]|, and until
now, only one publication [Pud01] tackled it, presenting a state recovery
attack running in time 10!240,

We follow the description of the algorithm provided in Figure 4 of [Jen96b|;
the internal state is an array of 256 32-bit words, and at each round, the algo-
rithm outputs another array of 256 32-bit words. In the following, S denotes
the initial state, and S; its ith element, while 3 denotes the first output, and
B; its ith element, for i € {0,...,255}. The generation algorithm takes as
parameters three values a, b and ¢, the first two are 32-bit, the third is 8-bit,

7

initialized to an arbitrary value, and modified at each round: a is used as a
kind of entropy accumulator, b contains the previous pseudo-random word,
and c is a simple counter, incremented at each round of the algorithm. Their
initial values are public, and are not part of the secret initial state. We give
the generation algorithm in a readable form in Algorithm .1, for an arbitrary
round, where the internal state is I, the output is O, and the inputs a, b,
and c are those computed in the previous round. The symbol & denotes the
bitwise XOR, + stands for the usual integer addition, and <, >, are bit
shifting operators “a la C”.

INPUT: a, b, ¢, and the internal state I, an array of 256 32-bit words
OuTpPUT: an array O of 256 32-bit words

cc—c+1

:b—>b+c

: for i =0,...,255 do

Ii = a+ b+ Iz59) mod 256
Oi = 2+ 5(1;510) mod 256
: b— O
: end for
10: return O

1
2
3
4
5. a— f(a,i) + I(;1128) mod 256
6:
7
8
9

Algorithm .1: ISAAC algorithm for an arbitrary round.

The value f(a,i) in Algorithm .1 is a 32-bit word, defined for all a and
i€{0,...,255} as:

a<k13 ifi=0 mod4

Flai) = a>6 ifi=1 mod4
’ a2 ifi=2 mod4
a>16 ifi=3 mod4

We deduce the algorithm used to compute the first ouput g from the initial
state S, depicted in Algorithm .2. This redundant algorithm is given for a
better understanding of the following developments.

1.2 Observations

The notation = stands for the equivalence modulo 232 hereafter.

Theorem 1. For a random initial state S, and fized a, b, and c,

255
Pr(3ie {1,...,255}, 8 = So+S; mod 2] > 5eg = 0-9961.

78

INPUT: a, b, ¢, and the initial state S
OUuTPUT: the array § of 256 32-bit words

1: b—=b+c+1

2: for i =0,...,255 do

3: xr — S;

4 a— f(a,1) + S(i4128) mod 256
5: Si—a+b+ S(x>>2) mod 256
6: Bi = &+ 5(5,510) mod 256

7 b— 5;

8: end for

9: return

Algorithm .2: ISAAC algorithm computing the first ouput § from the
initial state S.

Proof. Let = f(a,0) 4+ Si2s + b+ ¢+ 1 + S(5,52) mod 256, De the value
obtained at line 5 of Algorithm .2, at the first iteration (¢ = 0). At line 6 ,
when i = 0, we get By = So + A, where A = p if (u > 10) mod 256 # 0,
and A = S(,,510) mod 256 Otherwise. Since Sy is random, (Sp > 2) mod 256

is a random value in {0,...,255}. Since Sjog is random, then p is a random
value in {0,...,232 —1}. Hence p > 10 mod 256 # 0 with probability
255/256, which proves the result. O

When there exists 1 < ¢ < 256 such that Sy = Sy + S;, Sp and 7 are
correctly guessed with probability respectively 2732 and 1/255. Thus one
recovers So and S; for a certain 4, with probability 2732 x 1/255 x 255/256 =
2740 whereas ideally this probability should be 2764

Theorem 2. Let i a given value in {0,...,255}. For a random initial state

S, and fized a, b, and c,

254
o 0.0039.

Pr(Gy — 1 = So — Si] >

Proof. We distinguish two cases, for random S, and fixed a, b, ¢

e i = 1: from the previous theorem, we get By = Sp+95; and 31 = S1+59;,
for some 1 < j < 256, with probability 254/2562.

e | = 1: for similar reasons, we get fy = S + 51 and 5 = 51 + 5; with
probability 254/2562.

