
A Novel Asymmetri
 S
heme with StreamCipher Constru
tion
Jean-Philippe AumassonMaster's thesisSeptember 2006

Responsible:Prof. Serge VaudenayLASEC, EPFL

ii

"Tout
e qui a pu se dire
ontre la s
ien
e ne saurait faire oublierque la re
her
he s
ienti�que reste, dans la dégradation de tantd'ordres humains, l'un des rares domaines ou l'homme se
on-tr�le, s'in
line devant le raisonnable, est non bavard, non violentet pur. Moments de la re
her
he
ertes
onstamment interrom-pus par les banalités du quotidien mais qui se renouent en duréepropre. Le lieu de la morale et de l'élévation ne se trouve-t-il pasdésormais au laboratoire ?"Emmanuel Levinas (Le Monde, 19/20 mars 1978)

iii

iv

A
knowledgementsFirst and foremost, I would like to thank my supervisor Prof. Serge Vaude-nay, his outstanding
are and
on
ern for students is exemplary. I am alsograteful to Matthieu Finiasz for his assistan
e and many LATEX tips.I address many thanks to Willi Meier for his relevant remarks and kind-ness, and to his student Simon K¶nzli for fruitful dis
ussions about TCHO.My o�
emates Salvatore Bo

hetti, Jean Monnerat, Florin Oswald, andRaphael Phan shall also be mentionned here, for their sporadi
 help and
onstant sympathy.On the personal side, I am deeply indebted to my parents for makingthis expatriation possible, and �nally my most tender thanks go to Paula,for her support.

v

Abstra
tThis work is based on the publi
-key stream
ipher TCHO designed by Fini-asz and Vaudenay, whi
h relies on the hardness of �nding a low-weight mul-tiple of a given high-degree polynomial over the �eld F2 of arbitrary weight,and on the noisy de
oding of the linear
ode spanned by a linear feedba
kshift register (LFSR). The en
ryption pro
edure is non-deterministi
: it in-volves two LFSR's, and a sour
e of random bits of a given bias, whereasde
ryption
onsists in an exhaustive sear
h algorithm and simple linear al-gebra operations.Until now, stream
iphers were only symmetri
, and asymmetri
 s
hemeswere somewhat di�
ult to employ in
onstrained environments, like portabledevi
es or passive RFID tags. In that sense, a se
ure publi
-key
ryptosystemwith stream
ipher-like design would be a breakthrough.We �rst implement TCHO in software with a high-level language, and
reate several algorithms to
ompute a pseudo-random bitstream of givenbias from a sour
e of uniformly distributed random bits. We also adapt anoptimized algorithm
omputing the output of a large LFSR, and brie�y studythe problem of testing the primitivity of a high-degree polynomial over F2.Experimental results stress out a prohibitive key generation and de
ryptiontime, in addition to limitations on the length of a plaintext, and a too highfailure probability in de
ryption.Then, by viewing the en
ryption as the
ommuni
ation of a
odewordof some
y
li
 linear
ode over a binary symmetri

hannel, we generalizethe
onstru
tion and
reate derived s
heme,
alled TCHO2. We suggest touse other
odes than arbitrary LFSR ones, and study the remarkable
aseof blo
k repetition
odes, whi
h allow a de
ryption algorithm exponentiallyfaster, along with a sharp estimation of the error probability.We prove the semanti
 se
urity of both TCHO and TCHO2, and pro-pose two hybrid
onstru
tions to build an IND-CCA se
ure system. We alsointrodu
e a new adversary model (ICCA), weaker than CCA, and study a
onstru
tion for whi
h TCHO2 is IND se
ure in this model. Eventually, weexhib se
ure asymptoti
 parameters, and
ompare to RSA.In the ultimate
hapter, we present some weaknesses of the pseudo-random generator ISAAC.Part of this work lead to a submitted paper.vi

RésuméCe travail est basé sur un nouveau système à
lé publique proposé par Finiaszet Vaudenay, possédant une
onstru
tion de
hi�rement de �ux propi
e àune implantation matérielle, se démarquant ainsi des systèmes asymétriques
ourants né
essitant des opérations arithmétiques non triviales, banissant de
e fait l'utilisation de proto
oles basé sur des s
hemas asymétriques dans
ertains environnements,
omme les tags RFID passifs.La sé
urité du système repose essentiellement sur la di�
ulté de retrouverun multiple de poids faible d'un polyn�me de haut degré et de poids quel-
onque sur le
orps F2. L'algorithme de
hi�rement est non-déterministe, etné
essite deux LFSR ainsi qu'une sour
e de bits pseudo-aléatoires d'un biaisdonné. Le dé
hi�rement
onsiste en un algorithme de re
her
he exhaustiveet de simples opérations d'algèbre linéaires.Nous implémentons tout d'abord TCHO dans un langage de haut niveau ;plusieurs algorithmes sont
rées pour la produ
tion de la séquen
e pseudo-aléatoire, et un algorithme optimisé est adapté pour le fon
tionnement deLFSR longs de plusieurs milliers de bits. Experimentalement, le temps d'unegénération de
lé et d'un dé
hi�rement s'avèrent prohibitifs, de plus
ertaineslimitations sur la taille d'un message
lair, ainsi qu'une probabilité d'erreurnon négligeable dans le dé
hi�rement et une grande expansion du
hi�ré,rendent le système inutilisable en pratique.Nous proposons ensuite une variante, nommée TCHO2, réduisant expo-nentiellement le temps de dé
hi�rement, pour laquelle nous
al
ulons pré-
isement le taux d'erreur. La sé
urité sémantique de
e nouveau système estprouvée sous
ertaines hypothèses, et nous proposons deux
onstru
tions hy-brides garantissant l'indistinguabilité des
hi�rés dans des attaques à
hi�ré
hoisi adaptives. Un nouveau modèle d'adversaire est présenté (ICCA), danslequel nous étudions la sé
urité de TCHO2 et
ertaines de ses variantes. Fi-nalement, nous étudions le
omportement asymptotiques des paramètres dusystème, et
omparons ave
 RSA.En�n, le dernier
hapitre présente plusieurs faiblesses observées sur legénérateur pseudo-aléatoire ISAAC.Une partie de
e travail a donné lieu à un arti
le soumis à publi
ation.vii

Note: Comme il est d'usage à l'EPFL, le rapport est rédigé en anglais,pour une meilleure a

essibilité.

viii

Notations
Notation Name
Z set of integers
P set of prime numbers
Fq �nite �eld with q elements
Fq[X] ring of polynomials over Fq

Fn2 ve
tor spa
e of dimension n over F2

Md d-th Mersenne number: 2d − 1

Pr[E] probability of the event E, with
ontextual probability law
Pr[F |E] probability of the event F
onditioned to E's o

urren
e
← a�e
tation
$←− randomized a�e
tation (uniform law)
⌊x⌋ �oor: max{n|n ≤ x, n ∈ Z}

⌈x⌉
eil: min{n|n ≥ x, n ∈ Z}

⌊x⌉ nearest integer: n ∈ Z, ∀k ∈ Z, |x− n| ≤ |x− k|

x/y division operation
x|y division predi
ate: ∃z, x× z = y

gcd(x, y) greatest
ommon divisor of x and y
e the trans
endental number: e =

∑

n≥0
1
n! ≈ 2.7182818

log x binary logarithm: log2 xix

lnx natural logarithm: loge x

n! fa
torial: ∏n
k=2 k

(n
k

) binomial
oe�
ient: n!
k!(n−k)!

Poly (n) some polynomial fun
tion in n
M† transpose of the matrixM
deg(P) degree of the polynomial Pord(P) order of the polynomial P : min{k,Xk ≡ 1 mod P}wp(P) weight: number of non-zero
oe�
ients of the polynomial P
x||y
on
atenation of the bitstrings x and ywh(x) Hamming weight: number of non-zero bits in the bitstring x
x≪ k bitstring x left-shifted of k bits �à la C� (neither
ir
ular nor expanding)
LP LFSR with feedba
k polynomial P
LP (x) idem, but initialized with the bitstring x
SLP (x) bitstream generated by LP (x)

Sγ random bitstream with bias γ
Sℓ bitstream S trun
ated to its �rst ℓ bits
P ⊗ S produ
t of a polynomial and a bitstream
O (g(n)) asymptoti
 upper bound: f(n) = O (g(n)) ⇐⇒ ∃c > 0, |f(n)| ≤ c|g(n)|

Ω(g(n)) asymptoti
 lower bound: f(n) = O (g(n)) ⇐⇒ ∃c > 0, |f(n)| ≥ c|g(n)|

o (g(n)) asymptoti
ally negligible: f(n) = o (g(n)) ⇐⇒ limn→∞
f(n)
g(n) = 0

x

Contents
A
knowledgements vAbstra
t viRésumé viiNotations viii1 Preliminaries 11.1 Terminology . 11.2 Information and
oding . 21.3 Stream
iphers . 41.3.1 Generalities . 41.3.2 The linear feedba
k shift register 41.4 Publi
-key
ryptography . 81.5 Se
urity de�nitions . 82 The TCHO s
heme 122.1 Computational problems . 122.1.1 Finding a sparse multiple of a high-degree polynomial 132.1.2 De
oding a LFSR
ode 142.1.3 The hidden
orrelation problem 152.2 The publi
-key s
heme . 162.2.1 Key generation . 162.2.2 En
ryption and de
ryption 172.2.3 Parameters sele
tion 172.3 Con
lusion . 183 Implementation of TCHO 193.1 Linear feedba
k shift register 193.1.1 Algorithm . 193.1.2 Analysis . 203.2 Pseudo-random generation with given bias 213.2.1 Choi
e of a random sour
e 22xi

3.2.2 Algorithm G1 . 233.2.3 Algorithm G1+ . 253.2.4 Algorithm G2 . 273.2.5 Algorithm G3 . 293.2.6 Algorithm G4 . 303.2.7 Con
lusion . 333.3 Primitivity testing of a high-degree polynomial 333.3.1 Proportion of primitive polynomials 333.3.2 Known deterministi
 tests 343.3.3 Using a non-primitive polynomial 353.3.4 A �lter for primitive polynomials 363.3.5 Con
lusion . 383.4 Key generation . 383.5 En
ryption and de
ryption . 393.6 Experimental results . 394 The TCHO2 s
heme 424.1 Presentation . 424.2 LFSR
odes with trinomials 434.3 Blo
k repetition
odes . 434.3.1 Des
ription and reliability 434.3.2 Experimental results 454.4 Asymptoti
 parameters . 464.5 Comparison with other
ryptosystems 474.6 Con
lusion . 475 Se
urity 485.1 One-wayness and non-malleability 485.2 Semanti
 se
urity . 495.2.1 A su�
ient
ondition 495.2.2 Distinguishing a noisy LFSR from random 495.3 Hybrid en
ryption IND-CCA se
ure 505.3.1 KEM/DEM . 505.3.2 Fujisaki-Okamoto revisited 515.3.3 Pra
ti
al
on
erns . 526 Derived
onstru
tions 536.1 TCHO2 over Fq . 536.1.1 Des
ription . 536.1.2 Reliability . 536.2 A weakly se
ure s
heme with redu
ed expansion 556.3 Towards IND se
urity against
hosen-
iphertext adversaries . 566.3.1 De�nitions of ICCA and IPA 566.3.2 Notion of valid
iphertext and IND-ICCA se
urity . . . 59xii

Con
lusion 62Referen
es 63Appendi
es 70A Weak initial states in ISAAC 70B The Blum-Goldwasser asymmetri
 stream
ipher 77C Number of irredu
ible and primitive polynomials 77

xiii

Chapter 1PreliminariesThis
hapter introdu
es the ba
kground knowledge required to understandthe developments following. The reader familiar with
ryptology may skipmost of the
hapter.1.1 TerminologyThe logarithm in base 2 is denoted log, and the natural logarithm ln. The�oor and
eiling of a real number r are respe
tively denoted ⌊r⌋ and ⌈r⌉,while the nearest integer is denoted ⌊r⌉.An element of F2 is
alled a bit hereafter. An element of Fn2 is
alled abitstring, where n may be �nite or in�nite. Its length |x| is its number ofbits. Its Hamming weight wh(x), or simply weight, is its number of ones.The Hamming distan
e between two bitstrings x and y of equal length is thenumber of positions where x and y di�er. The
on
atenation of x and y is
x||y. The sum over F2 is denoted +, and the produ
t · or ×. A bitstring
x
an be written (x1, x2, . . . , xn), and (0, . . . , 0)
an simply be denoted 0.The sum of two bitstrings of equal length returns a bitstring, and is de�nedas a sum
omponent by
omponent. It is symbolized as the usual additionby the sign +, we will sometimes use the neologism �to xor� to denote thisoperation. A bitstream is a bitstring of potentially in�nite length produ
edby some devi
e or bit sour
e, and shall be denoted by the symbol S with
ontextual subs
ript. The symbol Sℓ refers to the bitstream S trun
ated toits �rst ℓ bits.Elements of the ring F2[X] are simply
alled polynomials hereafter. Tolighten notations, a polynomial P (X) is written P . The degree of a polyno-mial P is denoted deg(P), and its weight wp(P) is its number of non-zero
oe�
ients.If we speak about random bits, or random sequen
e, et
., it is eitheruniform or non-uniform randomness, and spe
i�ed only where the meaning
an be ambiguous. When no probability ditribution or spa
e is spe
i�ed,1

randomly
hosen means randomly
hosen among all the obje
ts of that kind,with respe
t to a uniform probability law. We may simply
all uniform bitsa sequen
e of uniformly distributed random bits, and biased bits a sequen
eof random bits with a
ertain bias.The statisti
al distan
e between two probability ensembles D1 and D2over {0, 1}n is de�ned as
D =