Eventually, for all fixed 4, Sy — (31 is equivalent to Sy — 5; with probability
greater than 254/256%, which completes the proof. O

Generalizing this to all the couples (3;, 3;), the average number of colli-
sions (of pairs (3; = Se + Sf, 8 = Sy + S¢), for some e, f, g in {0,...,255})

79

18
254

256 — i
Y ix '~ 43,
: 256

=1

Nevertheless, since there is no trivial way to identify the colliding pairs among
the 128 x 255 = 32 640 possible ones, the interest of this last result is limited.
But note that two previous facts would be dramatic if ISAAC was used as a
keystream generator; it would allow a passive adversary to obtain informa-
tion on the key (namely the equivalence class of Sy — S;) with probability
254/2562.

Theorem 3. Let N € {1,...,127}, and set S; = X for all i > N, and
S; =Y fori < N, with fized positive integers X < 2° and Y < 219, When
a=0b=c=0, the following facts arise:

o if N =0, then

Gy — X+2¥+1 ify efo,...,3)
07\ 2X4+Y+1 ifYe{4,. .. ,20-1} >

e if N =1, then

Go— X+2¥+1 ifyefo,...,7}
07\ 2X4+Y+1 ifYe{s,... 201}

e and generally, for 0 < N < 128, if Sg = --- = Sy_1 = k, then

fo — X+2Y+1 ifYe{o,...,M}
712X +Y +1 ifYe{M+1,...,210-1} >

with M = max{m, (m > 2) < N}.

Proof. These results directly follow from Algorithm .2. and were verified
automatically with the original source code [Jen96b] for all (X,Y). O

The limitation of X to 2° comes from the fact that above this limit,
(S; > 10) # 0 (cf. line 6 of Algorithm .2). We also need Y < 210 so that,
at line 5, we do not pick an index less than N, that is, for which S§; = Y.
For the general case, the limit M comes from the fact that, at the line 5 of
Algorithm .2, we shall pick the value Y as soon as Y > 2 is less than NV — 1,
and X otherwise. Finally, we need N < 128 in order to get ¢ + 128 > N
mod 256 for all ¢ € {0,...,N — 1} (¢f. line 4), and so a = X. We obtain
exactly 29 x 210 x 27 = 226 guch states.

80

2 A class of more than 283 weak initial states

2.1 Properties

The states considered have a fraction of random elements, and the remaining
elements are fixed to the same value.

Set N € {2,...,256} such that S; = X, for all i < N, for a fixed positive
X < 232 and the other S;’s are all random 32-bit words. Then, for a random
X:

N—1—i
(g 12 =%

Indeed, at line 6 of Algorithm .2, we have x = X, and s0 S(5,510) mod 256
is equal to X if (S; > 10) mod 256 is greater than 7 and strictly less than
N, that occurs with probability about (N — 1 —4)/256, by Theorem 1 The
inequality comes from the fact that, if we pick an index less than 4, the word
at this position is X with probability 2732, Eventually the value 2X shall

appear with high probability, compared to a random bitstream. There are
_ 98128

i=0,...,N—1.

approximately 232%254 such weak states.

For example, if N = 64 and X = 0: the last 192 elements of S are
random, and the 64 first ones set to 0, then Pr[fy = 51 = 0] =~ 0.06. Note
that, if V is as small as 2, Pr[8y = 2X]| ~ 1/256 ~ 0.004, much higher than
the 2732 of an ideal generator. Now consider slightly different states; for a
random state where there exists N € {1,...,253} distinct ¢ € {2,...,255}
such that S; = Sy =51 = X, not necessarily the firsts,

N+1 N
2;_6 and Pr[f; =2X] > —

~ 256"
98096 > 98103

Pl’[ﬁo = ZX] >

There are more than 253 X such states, excluding the ones
already captured by the previous states mentionned.

Analogously, for a random state where there exists N € {1,...,254}
distinct 7 € {1,...,255} such that S; = Sy = X,

N
Pr|fy =2X]| > —.

There are more than 254 x 28128 > 28135 gch states. We distinguish this
kind of states from the previous one, because the latter can be used by a
distinguisher, while the former are much more numerous.

2.2 A strong distinguisher

Based on the weak states presented, a strong distinguisher (see Chapter 3
of |Gol01]) is constructed. Briefly, a strong distinguisher is a probabilistic
polynomially bounded algorithm, querying two black boxes, each returning a
bit sample of fixed length; for one box this sample is truly random, while the

81

other’s is produced by a pseudo-random generator with a random (unknown)
initial state.