∑

x∈{0,1}n

|Pr
D1

[x]− Pr
D2

[x]|.We shall use the a
ronyms CCA, CPA, IND, NM, and OW, respe
tivelystanding for the usual notions of adaptive
hosen
iphertext atta
k,
ho-sen plaintext atta
k, indistinguishability, non-malleability, and one-wayness.Corresponding de�nitions are re
alled in a further se
tion.Finally, we introdu
e the natural values ceasy and chard,
hosen su
h thatan algorithm of time
omplexity below 2ceasy is
onsidered as feasible, butintra
table over 2chard (
hoosing ceasy = 40 and chard = 80 seems reasonabletoday).1.2 Information and
odingWe re
all that the length n of a
ode C is the �xed number of symbols ofa
odeword, while the distan
e d of a
ode (or minimum distan
e) is theminimal Hamming distan
e between two
odewords. We will only
onsiderbinary
odes, i.e., where the alphabet is {0, 1}.Introdu
ed in 1948 by Claude E. Shannon [Sha48℄, information theoryis strongly related to
oding and de
oding problems, some of its results areessential in the se
urity of TCHO. In Shannon's theory, any information
anbe
oded as a sequen
e of bits, so as to be transmitted from an transmitter(en
oder) to a re
eiver (de
oder) over a
ommuni
ation
hannel, whi
h maybe noised. We
onsider the model of the binary symmetri

hannel: ea
h bitsent is modi�ed with a given probability, un
hanged otherwise, and no bit isadded nor deleted. A random sour
e
an be de�ned by its bias:De�nition 1. A random sour
e of bits with bias −1 ≤ γ ≤ 1 produ
es azero with probability pγ = (γ + 1)/2 (and a one with probability 1− pγ).That is, γ is equal to the di�eren
e between the probability to outputa zero and the probability to ouput a one. We
an limit us to the
ase ofpositive biases without loss of generality.De�nition 2. The amount of randomness, or information entropy, of arandom bitstring of length ℓ with bias γ is
ℓ ·H(pγ)2

where H(pγ) is the information entropy fun
tion:
H(pγ) = −pγ log pγ − (1− pγ) log(1− pγ)It thus
aptures the
on
ept of information
ontained in a random bit-string, by measuring its level of un
ertainty 1.De�nition 3. The rate of a
ode of �xed length n and m words is the value

R =
logm

nClearly, R ≤ 1 (we
annot have more than 2n distin
t words in a
ode oflength n). Hen
e a
ode rea
hes R = 1 when no redundan
y has been addedin the
ode, in this
ase no error
an be dete
ted.De�nition 4. The
apa
ity of a binary symmetri

hannel noised with bias
γ is the value

Cγ = 1 + pγ log pγ + (1− pγ) log(1− pγ),Informally, the
hannel
apa
ity, is the amount of dis
rete informationthat
an be reliably transmitted over a
hannel.This fundamental theorem states a bound on the ability to de
ode on anoisy
hannel (see [Sha48℄ for the proof):Theorem 1 (Shannon, informal). Let us be given a
hannel of
apa
ity C,with information transmitted at a rate R. There exists a way to de
ode withan arbitrary small error probability if and only if R < C.We now de�ne a broadly used family of
odes.De�nition 5. A linear
ode of length n is a subspa
e of Fn2 . The dimensionof this subspa
e is
alled the dimension of the
ode, and usually denoted k.If the
ode has distan
e d, it is
alled a (n, k, d) linear
ode.As a
onsequen
e, any linear
ode has a n× k generator matrix G of fullrank, and any matrix row equivalent to G also generates the
ode.De�nition 6. A linear
ode C of length n is
y
li
 if, for any c = (c1, . . . , cn) ∈
{0, 1}n,

c ∈ C ⇒ (cn, c1, . . . , cn−1) ∈ C.We now give some results on the ability to dete
t and
orre
t errors;by
onsidering the spheres
entered on ea
h
odeword (i.e. all the wordsat a given distan
e from a given
odeword), the following theorem is quiteintuitive:1The story goes that Shannon did not know how to
all this measure, so he asked VonNeumann, who said �You should
all it entropy (. . .) [sin
e℄ no one knows what entropyreally is, so in a debate you will always have the advantage�, see [TM71℄ for more details.3

Theorem 2. A
ode of distan
e d
an
orre
t up to ⌊d−1
2 ⌋ errors.Proof. The spheres of radius ⌊d−1

2 ⌋
entered on ea
h
odeword do not over-lap, thus any
odeword with at most this amount of errors belongs to a singlesphere, and de
oding only
onsists in
hoosing the
enter of this sphere.The following bounds on linear
odes are given without proof.Theorem 3 (Hamming). If C is a (n, k, d) linear
ode, with d = 2t + 1 or
2t+ 2, then

|C|
t

∑

i=0

(

n

i

)

≤ 2nTheorem 4 (Singleton). For any (n, k, d) linear
ode, d ≤ n− k + 1.Those de�nitions are the minimal requirements for the understanding ofthe
oding related parts of this report, for further theory one
an refer to thereferen
e [Rom92℄, [HWL+91℄ for a
on
ise introdu
tion to the subje
t, oreven [MS77℄ for an intermediate approa
h, also dealing with pure informationtheory.1.3 Stream
iphers1.3.1 GeneralitiesStream
iphers used to be symmetri

iphers, produ
ing a bitstream (
alledthe keystream) de�ned by the se
ret key,
ombined with the message to buildthe
iphertext, and
an thus be depi
ted as keystream generators, devi
esprodu
ing a random looking bitstream from a
ertain key. The
ombinationis the most often de�ned as a simple XOR, but more general de�nitions exist.Stream
iphers
an often be seen as pseudo-random generators. The stream
ipher paragon is the Vernam
ipher [Ver26℄, proved un
onditionnally se
ureby Shannon in 1949, under the
ondition that ea
h random sequen
e is usedonly on
e, introdu
ing the notion of perfe
t se
re
y. One
an wonder whywe do not simply use pseudo-random generators as stream
iphers; the maindi�eren
e is that stream
iphers' bitstreams must be de�ned by a unique key,belonging to a large enough key spa
e, satisfy several statisti
al propertiesto be de
lared
ryptographi
ally se
ure, and rea
h good hardware and/orsoftware performan
es so as to be e�e
tively used.Stream
iphers
an be either syn
hronous or self-syn
hronous: in the�rst
ase, the keystream only depends on the key, whilst in the se
ond italso depends on the previous en
rypted bits (for example, the CFB operationmode of blo
k
iphers). Some famous stream
iphers are A5/1 (used in GSMen
ryption), E0 (used in Bluetooth proto
ol), RC4 (used in SSL and WEP),SEAL, SOBER, SNOW, Phelix, et
. 4

1.3.2 The linear feedba
k shift registerThe linear feedba
k shift register (LFSR) is a stru
ture widely used in thedesign of stream
iphers, either in its original form, or under variants like theself-shrinking generator [MS94℄ or the Galois LFSR. Here, after short pre-liminaries, we introdu
e our formalism and state some remarkable propertiesof the LFSR and its outputs.On polynomialsWe
all binary polynomial an element of the ring F2[X]. Ea
h binary poly-nomial
an be written under the normal form
∞

∑

i=0

ciX
i,where the number of non-zero
oe�
ients is �nite. We will only deal withbinary polynomials, and simply
all them polynomials.These two routine de�nitions are essential for the following developments:De�nition 7. The order of P ∈ F2[X] is the smallest integer k ≥ 1 su
hthat Xk ≡ 1 mod P .De�nition 8. P ∈ F2[X] is said to be primitive if its order is 2deg(P) − 1(the maximal possible order for this degree).More pre
isely, an irredu
ible polynomial of degree d is said to be prim-itive if its root in the splitting �eld F2d is a generator of the multipli
ativegroup F⋆

2d .The next proposition is just the appli
ation of a famous theorem of La-grange:Proposition 1. The order of any irredu
ible binary polynomial P of degree
d divides 2d − 1.Corollary 1. If 2d − 1 is prime, then any irredu
ible binary polynomial ofdegree d is primitive.De�nitionA binary LFSR LP of length n is a devi
e aimed at produ
ing a bitstream,
omposed of a register of n bits (si, . . . , si+n−1), and a linear feedba
k fun
-tion,
hara
terizing the update the register. We only
onsider LFSR's wherethe register values are elements of F2, but one
an also build LFSR's on Fq,for some q = pn, p ∈ P. The register
ontent is usually
alled the stateof the LFSR, and (s0, . . . , sn−1) the initial state, whi
h entirely determinesthe bitstream produ
ed. The feedba
k fun
tion is de�ned by a polynomial5

P =
∑∞

i=0 piX
i of degree n,
alled the feedba
k polynomial, of degree equalto the LFSR length. The o�sets where P has non-zero
oe�
ients are of-ten
alled taps. The update of the state is des
ribed by the following linearoperation2:



















si.........
si+n−1



















† 

















0 0 . . . 0 p1

1 0 . . .
... p2

0 1
... 0 pn−1

0 . . . 0 1 pn



















=



















si + 1.........
si+n



















†

,and so the bitstream produ
ed with an initial state x ∈ Fn2 is
SLP (x) = (s0, . . . , si, . . .).A LFSR is a weak sour
e of random information; bits are strongly
or-related, and the sequen
e is
ondemned to be ultimately periodi
, sin
e thenumber of distin
t states is �nite: only 2n − 1 (the all-zero state is dis-
arded). A LFSR is
alled optimal when its period is maximal, i.e. equalto the number of possible non-zero states. By representing the keystreamas a generating fun
tion, some routine
al
ulus leads us to the followingproposition (one will refer to any good book or le
ture notes for the proof):Proposition 2. The period of a LFSR is equal to the order of its feedba
kpolynomial.Corollary 2. A LFSR of size n a
hieves its maximal period 2n − 1 if andonly if its feedba
k polynomial is primitive.Thus for any non-zero initial state, if the feedba
k polynomial is primive,then all the non-zero states will appear in a period.Properties of the bitstreamDe�nition 9. The produ
t of a binary polynomial K =

∑∞
i=0 kiX

i of degree
d and a bitstream Sd+N = (s0, . . . , sd+N−1) is de�ned as

K ⊗ Sd+N = (s′0, . . . , s
′
N−1)with

s′i = sik0 + si+1k1 + · · ·+ si+dkd.2One may also �nd in literature di�erent formalisms where the polynomial is reversed,i.e., where it is the re
ipro
al of the
hara
teristi
 polynomial of the re
urren
e, but bothare
anoni
al, and equivalent. 6

The operator thus de�ned is distributive over the bitstring sum and thepolynomial sum, it veri�es
(PQ)⊗ S = P ⊗ (Q⊗ S) and P ⊗ SLP (x) = 0for all P,Q ∈ F2[X], any bitstream S, and any bitstring x of length deg(P).As a
onsequen
e we have:Fa
t 1. ∀P,Q ∈ F2[X] with non-zero
onstant term, ∀R ∈ F2[X], ∀x ∈

F
deg(P)
2 , ∀y ∈ F

deg(Q)
2 ,∀ℓ > deg(QR),
(QR)⊗ (SℓLP (x) + SℓLQ(y)) = (QR)⊗ SLℓ

P (x).This result will be used to "delete" a LFSR bitstream, in the de
ryptionpro
edure of TCHO. We now state a bridge with
oding theory:Fa
t 2. Let P be a polynomial of degree dP . The set {SℓLP (x), x ∈ Fd2 } is a
y
li
 linear
ode of length ℓ and dimension at most 2d.Se
urity of LFSR-based stream
iphersIn pra
ti
e, one never uses the textbook LFSR as a stream
ipher, but one orseveral LFSR's
ombined with non-linear operations, su
h as permutations,boolean fun
tions with high algebrai
 degree, or more exoti

onstru
tions.Examples
lassi
al design te
hniques are the non-linear
ombination gener-ator, the non-linear �lter generator, or the
lo
k-
ontrolled generator.Basi
ally, the goal of an atta
ker is to re
over all or part of the initialstate of the LFSR (or any information related), from a sour
e of informationdepending on the se
urity model
onsidered. Generally, an atta
k is per-formed when a few bits of the keystream are known, su

essive or not. Notethat an atta
ker gains nothing in
hosen
iphertext atta
k
ompared to a
hosen plaintext atta
k or a known plaintext atta
k, sin
e the informationobtained on the se
ret (the keystream bits) is exa
tly the same (this standsonly when the
ombination
an be inversed, e.g. if it is a simple XOR). Theproblem of �nding the minimal polynomial produ
ing a given LFSR streamhas also been investigated, and lead to the well-known Berlekamp-Masseyalgorithm [Ber68℄.Brute for
e atta
ks Assuming that the
onstru
tion does not allow us toeasily re
ompute the initial state of a LFSR from all or part of the keystream,the �rst naive atta
k to retreive this se
ret is the try-and-test approa
h, theso-
alled exhaustive sear
h. A se
ure stream
ipher is often de�ned as onewhere it is the best possible atta
k, the Grail of
ryptographers. The averagetime
omplexity of this atta
k is
learly in Ω(2n−1), where n is the numberof se
ret bits. As usual, time-memory trade-o�
an redu
e this
ost (
f.di
tionary and
odebook atta
ks). 7

Correlation atta
ks This famous atta
k was dis
overed by Siegenthalerin 1985 [Sie86℄, then improved by Meier and Sta�elba
h [MS88℄ who pre-sented it as a de
oding problem; the general idea is to �nd a statisti
allybiased distribution between the keystream and a bitstream produ
ed byanother sour
e, typi
ally a LFSR. It
an lead for example to redu
e theatta
k to the noisy de
oding of the
ode spanned by another LFSR. Sev-eral de
oding algorithms have been proposed; maximum likelihood, Gal-lagher's iterative de
oding of low-density parity-
he
k
odes, turbo
odes,et
. In parti
ular,
orrelation atta
ks were used to atta
k the widely usedE0 [LV04a, Ekd03, HN99℄, and even the RC5 blo
k
ipher [MNT02℄.Other atta
ks Below, for histori
 purposes, we give a non-exhaustive listof known atta
ks on stream
iphers (LFSR-based or not):
• key reuse (medieval),
•
orrelation (Siegenthaler, 1984),
• guess-and-determine (Günter, 1988),
• resyn
hronization (Daemen et al., 1993),
• time-memory tradeo�s (Babbage, 1995),
• ba
ktra
king (Goli
, 1997),
• algebrai
 (Shamir et al., 1999),
• side
hannel (Ko
her et al., 1999),
• binary de
ision diagrams (Krause, 2002).1.4 Publi
-key
ryptographyPubli
-key
ryptography was dis
overed by Di�e and Hellman [DH76℄ in19763. Sin
e, dozens of
ryptosystems appeared, based on hard problems likeinteger fa
torization, dis
rete logarithm, latti
e redu
tion, knapsa
ks, et
.,in various algebrai
 stru
tures. A publi
-key (or asymmetri
)
ryptosystem
onsists of an en
ryption pro
edure, requiring an element pk, along with theasso
iated de
ryption pro
edure whi
h requires an element sk. The element

pk is made publi
ly available, and
alled the publi
 key, while sk is keptse
ret, and
alled the private key. The system must satisfy the propertythat it is
omputationally infeasible to re
over sk from pk. More formally,we give the following de�nition.3Ellis [Ell70℄ dis
overed it independently in 1970, but his works were
lassi�ed by aBritish government agen
y until 1997. 8

De�nition 10. A publi
-key
ryptosystem is de�ned by three sets and threealgorithms. The sets are:
• M, the plaintexts spa
e, �nite or in�nite.
• C, the
iphertexts spa
e, �nite only ifM is �nite.
• R, the random
oins spa
e, �nite, and non-empty only if en
ryption isprobabilisti
.The three algorithms are:
• The key generation algorithm G, whi
h outputs a pair (pk, sk) of mat
h-ing publi
 and private keys, on input 1k, where k is the se
urity param-eter.
• The en
ryption algorithm E, whi
h, given a plaintext m ∈ M and apubli
 key pk, outputs a
iphertext c ∈ C of m. This algorithm may beprobabilisti
 (involving random
oins).
• The de
ryption algorithm D, whi
h, given a
iphertext c ∈ C and aprivate key sk, returns the mat
hing plaintext m ∈ M, or ⊥ if thegiven
iphertext is not valid.Asymmetri
 systems are seldom used alone, but as part of an hybriden
ryption s
heme, to en
rypt the se
ret key of a symmetri
 s
heme, whi
hen
rypts the message. This te
hnique is often refered as a key en
apsulationme
hanism and data en
apsulation me
hanism (�KEM/DEM�). We will meetsu
h
onstru
tions later.Publi
 key
ryptosystems are also
losely related to the notions of one-way and trapdoor fun
tions, but it
omes out of the s
ope of this report (seefor example [BHSV98, Yao82℄).1.5 Se
urity de�nitionsAn adversarial model is the statement of what an adversary (i.e one orseveral probabilisti
 algorithms querying ora
les)
an and
annot do whenatta
king the en
ryption s
heme, so as to study the se
urity of the system.For publi
-key s
hemes, anyone
an en
rypt any message, so the basi
 atta
kis the
hosen plaintext atta
k (CPA). The number of queries is limited to apolynomially bounded number. For symmetri
 s
hemes, CPA atta
ks aremodeled using en
ryption ora
le, whilst in the most basi
 atta
k the adver-sary only has a
iphertext of an unknown message. The best se
urity levelis a
hieved in the following model:

9

De�nition 11. An adversary is
alled an adaptive
hosen
iphertext (CCA)adversary if she
an query the de
ryption ora
le whenever she wants, to de-
rypt any
iphertext ex
ept the given
hallenge(s). The number of queriesmust be polynomially bounded. If the
iphertext given to the ora
le is not avalid one, the ora
le returns ⊥, and the atta
k
ontinues.In literature, this model is sometimes denoted CCA2, and CCA is standingfor non-adaptive adversaries, where queries to the de
ryption ora
le do notdepends on the
hallenge.Now we review fundamental se
urity notions: one-wayness, indistin-guishability, real-or-random se
urity, non-malleability, and semanti
 se
urity.We re
all that in CCA model, the adversary
annot query the de
ryption or-a
le with the
iphertext
omputed by the
hallenger.De�nition 12 (OW se
urity). Let Aow = (Aow
1 ,Aow

2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated.2. σ ← Aow
1 (pk): the adversary queries ora
le(s) and return a state.3. m $←−M: a plaintext is randomly pi
ked by the
hallenger.4. c = E(pk,m): the
hallenger en
rypts m and sends c to the adversary.5. m̃← Aow
2 (σ, c):The advantage of an adversary Aow against one-wayness is

Advow = Pr[m = m̃].We say that a
ryptosystem is (t, ε)-OW se
ure when any adversary runningin time less than t gets an advantage less than ε.De�nition 13 (IND se
urity). Let Aind = (Aind
1 ,Aind

2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated, and pk sent to Aind
1 .2. (m0,m1, σ) ← Aind

1 (pk): the adversary returns a pair of plaintexts ofequal length, and a state σ.3. b $←− {0, 1}: a random bit is pi
ked by the
hallenger.4. c← E(pk,mb): the
hallenger en
rypts mb, and sends c to Aind
2 .5. b̃ ← Aind

2 (m0,m1, σ, c): the adversary guesses the message whi
h wasen
rypted. 10

The advantage of an adversary Aind against indistinguishability is
Advind = 2Pr[b = b̃]− 1.We say that a
ryptosystem is (t, ε)-IND se
ure when any adversary runningin time less than t gets an advantage less than ε.De�nition 14 (ROR se
urity). Let Aror = (Aror

1 ,Aror
2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated, and pk sent to Aror

1 .2. m0
$←− M, b

$←− {0, 1}: the
hallenger pi
ks a random plaintext and avalue b.3. (m1, σ) ← Aror
1 (pk): the adversary
hooses a plaintext, sent to the
hallenger.4. c← E(pk,mb): the
hallenger en
rypt mb, and sends it to Aror

2 .5. b̃ ← Aror
2 (m1, σ, c): the adversary guesses whether her message or an-other one was en
rypted.The advantage of an adversary Aror in a real-or-random game is

Advror = 2Pr[b = b̃]− 1.We say that a
ryptosystem is (t, ε)-ROR se
ure when any adversary runningin time less than t gets an advantage less than ε.De�nition 15 (NM se
urity). Let Anm = (Anm
1 ,Anm

2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated, and pk sent to Anm
1 .2. (M,σ) ← Anm

1 (pk): a distribution of plaintexts M and a state σ arereturned by Anm
1 .3. (m, m̃)

$←−M : the
hallenger pi
ks two independent random plaintextsa

ording to the distribution M .4. c← E(pk,m): m is en
rypted and sent to Anm
2 .5. (R, y) ← Anm

2 (m,σ, c): the adversary
omputes a binary relation Rand a
iphertext y.6. x← D(sk, y). 11

The advantage of an adversary against non-malleability is
Advnm = Pr [y 6= c ∧ x 6= ⊥ ∧R(x,m)]− Pr [y 6= c ∧ x 6= ⊥ ∧R(x, m̃)] .We say that a
ryptosystem is (t, ε)-NM se
ure when any adversary runningin time less than t gets an advantage less than ε.This last de�nition models the informal notion of non-malleability: anadversary
annot
ompute a
iphertext meaningfully related to the messagemat
hing a given distin
t
iphertext. And so a malleable
ryptosystem doesnot guarantee integrity of the
iphertexts, but may ensure priva
y.A
ryptosystem is told to be X-Y se
ure if it guarantees X se
urity in theatta
k model Y. In our
ontext, we simply
all X-Y se
ure a system whi
h is

(t, ε)-X-Y se
ure, with t ≥ 2chard , and ε negligible (i.e. ε ≤ 2−chard), where X
an be either IND, OW or ROR, and Y
an be either CPA, or CCA.The two following results are proved in [BDPR98℄:Proposition 3. NM-CPA se
urity implies IND-CPA se
urity.Proposition 4. NM-CCA se
urity is equivalent to IND-CCA se
urity.More generally, NM-Y ⇒ IND-Y ⇒ OW-Y, for all adversarial model Y,and X, X-CCA se
urity implies X-CPA se
urity, for all se
urity notion X. Thenext proposition is proved in [BDJR97℄:Proposition 5. ROR-CPA se
urity is equivalent to IND-CPA se
urity.The important notion of semanti
 se
urity introdu
ed by Goldwasserand Mi
ali [GM82℄ is equivalent [GM84℄ to IND-CPA se
urity; it guaranteesthat the
iphertext reveals no more information about the plaintext to apolynomially bounded adversary. Note that semanti
 se
urity implies OW-CPA se
urity, the weakest level of se
urity.To summarize, we obtain the followin relationship:NM-CPA ⇐ NM-CCA
⇓ mSemanti
 ⇔ IND-CPA ⇐ IND-CCA
⇓ ⇓OW-CPA ⇐ OW-CCA
12

Chapter 2The TCHO s
hemeA trapdoor stream
ipher sounds like a premiere in
ryptography, but it isnot exa
tly one: in 1984 Blum and Goldwasser [BG85℄ used the Blum-Blum-Shub [BBS86℄ pseudo-random generator to build a probabilisti
 publi
-keystream
ipher based on the hardness of fa
toring a RSA modulus, and onthe se
urity of the generator (see Appendix B for details and dis
ussion).However it is more or less as
omputationally expensive as RSA, not well�tted for hardware as many streams
iphers do, and not really a trapdoorstream
ipher in the stri
t sense. The idea of putting a trapdoor in a LFSR-based stream
ipher has been brought by Camion, Mihaljevi
 and Imai threeyears ago [CMI03℄, but no expli
it
ryptosystem followed. As a response, thesystem TCHO1 aims at providing a se
ure trapdoor stream
ipher hardware-friendly, and being the �rst real asymmetri
 stream
ipher. En
ryption isprobabilisti
, and
an be des
ribed as the transmission of a
odeword overa noisy
hannel, as depi
ted in Figure 2.1: one small LFSR en
odes themessage, while a large one randomly initialized, along with a sour
e of biasedrandom bits, produ
es the noise. A
iphertext is the XOR of the threebitstreams. The private key is used to �
an
el� the bitstream of the se
ondLFSR, thereby redu
ing the noise over the
oded message, so as to be ableto de
ode the
y
li
 linear
ode spanned by the small LFSR.
ENCODERm c

PRG
Figure 2.1: TCHO en
ryption s
heme.1See http://www.t
ho.fr for the origins of this name.13