Here the boxes shall output samples of 64 bits at each query, and the
algorithm shall select as the “ISAAC box” the one where the first 32 bits are
the most frequently equal to the last 32’s (that is, when §y = 1 in ISAAC),
and a random box if there is equality of occurences. A random state is weak
with probability greater than 28192-8103 — 989 Thyg for a random state,

- g9 2 - -
Prify = f1 = 2X] > 277 4 270 5 = 278 4 270,

whereas this probability is 2732 for a truly random bitstream.

Theorem 4 (|MS01|). Let Dy, Do be distributions, and suppose that the
event E happens in Dy with probability p and un Dy with probability p(1+q).
Then for small p and q, O(I%g) samples suffice to distinguish D1 from Ds
with constant probability of success.

Applying this theorem to our distinguisher, we get p = 2732 and p(1 +
q) = 2732 427104 that is, ¢ = 2772. Hence the distinguisher requires about

2176 samples.

2.3 Consequences

For more than 2813% states, the distribution of the 3;’s obtained is far from
the uniform one: 2X appears with probability greater than 278, much higher
than the 2732 expected. If such a state is used, one can recover X with
probability greater than 1/512, since [y takes the value 2X with probability
greater than 1/256, and there exists two distinct solutions to the equation
2x = 2X, with unknown x. Moreover, for the first kind of weak states, if NV
is greater than, say, 216, then 2X appears in average more than 90 times,
thus X is recovered with high probability, and the random elements can be
computed by exhaustive search, so as to find the full state, in 240 iterations
of a try-and-check algorithm (there are roughly 272 such states).

3 States with a constant value

When S; = X for all i € {0,...,255}, and a fixed positive X < 232, as a
particular case of the states in Section 6.3.2, we get

2256—1—1:1 t+1

256 256
The expected number of ¢ such that 5; = 2X is so greater than

Pr[5; = 2X]

255

i+1
> - e) = 1275
=0

82

Hence more than half of the elements produced at the first round are = 2X
in average, when S; = X for ¢ = 0,...,255. It is thus straightforward to
distinguish between a real random bitstream and a one produced by ISAAC
initialized with a state with constant value, since the latter shall have about
half of the 3; equal to 2X. The full state can even be fully recovered, in
constant time: the equation x = 2X has two solutions, trivially computed.
The right solution is the one that produces (at the first round.

4 Modification of the algorithm

We modify Algorithm .1 to fix the weaknesses stressed (cf. line 7).

INPUT: a, b, ¢, and the internal state I, an array of 256 32-bit words
OuTPUT: an array O of 256 32-bit words

1:c—c+1

2:b—=b+c

3: for i =0,...,255 do

4: r—S;

5. a— f(a,1) + (;+128) mod 256
6: I —a+b+ Ilus2) mod 256

7 O; =T+ a®S5(7,510) mod 256
8: b— O;

9: end for

10: return O

Algorithm .3: Modified ISAAC algorithm for an arbitrary round.

This new algorithm has the following properties:

The three theorems states in Section 6.3.2 do not hold: we get Gy =
So+S; @ (a < 13 + Sjgg), for a random state, Sjsg is random in
{0,...,232 — 1}, thus so is @ < 13 4 S128. This contradicts the two
first theorems. The third is trivially contradicted.

The weak states presented in Section 6.3.2 have Pr[fy = 2X] ~ 2732,
for the same reasons than previously.

The probability stated for the states with a constant value does not
hold anymore, but the states are still weak: for example, the all-zero
state gives By = a < 13 with probability 255/256.

The Diehard battery of tests [Mar95b] is a set of statistical tests for DBRG'’s,

and

a success to them is a notorious requirement for a good DBRG. We

applyed those tests to 10 samples of 10 Mb of the original and of the modified
algorithm, they all successfully passed all the tests. It does not prove nothing,
but guarantees a minimal quality of the pseudo-random bitstream.

83

5 Conclusion

A random state is weak with probability 2757, which may not be negligible,
depending on the application considered. Indeed, weak states might distort
simulations, and harm cryptographic applications. In particular, the all-zero
state should be avoided. We managed to fix some of the problems pointed
out, however the new algorithm does not seem secure either. We hope that
these results will help to fill the lack of study of ISAAC, and will inspire
deeper analysis.