2.1 Computational problemsThe se
urity of TCHO relies on the hardness of two distin
t
omputationalproblems; one dealing with sparse multiples of primitive polynomials over F2,and a famous one related to some de
oding problems, strongly linked withthe stream
iphers
ryptanalysis �eld. The two problems are then mergedinto a single one. In this se
tion we introdu
e these problems, and statehardness assumptions in terms of their parameters, regarding to the knownatta
ks of these problems.2.1.1 Finding a sparse multiple of a high-degree polynomialThis problem formalizes the key re
overy problem in TCHO:Low Weight Polynomial Multiple (lwpm)Parameters: Three naturals w, d and dP , su
h that 0 < dP < d and w < d.Instan
e: P ∈ F2[X] of degree dP .Question: Find a multiple K of P of degree less than d and weight lessthan w.Unlike integers, e�
ient methods are known to fa
torize a polynomial over a�nite �eld (Berlekamp's generi
 deterministi
 algorithm runs in polynomialtime in the input's degree, whereas the
heapest method known for integersis the super-polynomial GNFS), but �nding a multiple of degree and weightbelow
ertain bounds
an be hard. This problem, or its variants, has beenimportant in LFSR
ryptanalysis sin
e some atta
ks are possible only whenthe feedba
k polynomial or one of its multiple is sparse [MS88, CT00℄. Afew works [GM01, MGV05, Jam00℄ study the distribution of multiples of agiven weight, but
onsider the problem of �nding a sparse multiple withoutthe
onstraint on the degree. If d is greater than to the order n of P , atrivial solution is the polynomial Xn + 1,
hoosing primitive polynomialswould avoid this
on
ern.We
an
ompute the average number Nsol of solutions of a lwpm instan
e.The probability that exists a multiple of P with degree d and weight w isheuristi
ally
2d−dP

(d
w−1

)

2d
= 2−dP

(

d

w − 1

)

,and so
Nsol ≈ 2−dP

d
∑

i=1

∑

j<d,j<w

(

i

j

)

.In [GM01℄, an exa
t enumeration formula is given for the number of multiplesof weight v (of unbounded degree, with
onstant term 1) of any primitivepolynomial of given degree. Although this expression is useless here, sin
e weneed a multiple of a spe
i�
 degree, it gives an idea of the problem hardness.14

Example 1. A primitive polynomial of degree 10 has about 1018 multiplesof weight 10 with
onstant term 1, but only 339 of weight 3.We now present strategies to solve lwpm. The following are suggested(refer to [FV06℄ for more details):1. Birthday paradox: memory O (

2dP /2
), time O (

dP 2dP /2
) for a singlesolution, and O (L logL) for all solutions with L =

(d
(w−1)/2

).2. Generalized birthday paradox [Wag02℄: time O(

2a+
dP
a+1

), if there ex-ists an a ≥ 2 su
h that (d
(w−1)/2a

)

≥ 2dP /(a+1).3. Syndrome de
oding [CC98, LB88℄: time O(

Poly (d)
(

d
dP

)w−1
).4. Exhaustive sear
h: time O (

Poly (d) 2d−dP
) for all solutions.An analysis of these strategies leads to a �rst assumption:Assumption 1 ([FV06℄). When P is randomly
hosen among the primitivefa
tors of an unknown sparse polynomial, if (d
w−1

)

≤ 2dP and w log d
dP
≥

chard, then lwpm is hard, on average.2.1.2 De
oding a LFSR
odeOur se
ond problem goes as follows:Noisy LFSR De
oding (nld)Parameters: P ∈ F2[X] of degree dP , a natural ℓ, a bias 0 ≤ γ ≤ 1.Instan
e: y = SℓLP (x) + Sℓγ .Question: Re
over x.The following strategies are suggested:1. Information set de
oding: the idea is to randomly pi
k dP bits of y,and solve the linear system indu
ed by the LFSR. To re
over x, weneed to pi
k only bits with no error. The probability of this event is
pdP
γ . If γ ≤ 21−chard/dP − 1, it requires over 2chard iterations.2. Maximum likelihood de
oding (MLD): this brute for
e te
hnique
on-sists in trying every possible initialization, and return the one minimiz-ing the Hamming distan
e between y and the stream produ
ed. Thealgorithm has a time
omplexity in O (

ℓ · 2dP
) (it
an be de
reased to

O
(

dP · 2dP
) by using a fast Walsh transform [LV04a℄).

15

3. Iterative de
oding: the idea of this approa
h is to �nd low weightmultiples of P forming some parity
he
k equations, and then de
odein the low-density parity-
he
k
ode asso
iated (see [CT00℄). For dP ≥
2chard, de
oding is impossible.A se
ond assumption
an thus be formulated:Assumption 2 ([FV06℄). If dP ≥ 2chard and γ ≤ 21−chard/dP − 1, then nldis hard.We
an also state when the problem is solvable2:Fa
t 3 ([FV06℄). If dQ ≤ ceasy and √

dQ ln 4
ℓ−d ≤ γw, then nld
an e�
ientlybe solved.The link with the
orrelation atta
ks be
omes obvious: SℓLP

+ Sℓγ is
or-related with SℓLP
, with
orrelation 1− pγ .2.1.3 The hidden
orrelation problemWe now merge lwpm and nld into a single problem.Hidden Correlation (h
)Parameters: Two
oprime polynomials P and Q, of degree respe
tively dPand dQ, a natural ℓ, and a 0 ≤ γ ≤ 1.Instan
e: y = SℓLQ(x) + SℓLP (r) + Sℓγ , with r an unknown random bitstreamof length deg(P).Question: Re
over x.Coprime polynomials are required so that the de
oding is not ambiguous.A h
 instan
e
an be redu
ed to an nld instan
e: if we multiply y by amultiple K of P , of degree d, by the we get the stream

z = K ⊗ (SℓLQ(x) + SℓLP (r) + Sℓγ) = K ⊗ (SℓLℓ
Q(x)

+ Sℓγ).This bitstream is thus of length ℓ − d. By linearity, we obtain a streamprodu
ed by LQ with initial state x′, with noise of bias γw, sin
e ea
h bit asum of w bits noised with bias γ:
SLQ(x′) + Sℓγw .Note that the noisy bits with bias γw are
orrelated, depending on the o�setsof the non-zero
oe�
ients of K. Experiments show that K ⊗ Sℓγ behavesmostly like Sℓ−dγw .2The lower bound on γ follows from an approximation of Shannon's bound obtainedusing C(γ) ≈ γ2/ ln 4. 16

The matrix Mf of the linear appli
ation transforming the real initialstate x of LQ to the new initialization x′
an be
al
ulated, using basi
linear algebra. Let MQ be the generating matrix of LQ (as presented inSe
tion 1.3.2), and (ki)i=0,...,∞ the
oe�
ients of K, then we have
Mf =

d
∑

i=0

ki(MQ)d−i (2.1)where the sum operation is the usual matrix addition. Therefore to retrieve
x, given the initial state of the LQ in z, it su�
es to inverse this matrix. It
an be done in time in O (

d3
Q

) by Gauss-Jordan elimination. To summarize,we redu
ed an h
 instan
e to one of nld with parameters (ℓ− d,Q, γw).Other strategies than this redu
tion are proposed to solve h
:
• Consider LP and LQ as a single LFSR, re
over its initialization (i.e.solve an instan
e of nld with parameters (ℓ, P × Q, γ)), and dedu
ethose of ea
h LFSR.
• Multiply the
iphertext by Q to
an
el SℓLQ

and, re
over the initialstate of LP , by the same pro
ess that des
ribed above, ex
ept thathere the nld instan
e has parameters (ℓ− d, P, γdQ)By Assumption 2, we
annot solve nld for SℓLP
+ Sℓγ when dP ≥ 2chardand γ ≤ 21−chard/dP − 1, thus these strategies are infeasible for well
hosenparameters.A last
onstraint is linked to theoreti
al
on
erns; if we suppress thein�uen
e of P using a multiple K of weight w, the information Iγ one
anget on SLQ(x) is bounded:

Iγ ≤ ℓ · CγwIt also gives us a large bound on the information one
an obtain on x.Now, what if an opponent
omputes all the multiples of P of a given weight
w ? There are at most 2chard

ℓw multiples of weigth w, and we need ones ofdegree lower than ℓ, then at most (ℓ
w

)

2−dP are suitable. We dedu
e the totalinformation one
an get, negle
ting the
ost of �nding su
h multiples:
I =

∞
∑

w=2

ℓ · Cγw min

((

ℓ

w

)

2−dP ,
2chard

ℓw

)

.We dedu
e the assumption of h
's hardness:Assumption 3 ([FV06℄). When P is randomly
hosen among the primitivefa
tors of an unknown sparse polynomial, if dP ≥ 2chard and γ ≤ 21−chard/dP−
1, and I ≤ 1, then h
 is hard, on average.17

2.2 The publi
-key s
hemeA publi
 key of TCHO is a high-degree primitive polynomial P , the privatekey asso
iated is a polynomial K, sparse multiple of P . TCHO en
ryptsblo
ks of dQ bits. The parameters of the system are
• [dmin, dmax], an interval
ontaining dP ,
• d and w, the degree and the weight of K,
• γ, the bias of the random sour
e,
• ℓ, the length of a
iphertext of one blo
k,
• Q, a polynomial of small degree dQ (the length of a plaintext blo
k).2.2.1 Key generationTo �nd a key pair, one �rst randomly pi
ks a polynomial of degree d andweight w, then de
omposes it into irredu
ible fa
tors, and looks for a primi-tive polynomial of degree in [dmin, dmax] among those fa
tors. Avoiding the
ost of testing primitivity, whi
h is dis
ussed later, the time
omplexity ofthe key generation is in O (

dmax

dmax−dmin
d2

), using the Cantor-Zassenhaus al-gorithm [CZ81a℄.Some tri
k
an be used for the se
ond step: the produ
t of all irredu
iblepolynomials of degree dividing d is X2d−X, so we
an
ompute g
d(X2d−X
mod K,K); if the polynomial
omputed has degree lower than d, one knowsthat K has no fa
tor of degree d, otherwise we fa
torize the polynomial to�nd one. Although this te
hnique speeds up the pro
ess for a single degree,in the worst
ase we would have to perform it for ea
h degree in the range(for a single iteration), that too mu
h in
reases the time
omplexity of thealgorithm indu
ed.2.2.2 En
ryption and de
ryptionLet x be a plaintext, i.e., an element of {0, 1}dQ . A
iphertext of x is de�nedas TCHOenc(x, r) = SℓLQ(x) + SℓLP (r1) + Sℓγ(r2)where r = r1||r2 is a random bitstring of su�
ient length, so the en
ryption is
learly non-deterministi
 (it is ne
essary to guarantee the semanti
 se
urity).One inherent weakness of TCHO is its high message expansion; to suitthe
onstraints dQ have to be mu
h smaller than ℓ.Let y be a
iphertext, i.e., an element of {0, 1}ℓ. To re
over the plaintextwe �rst
ompute

K ⊗ y ≈ Sℓ−dLQ(x′) + Sℓ−dγw18

where x′ is the image of x by some invertible linear appli
ation f . Then, weperform a maximum likelihood de
oding (MLD) to re
over x′, and �nally
ompute x = f−1(x′). As stated previously, ifMQ is the generating matrixof LQ, the matrix of f is
Mf =

d
∑

i=0

ki(MQ)d−i,whi
h
an be inversed in time O (

d3
Q

). Note that this matrix does notdepends on the
iphertext re
eived, thus it
an be pre
omputed.The
ost of MLD is in O (

(ℓ− d) · 2dQ
), and O (

dQ · 2dQ
) using a fastWalsh transform [LV04b℄. The soundness of the system is not guaranteed,sin
e Sℓγ
an take any value of {0, 1}ℓ with non-zero probability, and so de
od-ing may fail if the pseudo-random bitstream has a high weight. Indeed everyelement of {0, 1}ℓ has a non-null probability to be obtained by en
ryptingsome plaintext, sin
e Sℓγ takes all values in {0, 1}ℓ with non-null probabil-ity. Thus the
iphertext spa
e is {0, 1}ℓ. However, not all
iphertexts arede
rypted su

essfully, and for a given key pair, the
iphertext spa
e
an bepartitionned into two sets: those whi
h are
orre
tly de
rypted (the sound
iphertexts), and the others (the non-sound
iphertexts). We do not employthe adje
tive valid sin
e it usually stands for an obje
t that
annot have beenprodu
ed by the en
ryption algorithm.Sin
e the
omplexity of de
oding is not linear in dQ, we
an think wehad better use a small polynomial Q (i.e. smaller blo
ks), but the matter isthat the
iphertext expansion fa
tor does not linearly grow in terms of dQ.Thus we would en
ounter some problems of time-memory trade-o�, and the
hoi
e of a set of parameters may depend on the user's requirements in timeand amount of data en
rypted.2.2.3 Parameters sele
tionRefering to the above-stated assumptions, we give se
urity
onstraints onthe parameters.

• In order to de
rypt su

essfully, we must be able to de
ode a
odewordof length ℓ − d of a random LFSR
ode, noised with bias γw, so weneed
dQ ≤ ceasy and √

dQ ln 4

ℓ− d ≤ γ
w. (2.2)

• Message re
overy is assumed to be hard if
γ ≤ 2

1− chard
dmin − 1 and I ≤ 1. (2.3)19

• Finally, the private key K must be impossible to re
over. It is assumedto be the
ase as soon as
(

d

w − 1

)

≤ 2dmin and w log
d

dmax
≥ chard. (2.4)Example 2. For chard = 80, the following parameters meet these
onstraints:

γ = 0.98, ℓ = 13080, dmin = 6000, dmax = 6600, d = 11560, w = 99, dQ =
20.2.3 Con
lusionAlthough the design of TCHO is very simple and well �tted for an hardwareimplementation, some major disadvantages are its prohibitive de
ryptiontime
omplexity, of exponential
ost, and the absen
e of an estimate of theerror probability in de
ryption. Experimentally, for some parameters suitingthe assumptions, this probability is small, as predi
ted, but not enough tobe negle
ted. Exhibiting an exa
t formula or even an approximation of thetheoreti
al failure probability is di�
ult. A lower bound
ould be given ifthe minimum distan
e of a trun
ated LFSR
ode was known, but �ndingthis distan
e is hard, and the bound one
ould obtain would anyway be tooloose to be signi�
ative.

20

Chapter 3Implementation of TCHOIn this
hapter we review algorithms for an implementation of TCHO, andpresent the performan
es obtained. TCHO was implemented in C++, and
ompiled with g++ 3.3.5. We gained a pre
ious time using Shoup's libraryfor number theory [Sho05℄ (NTL), whi
h e�
iently implements all
ommonoperations in F2[X], using a
onfortable and �exible representation. It wasalso used for
omputing polynomial fa
torization and g
d. Some help wasalso found in [Arn05, PTVF92℄. All performan
es were measured on 1.5 GHzPentium 4
omputer.3.1 Linear feedba
k shift registerWhen implementing LFSR's, the naive bit-per-bit approa
h is
learly une�-
ient and very slow, espe
ially for huge registers like ours, so we had to �nda better algorithm.3.1.1 AlgorithmInspired from [CM03, CM01℄, this algorithm produ
es blo
ks of arbitrarysize from a LFSR of any larger length. We �rst introdu
e some notations:
• b: the length of a blo
k (in bits),
• n: the length of the LFSR,
• m = ⌈nb ⌉: the number of blo
ks (i.e bitstrings of length b) used by theLFSR,
• P : the feedba
k polynomial, pi its i-th
oe�
ient, from zero (
onstantterm) to n, and P [i] denotes the i-th blo
k, of b bits, of
oe�
ients,
• B: the new blo
k we want to
ompute,21

• S: the state of the LFSR; a sequen
e of blo
ks, S[1], . . . , S[m] of size
b.

• ⊞: bit-to-bit XOR operator,
• ⊠: bit-to-bit AND operator.The algorithm is based on the leap-forward te
hnique, whose basi
 ideais to build the blo
k B by
onsidering independently ea
h tap, and re
ordingthe future bits lo
ated at its o�set. The main pro
edure is
omposed of twostages:1. build the blo
k
onsidering the taps involving only bits of the
urrentstate (i.e. taps over b),2. �nalize the blo
k bit by bit while
onsidering the taps ti ∈ [1, b] (wemay need some of the �rst bits of B to build its last ones).These steps respe
tively
orresponds to the �rst two loops of the Algo-rithm 3.1, and the �nal loop aims just at updating the LFSR state. Thetaps in [1, b] are treated separately sin
e the future bits at their o�set arenot all known yet, and need to be
omputed dynami
ally.Here the parti
ular
ase of a LFSR of length non-multiple of b is im-pli
itely handled, and the
ase with taps in the �rst blo
k of the state leadsto the se
ond step des
ribed above.3.1.2 AnalysisThe time
omplexity of the Algorithm 3.1 to build a blo
k of b bits is in

O (wp(P)); we loop over all the taps of P above b, and then make b iterationsto pro
ess the �rst taps. In
ontrast, the naive bit-per-bit looks the d bitsof the register to
ompute ea
h output bit, so the algorithm runs in time
O (bn) = O (b · deg(P)) when
omputing b bits, thus our algorithm requiresin average 2b times less operations.We did not found any better te
hnique for software implementations ofLFSR in the literature. Moreover, we used several pre
omputations, notmentionned in the Algorithm 3.1, to speed up the generation; we build twolists of the taps multiples and non-multiples of b, then treat them separatelyin the algorithm, it leads to a gain of about 3× dP /32 logi
al operations perblo
k
omputed. The average number of elementary operations (≪,≫,⊞,⊠)required to build a blo
k in our implementation is estimated to

n(2− 1

2b
) + 6b.In the parti
ular
ase where the taps are all on a boundary (i.e. pi 6= 0 ⇒

b|pi), and when no one (ex
ept the
onstant term) has an o�set lower than22

Algorithm 3.1:Input: S,POutput: B1: B ← 02: for i = b+ 1, . . . , n do3: if pi then4: B ← B ⊞
(

S[ib]≪ (−i mod b)
)

⊞
(

S[ib − 1]≫ (i mod b)
)5: end if6: end for7: k ← 1≪ (b− 1)8: for i = 0, . . . , b− 1 do9: buf ← (B[0]≪ i) ⊞ (B ≫ (b− i))10: if wh(P [0] ⊠ buf) is odd then11: B ← B ⊞ k12: end if13: k ← k ≫ 114: end for15: for i = m, . . . , 1 do16: S[i]← S[i− 1]17: end for18: S[0]← B19: return B

b, this time
omplexity is redu
ed to
n(

1

2
+

1

b
).Table 3.1 gives some examples of time
omplexities a
hieved with thisalgorithm (the �eld f.b. is ti
ked when there are no taps in the �rst blo
k).We see that we had better using larger blo
ks for our large LFSR LP , and
hoosing small blo
ks
ombined with a trinomial without taps below theblo
k size for the small LFSR LQ. However te
hni
al
on
erns must be
onsidered: operations on the natural type of C++, int (32 bits) are mu
hfaster than on longer emulated types, and so we shall
hoose b = 32.A C implementation of this LFSR algorithm independent of TCHO
anbe found at http://www.131002.net.3.2 Pseudo-random generation with given biasThis is a big issue; weak pseudo-random generators (PRG) have often leadto unse
ure systems in pra
ti
e, even if it was se
ure on the paper, wherethe PRG is assumed to be ideal. We present several algorithms produ
ing a23

deg(P) wp(P) b f.b.
ost20 3 8 √ 620 3 8 616 000 3 000 32 √ 3 1876 000 3 000 32 12 0986 000 3 000 64 √ 3 0936 000 3 000 64 12 337Table 3.1: Number of operations to build a blo
k.bitstream of pseudo-random bits with a given bias from a sour
e of uniformbits. The essential
on
erns are the time
omplexity, the number of uniformpseudo-random bits required to produ
e one bit, and the soundness with thetheoreti
al bias, expressed as the statisti
al distan
e to the ideal distribution,with the assumption that the uniform generator used is ideal.3.2.1 Choi
e of a random sour
eThe
andidatesThe three following sour
es are suggested:1. The rand() fun
tion of the C language, based on a linear
ongruentialgenerator. Its seed is 32 bits long only, so there are only 232 distin
tbitstreams (note 32 < ceasy).2. The PRG ISAAC [Jen96a℄: �ISAAC requires an amortized 18.75 in-stru
tions to produ
e a 32-bit value. There are no
y
les in ISAACshorter than 240 values. The expe
ted
y
le length is 28 295 values� [Jen96a℄.It is designed to be
ryptographi
ally se
ure1, but is not proved to be.The only atta
k published is a known plaintext one [Pud01℄, and runsin time
omplexity 4.67 · 101 240. Its seed is 8 192 bits long.3. The �le /dev/urandom, physi
al entropy sour
e on Unix systems.The third proposal
an already be dismissed: it
annot be seeded, thus we
annot reprodu
e a random string, and it requires I/O system
alls, slowingthe generation. Also, some weaknesses of this generator were pointed out bythe analysis performed in [GPR06℄.Statisti
al testsWe use the program ENT [Wal98℄, displaying minimal statisti
al results: itis a good tool to
ompare generators, but the
riteria
onsidered are quite1A PRG
an be de
lared
ryptographi
ally se
ure when it passes the next-bit test, i.e.,when no polynomial-time adversary
an predi
t the k-th bit from the k − 1 previous bitswith probability greater than 1/2. 24

super�
ial, and
annot be used to valid
ryptographi
 generators. We usesamples of one megabyte (223 bits). Table 3.2 presents the most signi�
ativeresults of ENT, and time re
ords: we display the entropy of both bytesand bits, the error per
entage in Monte-Carlo π estimation, the
orrelation
oe�
ient (0 when totally un
orrelated), and the average time for
omputingone megabyte of pseudo-random bits.PRG ent.(bytes) ent. (bits) π error
orrelation timerand() 7.999 1.0 0.30 % −5.7 · 10−4 17 msISAAC 7.999 1.0 0.04 % −2.8 · 10−4 6 msTable 3.2: ENT results.The Diehard battery of tests [Mar95a℄ is a set of empiri
al tests thatmust be passed by a
ryptographi
ally se
ure PRG, (here a huge perioddoes not su�
e,
f. the Mersenne Twister [MN98℄): �Most of them seem topresent a major leap in sensitivity to dete
t parti
ular statisti
al defe
ts insequen
es of bits over the so
alled standard tests su
h as Chi Square, bias,various
orrelation tests, enthropy test, pi
turing randomness and so on.Diehard tests are thereefore often re�ered to as stringent tests.� [Mar95a℄.Here samples of at least 226 bits are required. ISAAC su

essfully passed allthe tests, while rand() did not even passed one. Moreover, it is known thatthe lower-bits of numbers produ
ed by a linear
ongruential generator are�less random� than higher-bits, and that linear
ongruential generators arefar from being se
ure [Ste87℄.Final
hoi
eISAAC is
learly a better PRG than rand(), moreover it is a
ryptograph-i
ally se
ure generator suitable for real appli
ations, also used as a stream
ipher in some
ases. Both the algorithm and the implementation providedby its author are in publi
 domain. We shall seed the generator using the�le /dev/urandom.Last minute addition: we found dramati
 �aws in ISAAC, see AppendixA for details. To repla
e ISAAC we suggest to use the keystream genera-tor QUAD [BGP06℄, both proved se
ure and pra
ti
al, but requiring 1Mo ofmemory.3.2.2 Algorithm G1This is the algorithm suggested informally in [FV06℄. The parameters are n,the length of the blo
k produ
ed, and B, the maximal pre
ision allowed (e.g.it would be 32 using the type �oat, representing �oating point numbers withpre
ision less than 2−32). The basi
 idea is to build a binary tree where the25

leaves are some words of �xed length n. We �rst des
ribe the pre
omputationsteps, then the generation algorithm.Pre
omputationGiven a bias 0 ≤ γ ≤ 1, we have to build a rooted binary tree representingthe probability law indu
ed, to do this, we follow this pro
edure:1. Compute the probability asso
iated with ea
h word. For a word ofweight k, it is pn−kγ (1− pγ)k. This step is a
hieved in O (n) operations(the probability is
omputed on
e for all words of a given weight2).2. De
ompose ea
h probability as a sum of inverse powers of 2, with apre
ision bound B (i.e. we do at most B divisions by 2, for a pre
isionof 2−B). It requires O (Bn) atomi
 operations.3. Build the tree, where ea
h leave is a word (not ne
essarily distin
ts),and a word appears at depth k if and only if its de
omposition inpowers of 2
ontains 2−k. This pro
ess is
learly deterministi
, andruns in time O (

2B
) (the maximal number of nodes of the tree).It gives a global
ost in O (

Bn+ 2B
). An example of tree is represented inFigure 3.1. There are at least 2n leaves (as mu
h as distin
t words), and atmost B · 2n.

00, 1

2

01, 1

8
10, 1

8

00, 1

16
01, 1

16
10, 1

16
11, 1

16Figure 3.1: Tree of G1 for γ = 1
2 , B = 4, n = 2.2This requires the
omputation of n/2 binomial
oe�
ients (sin
e `

n
k

´

=
`

n
n−k

´). Foran exa
t result,
omputing n! requires n − 1 integer produ
ts, and the
omputation ofall the k! does not requires additional
ost, sin
e re
orded during the
omputation of n.Finally n/2 divisions are realized, and so the
ost of
omputing all the binomials is in
O (n) operations. However the number of bits in memory is in O (log(n!)).