84

B The Blum-Goldwasser asymmetric stream cipher

This scheme was designed in 1984 [BG85|: encryption is non-deterministic,
and the scheme is IND-CPA secure, assuming the hardness of predicting a
sequence of the BBS |[BBS86| generator, and of the factorization of a Blum
integer (at least as hard as a RSA modulus).

The public-key is a Blum integer N = pq (both p and ¢ must be congruent
to 3 modulo 4), and the secret key is the couple factors (p,q). Encryption
consists in the generation of a keystream (b, ..., by—1), computed as follows:

Lrdoe—1
2. xg — 2 mod N
3. Fori=0,...,£—1

(a) b; < least significant bit of z;

(b) @41 < 22 mod N
4. y — azge mod N

The value y is outputed along with the encrypted message. Given y, p
and ¢, one retreive the pseudo-random sequence (by, .. .,bs—1) by computing
xo the following way:

R y(%)z mod p.

2. g y(qTH)Z mod gq.

3. 20 < q(¢~' mod p)r, +p(p~' mod ¢)r, mod N.

Why decryption works ? By Fermat’s theorem,

ptl E_’_l
Tl = =x; mod p,
2ot . . . (eELye
and so y = x5 = xy mod N, which implies y' 4 = z9o mod p. The

Bézout identity gives ¢(¢”' mod p) +p(p~! mod ¢) =1 mod N, hence,

q(zog™' mod p) + p(zgp~' mod q) =zy mod N.

Note that the random value 7 can also be recovered, by setting the exponents
of r, and 74 to (’%1)“1. Thus it could be considered as a part of the
message in a deterministic scheme. If we only consider the pseudo-random
stream produced by a secret state r, it can be compared to TCHO2, where
the seed is a codeword and the pseudo-random generation is “randomized”
by Sz, and &,. The Blum-Goldwasser scheme can also be viewed as a
KEM/DEM scheme, where the encapsulated key is 7 (or xg), hidden in y,

Y

85

and the symmetric cipher is a simple XOR with the message. Thus it is
not essentially an asymmetric stream cipher, since the first secret recovered
thanks to the private key is not the plaintext, but the seed of the BBS
generator; its is a trapdoor pseudo-random generator, where the trap allows
to recover the seed, not to cancel directly the bitstream as TCHO2 does.

C Number of irreducible and primitive
polynomials

To get a sharper expression of the average number of trials before finding a
primitive polynomial P in the key generation stage, and for curiosity, we give
here some results on the number of irreducible and primitive polynomials on a
finite field, mainly taken from the COS (http://www.theory.cs.uvic.ca/).

Proposition 13. The number of irreducible polynomials of degree n over I,

Ly(n) = %Zu (g) q’
din

where p is the Mébius function: p(m) is equal to 0 if m is not square-free,
otherwise (—1)* with k the number of distinct primes in the factorization of
m.

This result is linked with the domain of combinatorics: Lg(n) is also
equal to the number of Lyndon words (words that are smaller than any of
their right factors, for a lexicographic ordering) of length n on an alphabet
of ¢ distinct symbols.

Proposition 14. The number of primitive polynomials of degree n over I,
18

where ¢ is Euler’s totient function.

Thus the probability that a random irreducible binary polynomial of
degree m is primitive is

¢(2" - 1)

Zd|n H (%) 24’
note that, if n =[], cpp;", there are [[;(a; + 1) divisors of n.
Example 12. Then there are exactly 52 377 wrreducible and 24 000 primitive
binary polynomials of degree 20 (45 %), and respectively 99 858 and 84672

of degree 21 (89 %). For prime degrees leading to a Mersenne prime, there
as as many irreducible as primitive polynomials.

86

A known result states that Lo(n) can be asymptotically approximated to
2" /n. We verify this experimentaly: for degrees in [1,200] the average error
fraction of the real value is roughly 0.015, whereas it is about 8.65- 10717 for
degrees in [800, 1 000].

Proposition 15 (|[GMO01]|). The exact number of multiples of weight v (with
constant term 1) of any primitive polynomial of degree t is

1 2t — 2 v—1
Nd,v: <'U—2> _Nt,v—l_ v 2(2t_'v+1)Nt,U—2

with initial conditions Ny = Nyo = 0.

87