26

Word generationTo pi
k a word ω, one just goes through the binary tree by su

essive
oin�ips until a leaf is met, as des
ribed in Algorithm 3.2 (ri is the i-th bit of r,the fun
tion root return the root node of a tree, leftChild and rightChild returnrespe
tively the left or right
hild of a node, whi
h is a node too, and thefun
tion label returns the word
orresponding to a leaf). Sin
e the numberof nodes is �nite, the algorithm always �nishes. Its
orre
tness follows fromthe de
omposition of the probability distribution.Algorithm 3.2:Input: r ∈ {0, 1}B , T (the tree)Output: ω ∈ {0, 1}n1: currentNode← root(T)2: offset← 03: while currentNode is not a leaf do4: if ri = 0 then5: currentNode← leftChild(currentNode)6: else7: currentNode← rightChild(currentNode)8: end if9: i← i+ 110: end while11: ω ← label(currentNode)12: return wComplexityThe Algorithm 3.2
learly runs in time O (B). In [FV06℄ the average numberof unbiased bits required to build one biased word is lower than n+2, so the
ost for a single bit is
RG1 = 1 +

2

n
.Example 3. For n = 32, RG1 = 1.0625.Statisti
al distan
eLetW be the random variable of the word outputed by G1, PrG1[X = ω] bethe probability that G1 outputs the word ω, and PrI [W = ω] the theoreti
alprobability asso
iated with that word. The statisti
al distan
e of G1 froman ideal generator I is thus

DG1 =
∑

ω∈{0,1}n

∣

∣

∣

∣

PrG1[W = ω]− Pr
I

[W = ω]

∣

∣

∣

∣

.27

In average, the theoreti
al probability di�ers from the e�e
tive of 2−B

2 , andso
DG1 ≈ 2n−B−1.3.2.3 Algorithm G1+We remark that in the previous algorithm, words of equal weight have thesame probability of o

uren
e, thus we
an propose an alternative algorithm,where the leaves are not words anymore, but weights in {0, . . . , n}.Pre
omputationAlthough the asymptoti
 time
omplexity remains the same than for G1,the average one is redu
e for the third step. Thus to build the tree we followthese steps:1. Compute the probability asso
iated with ea
h weight. For the weight

k ∈ [0, n] this probability is (this follows a (n, 1 − pγ) binomial distri-bution)
pn−kγ (1− pγ)k

(

n

k

)

.It requires O (n) operations, using a non-naive algorithm for binomials.2. De
ompose ea
h probability, like for G1, still in O (Bn) operations.3. Build the tree, in O (

2B
) operations.Now the tree has at least n leaves, and at most Bn, instead of 2n and B ·2n.Word generationLike for G1, we �rst randomly pi
k a leaf of the tree, using Algorithm 3.2,where the word returned is now on ⌈log n⌉ bits instead of n (at most ⌈log n⌉bits are required to
ode an integer in [0, n]). Then we randomly pi
k a wordof the weight k found: we
an use the Algorithm 3.3 (random(n) returns arandom integer in [0, n[), or use another tree to pi
k the word.ComplexityThe word generation algorithm still runs in timeO (n). Compared toG1, thenumber of leaves is exponentially redu
ed, thus the average
ost to sele
t aweight is about log n+2. To build a word of given weight, pi
king ea
h o�setone by one has an average
ost of n log n

2 , but we rea
h a lower
ost using
28

Algorithm 3.3:Input: k (a weight)Output: ω ∈ {0, 1}n1: i← 0, w ← (0, . . . , 0)2: while i < k do3: offset← random(n)4: if ωi = 0 then5: ωi ← 16: i← i+ 17: end if8: end while9: return ωa binary tree: there are in average (n
n/4

) possible words, thus the number ofbits to
hoose one is about log
(n
n/4

)

+ 2. It gives a total
ost of less than
RG1+ =

log
(

n
(n
n/4

)

)

+ 4

nfor a single bit.Example 4. For words of n = 32 bits, RG1 = 1.06, and RG1+ ≈ 1.01.Statisti
al distan
eLet W be the word outputed by G1+. First observe the following fa
t: fora random word ω,
PrG1+[W = ω|wh(X) = wh(ω)] = Pr

I
[W = ω|wh(X) = wh(ω)].That is, on
e a weight is pi
ked, we assume that the algorithm randomlypi
king a word of this weight behaves as an ideal one. So the statisti
aldistan
e from G1+ to an ideal generator is

29

DG1+ =
∑

ω∈{0,1}n

∣

∣

∣

∣

PrG1+[W = ω]− Pr
I

[W = ω]

∣

∣

∣

∣

=
∑

ω∈{0,1}n

(

Pr
I

[W = ω|wh(W) = wh(ω)]

×
∣

∣

∣

∣

PrG1+ [wh(W) = wh(ω)]− Pr
I

[wh(W) = wh(ω)]

∣

∣

∣

∣

)

≈ 2−B−1
∑

ω∈{0,1}n

Pr
I

[W = ω|wh(W) = wh(ω)]

= 2−B−1
∑

ω∈{0,1}n

(

nwh(ω)

)−1

= (n+ 1) · 2−B−1.Con
lusionOur variant of G1 a
hieves a mu
h better statisti
al distan
e, and redu
edrequirement in time an memory, however its
onstru
tion is a bit more
om-plex, and this may not be worth its
ost for some hardware implementations.Like previously, this kind of algorithm operating on bits is tedious to handlein software, we will present another kind of algorithm reprodu
ing the twostages of G1+ a bit di�erently.3.2.4 Algorithm G2Des
riptionThis is another blo
k-oriented algorithm, based on the same idea than G1+.It produ
es a random blo
k in two steps:1. pi
k a random weigth k (following a (n, 1− pγ) binomial law),2. pi
k a random word of weight k (uniformly).The Algorithm 3.4 outputs a word ω of size n with respe
t to a bias 0 ≤ γ ≤
1; the fun
tion distribution(γ) returns a list of rational numbers (oi)i=−1,0,...,n,
0 = o−1 < o0 < · · · < on = 1, des
ribing the weights probability distribution:

oi − oi−1 = pn−iγ (1− pγ)i
(

n

i

)

,∀i ∈ 0, . . . , n.The fun
tion frandom() returns a uniform rationnal number in [0, 1], withpre
ision 2−B . The probability distribution is pre
omputed, then the numberof random bits required to produ
e a word of size n is roughly30

• B to pi
k a weight k with pre
ision 2−B , B > 1,
• k log n, to
hoose a word of weight k (log n bits are required to pi
k ano�set in the word of length n).Algorithm 3.4:Input: n (blo
k size), γ (a bias)Output: ω ∈ 0, 1n1: (oi)i=0,...,n ← distribution(γ)2: r← frandom()3: i← 0, weight ← −14: while weight < 0 do5: if r < oi then6: weight ← i7: end if8: i← i+ 19: end while10: i← 0, ω ← (0, . . . , 0)11: while i < weight do12: offset← random(n)13: if wi = 0 then14: ωi ← 115: i← i+ 116: end if17: end while18: return ωComplexityThe pre
omputation
onsists in partitioning the interval [0, 1] ⊂ Q into n+1subintervals of magnitude

pk(1− p)n−k
(

n

k

)

,for k = 0, . . . , n. This requires O (n) operations. The Algorithm 3.4 runs intime O (n). To produ
e a blo
k of n bits with pre
ision B and bias γ, the
ost in terms of uniform random bits is
B + (1− pγ)n⌈log n⌉That is, for one bit, a
ost of

RG2 =
B

n
+ (1− pγ)⌈log n⌉.31

The additional
ost due to o�sets
ollisions was negle
ted here, sin
e neg-ligible for our high biases. Indeed, the expe
ted number of
ollisions whenpi
king a word of weight w̄ = (1− pγ)n is
w̄−1
∑

i=1

∞
∑

j=1

i · j
nj

=
w̄−1
∑

i=1

i

n(1− 1
n)2

=
(w̄ − 1)(w̄ − 2)

2n(1− 1
n)2

.Example 5. For B = n = 32 bits and γ = 0.98, RG2 = 1.05 ≈ RG1. Theexpe
ted number of
ollisions is 0.033.Statisti
al distan
eLike in G1+, we get
DG2 ≈ (n+ 1) · 2−B−1.3.2.5 Algorithm G3Des
riptionWe propose a di�erent kind of generator, whi
h does not produ
e blo
ks butdire
tly a stream of �xed length, with a weight depending of the bias; for asequen
e of ℓ bits, we will have in average pγ · ℓ zeros, and thus will builda sequen
e of weight exa
tly ⌊(1 − pγ) × ℓ⌉. We will develop this idea inthe following (this te
hnique
omes from an idea of Serge Vaudenay). Thete
hnique suggested above has another advantage: it would guarantee thatthe de
oding will not get harder, i.e. that the sequen
e won't
ontain moreones than predi
ted in average. An obvious drawba
k is that it redu
es thenumber of possible sequen
es (of length ℓ and bias γ) to

(

ℓ

(1− pγ) · ℓ

)

.We now des
ribe a generi
 algorithm (Algorithm 3.5) produ
ing a bitstringof length ℓ and weight p (here random(n) returns a uniform random integerin [0, n[, and ωi still denotes the i-th bit of the word ω).ComplexityThe time
omplexity of Algorithm 3.5 is
learly in O (n), and we do n
allsto the fun
tion random. At ea
h loop, the value p + q de
reases from one,thus the total number of uniform random bits required is
ℓ

∑

k=1

⌈log k⌉ ≤ ℓ+ ⌈log(ℓ!)⌉.

32

Algorithm 3.5:Input: ℓ (stream length), γ (a bias)Output: a word v ∈ {0, 1}ℓ1: p← ⌊ℓ · pγ⌉2: q ← ℓ− p3: for i = 1, . . . , n do4: j = random(p + q)5: if j < p then6: ωi ← 07: p← p− 18: else9: ωi ← 110: q ← q − 111: end if12: end for13: return ωThat is, for one bit, a
ost of less than
1 +

log(ℓ!)

ℓuniform pseudo-random bits.Sin
e TCHO shall require bitstring of small weight (high γ), we hadbetter using the strategy, by pi
king o�sets in the word, thus requiring
RG3 = (1− pγ)⌈log ℓ⌉uniforms bits per biased bit.Example 6. For ℓ = 10000, γ = 0.98, RG3 ≈ 0.13 < RG2.Statisti
al distan
eThe di�eren
e between the theoreti
al probability and the probability in-du
ed by our
onstru
tion to output a 0, is
DG3 ≈ ⌊ℓ× pγ⌉

ℓ
− pγ .FlawThe problem of distinguishing between a bitstream produ
ed by G3 and anideal biased generator is trivial: one only has to
ount the ones in the stream,and pi
k the bit sequen
e whi
h has exa
tly ⌊ℓ · pγ⌉ zeros. The advantageis equal to the probability that the ideal random sour
e does not mat
h thisexa
t value. 33

Example 7. For γ = 0.95, ℓ = 100, we should have ⌊ℓ× (1− pγ)⌉ = 3 onesin the sequen
e produ
ed by G3. An ideal biased generator deviates from thisnumber with probability
1− p97

γ (1− pγ)3
(

100

3

)

≈ 0.78,whi
h is the advantage of an adversary on the distinguishing problem.Su
h a weakness is alarming for a PRG, and so we
annot useG3 a prioriin TCHO. But it
ould be part of a variant of the
ryptosystem, takingadvantage of the properties of this generator; for instan
e, it guarantees thatthe bias does not deviate too mu
h.3.2.6 Algorithm G4Des
riptionThis generator mixes G2 and G3: a bitstring of length ℓ is dire
tly gen-erated, by �rst
hoosing a weight, then a word of the
hosen weight. It isequivalent to G2 with a blo
k size n = ℓ.ComplexityLike for G2, the pre
omputation requires the
omputation of ℓ/2 binomial
oe�
ients, a
hieved in O (

ℓ(log ℓ)2
) operations.The number of random bits required for one biased bit is in average

RG4 ≈ B

ℓ
+ (1− pγ)⌈log ℓ⌉,by negle
ting additional
ost indu
ed by the
ollision (e.g. for ℓ = 10000and γ = 0.985 we get in average of ≈ 0.0004 random bits per biased bitprodu
ed). Here the expe
ted number of
ollision is (
f. Se
tion 3.2.4) isless than

(1− pγ)2 · ℓ
2

.The time
omplexity of the algorithm ouputing a biased bitstring of length
ℓ is
learly in O (ℓ(1− pγ)).Statisti
al distan
eLike G2 the statisti
al distan
e to an ideal generator is

DG4 ≈ (ℓ+ 1) · 2−B−1.

34

Example 8. For ℓ = 40000, γ = 0.985, B = 64, the expe
ted number of
ollisions is about 1.13, leading to an additional
ost of about 0.0004 ran-dom bits per bit produ
ed. Negle
ting this
ost, we get RG4 ≈ 0.117, and
DG4 ≈ 2−35. The theoreti
al number of random bits per biased bit requiredis (information entropy)

−pγ log pγ − (1− pγ) log(1− pγ) ≈ 0.081.OptimalityLet p = pγ . The fun
tion B
ℓ + (1 − p) log ℓ has a unique minimum value,rea
hed when
− B

log e
+ (1− p)ℓ = 0,that is, for

ℓ =
B

(1− p) log e
.For example, for the previous example we get ℓ = 5914, and a
ost RG4 ≈

0.108.By substituting in the expression of RG4, we get
(1− p)(logB − log(1− p)),whi
h rea
hes the theoreti
al optimal value (the theoreti
al amount of in-formation
ontained in a bitstring, that is, the binary entropy of p,
f. Se
-tion 1.2) when

logB =
p log p

p− 1
.Sin
e the maximum of p log p

p−1 on]0, 1[⊂ R is
lim
p→1

p log p

p− 1
≈ 1.442,a quasi-optimal
ost will not be a
hieved for large enough values of B. Inparti
ular, if we tolerate a statisti
al distan
e as large as (ℓ+1) · 2−B−1 = 1,we
an
hoose B = log ℓ, and so the
ost rea
hes the theoreti
al minimalvalue when

log log ℓ− p log p

p− 1is
lose to zero, whi
h requires ℓ = 3 to be below zero.In the
ase where a large number of biased bits is required, one often hadbetter
hoose ℓ = B/((1 − p) log e) as �blo
k size�, to get the lowest
ost interms of random bits.To
on
lude, this generator is very
heap in terms of random bits re-quired, but
an never rea
h a quasi-optimal
ost. One may be
areful to35

the statisti
al distan
e indu
ed (i.e. B = 32 would lead to a high distan
efor
ommon TCHO2 parameters). Compared to G2, the pre
omputation ismu
h more
ostly:
omputing ℓ! naively is required for an exa
t estimationof the probability distribution, and division of numbers on about ℓ bits mustbe performed; we had better use the following Algorithm 3.6, used in theGMP library [Gra06℄, based on the re
urren
e relation
(

n

k

)

=
n− k + 1

k

(

n

k − 1

)

.It requires less than ℓ2 produ
ts and divisions of numbers on log ℓ bits.Algorithm 3.6:Input: n, k, k ≤ n/2Output: (n
k

)1: b← n− k + 12: for i = 2, . . . , k do3: b = b× (n − k + i)4: b = b/i5: end for6: return bIf we tolerate a slight loss of pre
ision, we
an �rst estimate ln(n!), ln(k!),and ln((n − k)!) using the Gamma fun
tion, de�ned by the integral:
Γ(z) =

∫ ∞

0
tz−1e−tdt.Hen
e for a natural n, Γ(n) = (n−1)!. The value ln Γ(n+1)
an be approxi-mated in
onstant time [PTVF92℄, thus approximating a binomial
oe�
ientrequires a
onstant number of multipli
ations and exponentiations (the ex-ponentiation of e
an be redu
ed to an exponentiation of the integer 2 to aninteger power, with three additional produ
ts of small rational numbers, soas to avoid expensive �oating point arithmeti
). For instan
e we
omputed

2 000 000! in about three se
onds, whereas the best exa
t algorithms using adatabase of prime fa
tors (S
hoenhage, Lus
hny) takes about one minute for
2 000 000!, and the best without a prime fa
tors (split re
ursive) list takesabout two minutes (see [Lus06℄).3.2.7 Con
lusionWe overviewed several algorithms for biased random generation: G1 has asomewhat low
ost in terms of unbiased bits, but is not well suited for asoftware implementation, like its variant G1+. The algorithm G2 is moresoftware-friendly, for roughly the same
ost in time and random bits. The36

Algorithm G3 is nse
ure, but requires only a few uniform random bits, andits properties may be exploited by some variant of TCHO2. The last al-gorithm G4 requires less uniform random bits than bits produ
ed, with alow-
omplexity and simple implementation. A pre
ision bound B = 64 orlarger shall be required, depending on the values of ℓ. However the pre-
omputation is mu
h more expensive than for G2, so we will �nally usethe latter, sin
e we
an reasonnably allow us a higher number of randombits from ISAAC, and we may en
ounter large values of ℓ, where G4 exa
tpre
omputations may be
ome too
ostly.3.3 Primitivity testing of a high-degree polynomialHere we brie�y study the problem of testing the primitivity of a high-degreepolynomial, sin
e required in the key generation pro
edure.Testing primitivity of a binary polynomial is hard. We re
all that anirredu
ible binary polynomial of degree d is primitive if and only if its orderis equal to 2d − 1. Otherwise, its order is a divisor of 2d − 1 (and so is odd).Thus testing primitivity by
omputing the order is as hard as �nding a fa
torof 2d − 1. Indeed, the three problems of
omputing order of an element ina group, �nding and re
ognizing a primitive element in a �nite �eld, are alllisted as open problems in [AM94℄. But in our parti
ular
ase of polynomialsover F2, maximal orders are Mersenne numbers, whi
h have some propertiesrelative to primality testing and fa
toring; we present some results aboutthese numbers, dedu
e sele
tion
riteria for our polynomial P , fa
tor of K.We start by an estimation of the primitive polynomials proportion.3.3.1 Proportion of primitive polynomialsThe proportion of primitive polynomials among the irredu
ibles is approxi-mated in [FV06℄ to 8/π2 ≈ 81 %, where π is introdu
ed via Bu�on's needleproblem. So the probability for K to have a primitive fa
tor of degree dP isabout 8
π2dP

. Given an interval [dmin, dmax], we get a probability of
1−

dmax
∏

i=dmin

(1− 8

π2 × i)that K has a fa
tor of degree in this interval.However, we
an doubt of the a

ura
y of the estimation 8/π2: the exa
tenumeration formula (see Appendix C) give a proportion of primitive poly-nomials among irredu
ible, for degrees below 100, of 70 %. Unfortunatelywe
annot
ompute this value for the large degree ranges, sin
e the full fa
-torization is required in the formula (to
ompute Euler's totient and M®biusfun
tions). Indeed, the probability that a random irredu
ible polynomial of37

degree d is primitive is exa
tly
φ(2d − 1)

∑

m|d µ
(

d
m

)

2m
.The number of irredu
ible polynomials of degree d
an be sharply approxi-mated to 2d/d, but there is no way to simply estimate the number of primitiveones.3.3.2 Known deterministi
 testsWhen 2d − 1 is prime, we know for sure that any irredu
ible polynomial ofdegree d is primitive (Corollary 1). Thus by testing forMd primality, we
antrivially prove primitivity in some
ases. However, prime Mersenne numbersare seldom, and it su�
es to store in memory the exponents of primes (theyare only two exponents of Mersenne primes in [5 000, 1 000]: 9 689 and 9 941),and we do not have to use primitivity tests. In the
ase where primality hasto be tested, several properties of Mersenne numbers may help.When 2d − 1 is
omposite, the naive method is:1. Get the full fa
torization 2d−1 =

∏∞
i=2 p

αi
i , where pi is the i-th prime,and only a �nite number of αi is non-zero.2. Compute X(2d−1)/k mod P , where k ranges over all the prime fa
torsof 2d − 1 until we �nd 1 (otherwise P is primitive).Rieke et al. [RSP98℄ improved this generi
 algorithm, but �nding a singlefa
tor of 2d − 1 still has a superexponential time
ost in d with the bestknown algorithms, thus it is
learly infeasible for our degree ranges (d >

6 000). Matsumoto [MN98℄ builds another kind of algorithm for the binarypolynomials, based on bit to bit operations, but again it is too
ostly to beapplyed in TCHO. All the other known methods require fa
toring 2d − 1 or
omputing dis
rete logarithms in F2d , both notoriously di�
ult.There exist fast deterministi
 te
hniques to
ompute elements of highorder in some �nite �elds [GvP98℄, but they are not suitable in our
ase.Some works fo
us on trinomials, and algorithms were built to �nd �almostprimitive� high degree trinomials [BLZ03, BZ03℄ . So there is no magi
altest avoiding the order
omputation, even if, as we see further, Mersennenumbers indu
e a slight advantage.When d is prime, the following theorem gives a
riterion on the primefa
tors of Md:Theorem 5 (Fermat, Euler). Let p and q be odd primes. If p divides 2q−1,then p ≡ 1 mod q and p ≡ ±1 mod 8.38

Proof. If p divides 2q − 1, then 2q ≡ 1 mod p, and the order of 2 in (Zp)
⋆divides q, thus it must be q, be
ause it is prime. By Fermat's Little Theorem,the order of 2 in (Zp)

⋆ divides p− 1, so p− 1 = 2qk. It gives
2(p−1)/2 = 2kq ≡ 1 mod pso 2 is a quadrati
 residue modulo p, and it follows p ≡ ±1 mod 8, whi
h
ompletes the proof.This result
an be used to adapt the Pollard's p-1 algorithm, and Er-atosthene's sieve. When d is not prime, the Ellipti
 Curve Method is welladapted, but not e�
ient enough to get the full fa
torization in a reasonnabletime for our ranges of exponents.3.3.3 Using a non-primitive polynomialLet's
onsider the
ase where P is of unknown order: in [FV06℄ the primi-tivity quality is required so as not to have Xn− 1 as a trivial solution, whenthe order is n ≤ d, and a period long enough. The period would be shorterthan ℓ with probability about ℓ/Md, whi
h is
lose to zero.If P is not primitive, and the order n known, it is less than d withprobability about d/Md, whi
h is also
lose to zero. So the trivial solution
annot be used. But one may fa
torize its order. For instan
e, if n = 3p,we
an build a multiple of weight 3 and degree 2n/3, but the probabilitythat this number is lower than ℓ is
lose to zero again. A result on thefa
torization of Xn − 1 may be used:Theorem 6. Considering polynomials in the ring Fp[X], with p prime,
Xn − 1 =

∏

m|n
Φm(X)where the m-th
y
lotomi
 polynomial is de�ned by

Φm(X) =
∏

d|m
(Xd − 1)µ(m/d)with µ is the M®bius fun
tion (m is not ne
essarily prime).Proof. The result follows from the M®bius inversion formula (see [LP98℄ Ch.3, �13).The order n has an expe
ted value
lose to 2d−1 (under the reasonnableassumption that orders are roughly uniformly distributed in [3, 2d − 1]).When possible, exploiting the previous result would need to get the fullfa
torization of n, and
ompute a number in O (

2ν(n)
) of
ombinations ofthe fa
tors to hope �nding some �good� multiple, whi
h is infeasible for ourvalues of d (ν(n) is the number of divisors of n).We
on
lude that a non-primitive polynomial
an be use with no signi-�
ative risk. 39

3.3.4 A �lter for primitive polynomialsHere we brie�y des
ribe a �lter for non-primitive polynomials. In the fol-lowing P is a randomly
hosen irredu
ible polynomial, non-primitive, of ar-bitrary degree d
hosen among non-Mersenne prime exponents (i.e. 2d − 1is
omposite). A polynomial passing this test would be de
lared probablyprimitive. Our test is based on the following trivial property:Property 1. ∀k ∈ Z,Xk·ord(P) ≡ 1 mod P .So if X 2
d
−1

k 6≡ 1 mod P for a given prime k less than 2d − 1, we knowthat k divides the order of P . Conversely, if it is 1 modulo P , then P is notprimitive, and νk(2d − 1)− 1 ≥ νk(ord(P)), where, νk(n) is the multipli
ityof the prime k in n. If 2d − 1 is square free, then X
2
d
−1

k ≡ 1 mod Pimplies k|ord(P). It is
onje
tured [Guy94℄ that all prime exponent Mersennenumbers are square free, but we
annot use this result, sin
e primes areseldom.The idea of our algorithm is to look for small prime fa
tors of Md, upto a
ertain bound B, and
he
k X 2
d
−1

k 6≡ 1 mod P with k ranging over allthese fa
tors, so that we �nd 1 only if P is not primitive.Algorithm The algorithm T is simply this pro
edure:1. Find out all the distin
t prime fa
tors p1, . . . , pr of 2d − 1 less than B.2. For i = 1, . . . , r:If X 2
d
−1

pi mod P = 1, then return 0.3. return 1.Corre
tness and
omplexity This algorithm is
learly deterministi
.Trivially, for a random P , if P is primitive, then T (P) = 1. If P is notprimitive, T (P) = 1 if and only if P 's order has all the pi's as fa
tors. Let ρbe the probability that T (P) = 1 for a non-primitive P .All the pi
an be found in time O (√
B · d2

) using Pollard's rho method(exponential
ost in terms of the input's length) . There are at most dsu
h fa
tors, and in average ln lnB. Computing all the X 2
d
−1

pi mod P thusrequires O (

d3
) operations in the worst
ase (and O (

d2 ln lnB
) on average).What remains to �nd is a bound on ρ.

40

Reliability It is known [HR17℄ that the average number of prime fa
torsof an integer n is in average ln lnn, and ln lnB for fa
tors less than B (forhigh B), however Mersenne numbers may not behave like arbitrary integers;in 1964 Gillies [Gil64℄ made a
onje
ture about the distribution of primedivisors of Mersenne numbers, based on this Wagsta� [Wag83℄ estimates theexpe
ted number of prime fa
tors of Md between A and B to
∑

k

1

k ln(2kd)
≈ ln lnB − ln lnAwhere the sum extends over all integers k su
h that A < 2kd+ 1 ≤ B. Notethat for A = e, we �nd the average estimate for arbitrary integers. Thus theexpe
ted number of distin
t prime fa
tors less than B is

ln lnB − ln ln 3sin
e Md is odd, and the expe
ted number of prime fa
tors of Md is
ln

lnMd

ln 3
≈ ln d− ln ln 2− ln ln 3.Estimating the failure probability from an assumption on the orders dis-tribution is far from being trivial, so we will use a more algebrai
 approa
hof the problem.In the de
omposition �eld F2[X]/〈P 〉, has its d distin
ts roots (Ẋ, . . . , Ẋ2d−1).This �eld has 2d elements, and thus is isomorphi
 to K = F2d , and P rootsare θ, θ2, . . . , θ2d−1 for a
ertain θ. The set (1, θ, θ2, . . . , θd−1) is a linearlyindependent family, and spans K as a d-ve
torial spa
e.By de�nition, P is primitive if and only if ea
h of its roots generates

K×. In that
ase all its roots are also generators of K×, sin
e θ's order ismaximal, and they form a set stable by the Frobenius automorphism.Let F ⊂ K be the set of all the θ su
h that (1, θ, θ2, . . . , θd−1) is a linearlyindependent family. Elements of K \ F have their minimal polynomial ofdegree d′ < d, and span a sub�eld of K; hen
e their order divides 2d
′ − 1,and d′|d. Conversely, if the order of θ divides 2d

′ − 1 for some d′|d, then
θ /∈ F . We have

#{θ ∈ K⋆, ord(θ)|2d′ − 1} ≤ 2d − 1

2
√
d − 1

,so the fra
tion of θ ∈ K⋆ not in F is less than log d/(2
√
d − 1).The probability that a random θ, su
h that θ2d−1/pi for i = 1, . . . , r, isnot a generator of K, is the probability that a random α ∈ Z/2d − 1Z is notinvertible given the fa
t g
d(α, pi) = 1. This probability is less than d

B logB ,let A be this event. We dedu
e 41

d B r ρ

7000 220 37 ≤ 3.3 · 10−4

7000 230 ≈ 48 ≤ 2.2 · 10−7

7003 220 2 ≤ 3.3 · 10−4

7003 230 ≈ 4 ≤ 2.2 · 10−7Table 3.3: Filter failure probability.
Pr[NG(θ)|A] ≤ d · p1

B logB
,where NG is the predi
ate �not a generator�.Finally,

|Pr[NG(θ)|A, θ ∈ F]− Pr[NG(θ)|A]| ≤ Pr[θ /∈ F] ≤ log d

2
√
d − 1

,and so
ρ = Pr[P not primitive|T (P) = 1] ≤ d

B logB
+

log d

2
√
d − 1

.For
ommon values of d in TCHO2, A negligible failure probability
anbe rea
hed (note that the bound is not tight, sin
e we
onsidered the
ase of
d fa
tors, whereas they are only ln lnB in average),
f. Table 3.3.This algorithm easily generalizes for polynomials over the �eld Fp, with
p prime.3.3.5 Con
lusionWe have shown that testing primitivity was as hard as fa
toring a Mersennenumber, whi
h is an infeasible task for our exponents, and so we
annotdeterministi
ally test for primitivity. Moreover, no probabilisti
 polynomialtime te
hnique is known at this day to test primitivity. We suggested a de-terministi
 �lter, that �nds with high probability non-primitive polynomialswhen the bound is su�
iently large. We also saw that even with an ora
lereturning the order of P and the full fa
torization of Md, the probability ofexploiting these values is
learly negligible.Finally, we
hoose not to test primitivity at all, but we still have to
he
kthat P has no
ommon fa
tor with Q, for the de
oding not to be ambiguous.3.4 Key generationWe follow the pro
ess des
ribed in Se
tion 2.2.1: �rst pi
k a random Kof given degree and weight, then look for an irredu
ible fa
tor of degree in42

[dmin, dmax]. When su
h a polynomial is found, we have to test whether it isprimitive or not; the probabilisti
 �lter mentionned in the previous se
tion
ould be use, but we also show that an irredu
ible P
oprime with Q su�
es,thus testing primitivity is not ne
essary.We �rst perform the square-free fa
torization of K, whi
h is a straight-forward operation for polynomials: we start by
omputing the g
d of K andits derivate, then re
ursively build a de
omposition of the form
K =

∏

Ki
iwhere the Ki are pairwise
oprime square-free polynomials. At this stagewe look for a suitable P , but �nding our fa
tor here will seldom o

ur,regarding to the parameters used. Then we apply the Cantor-Zassenhausalgorithm [CZ81b℄, the distin
t degree fa
torization, to get the full fa
tor-ization of K into powers of irredu
ible fa
tors, from the square-free fa
tors.This is a probabilisti
 algorithm for fa
toring on �nite �elds, of asymptoti
time
omplexity in O (

n2+o(1) ln 2
), whi
h is the best asymptoti

omplex-ity for a fa
torization algorithm today (the best deterministi
 algorithm runsin [Sho90℄ O (

q1/2(ln q)2n2+o(1)
), where q is the
ardinality of the �nite �eld).Example 9. It takes on average about 2 se
onds to get the full fa
torizationof a polynomial of low-weight degree 5 000, and between 20 and 30 se
ondsfor a polynomial of degree 11 560 (default parameter of TCHO).The publi
 and private keys, represented as bitstrings, are respe
tivelyof length (dP + 1) and (d + 1) bits. To redu
e this length, one
an storethe o�sets of the non-zero
oe�
ients, it requires w⌈log d⌉ bits. If
odingnumbers on an arbitrary number of bits is not pra
ti
al (e.g. in software),one
an store the polynomial K/P on d− dP bits, then re
over K with onepolynomial multipli
ation (
ost in O (

d2
P

)).Example 10. A polynomial K of degree 13 000 and weight 99
an be storedon 99× ⌈log 13 000⌉ = 1386 bits, instead of 13 000 naively.3.5 En
ryption and de
ryptionA
iphertext is the XOR of three bitstreams; SLP
, SLQ

, and Sγ . In ourimplementation, these streams are arrays of 32 bit words, whi
h are �rst
omputed independently, then xored word by word (there is a total of ⌈ℓ/32⌉words).De
ryption is not as easy as the en
ryption: the bitstream K ⊗ y, oflength ℓ− d, is
omputed using bit operators on low-level representations ofthe stream and K in time O (d · (ℓ− d)). The matrixMf−1 is pre
omputed,and its inversion is performed with a fun
tion of the NTL, implementing the43

Gauss-Jordan algorithm. The produ
t by this matrix is performed after theMLD, with an algorithm running in time O (

d3
Q

).Although TCHO is
learly a stream
ipher (see Subse
tion 1.3.1), wemeet a problem inherent to the blo
k
iphers, when the message's length isnot a multiple of the blo
k size. A broadly solution is to systemati
ally add aone to the message, then add zeros until a blo
k is �lled. It has the drawba
kto add one blo
k of data to the
ipher of messages whose length is a multipleof the blo
k size, and thus
an indu
e an expansion of the message. The
iphertext stealing te
hnique
an solve this problem when the blo
k size isthe same for plain and
ipher messages, it is not the
ase here. So we haveto use the �rst solution.3.6 Experimental resultsThis se
tion gathers pra
ti
al information about our implementation, andben
hmarks' results, based on the �nal version of the program. Table 3.4gives the average time required to
ompute one a bitstream from a LFSR ofone megabyte, and ℓ = 15000 bits, in seven di�erent s
enarios, dependingon the feedba
k polynomial:I degree 30,II degree 6 000,III degree 6 000, with only taps on blo
k boundaries,IV degree 6 000, sparse (weight 50).s
enario 1 Mb ℓ bits rateI 290.0 ms 452 µs 3 530 Kb/sII 6.8 s 11.0 ms 150 Kb/sIII 1.1 s 2.1 ms 930 Kb/sIV 1.0 s 1.8 ms 1 024 Kb/sTable 3.4: LFSR performan
es.Table 3.5 gives average time required to
ompute ℓ bits for ℓ = 15000 and
ℓ = 50000, along with the rate a
hieved, using algorithm G4 for di�erentbiases.An alternative approa
h to
ompute a LFSR output is to use a pre
om-puted look-up table: given a polynomial P of degree dP , we
an
ompute atable of ℓ · dP bits,
ontaining the bitstreams produ
ed by ea
h initial stateof LP of weight equal to one. Computing su
h a table takes less than a se
-ond using optimized algorithms, then the generation of a bitstream requires44

roughly ℓ
32 × dP

2 XOR operations (in our implementation, with a 32 bitspro
essor). Experimentally the time gain is not signi�
ant, sin
e memorya

ess takes a non negligible time (about 70 megabytes are pre
omputed for
ommon parameters).
γ ℓ time rate

0.98 50 000 93 µs 64 Mb/s
0.98 15 000 42 µs 42 Mb/s
0.60 50 000 1 400 µs 4 Mb/s
0.60 15 000 440 µs 4 Mb/sTable 3.5: PRG performan
es (using G4).In Table 3.6 we present three sets of parameters satisfying the se
urity
onstraints, and show in Table 3.7 the time required for the full key gener-ation, the number of trials (number of
andidates for K tried), the time fora full fa
torization, and for en
ryption and de
ryption.s
enario dQ dP γ w d ℓ chardI 16 ∈ [5 600, 6 200] 0.98 87 11 800 12 600 80II 20 ∈ [6 000, 6 600] 0.98 99 11 560 13 080 80III 20 ∈ [7 000, 7 700] 0.98 105 13 950 15 900 80Table 3.6: S
enarios.s
enario key generation trials fa
t. en
ryption de
ryptionI 160 s 6 19 s 12 ms 3 sII 270 s 12 23 s 12 ms 68 sIII 290 s 8 38 s 12 ms 87 sTable 3.7: Key generation and en
ryption performan
es.The high values for de
ryption are due to the exponential
ost in dQ of theMLD. The time ne
essary for the matrix inversion is negle
table regardingto the
ost of the MLD, for these parameters. This implementation doesnot use the improvement of the Walsh transform, whi
h should redu
e thetheoreti
al time
omplexity of a fa
tor dQ

ℓ−d , but may require non negligibleadditional
omputations.
45

Chapter 4The TCHO2 s
hemeWe present a variant of TCHO, resulting of our study: we �rst show whatkind of
odes
an be used to en
ode the message, and suggest mu
h better
odes than arbitrary LFSR ones for our en
ryption s
heme. Another in-novation of TCHO2 is that the need for P to be primitive is obviated (
f.dis
ussion in Chapter 3).4.1 PresentationTCHO2 di�ers from TCHO in the
oding applied to the plaintext. In TCHO,a
ode spanned by an LFSR with an arbitrary primitive polynomial Q wasused, leading to an expensive de
ryption pro
edure. In TCHO2 we willinstead use a
ode C of dimension k and length ℓ for whi
h an e�
ientde
oding pro
edure exists, and denote C(x) the
odeword of x in C. This
ode is subje
t to many
onstraints and
annot be
hosen at random. Inthe de
ryption pro
ess of TCHO, the
iphertext is multiplied by K to
an
el
SℓLP

. In this pro
ess, the noise sour
e Sℓγ be
omes Sℓ−dγw , but SℓLQ(x) alsobe
omes Sℓ−dLQ(x′). In the
ase of TCHO2, the multipli
ation by K being alinear operation, we will have K ⊗ C(x) = C̃(x), where C̃ is a new linear
ode of dimension k and length ℓ − d. This means that when de
rypting a
iphertext, one will have to de
ode in the modi�ed
ode C̃. The only
asewhere de
oding in C̃
an be e�
ient for any K is when C is a trun
ated
y
li
 linear
ode, that is, C is the output of an LFSR. In that
ase, asfor TCHO, K ⊗ C(x) is equal to C(x′) trun
ated to ℓ − d bits, where x′ isobtained from x exa
tly as with TCHO. TCHO2 is thus at the same timea generalization of TCHO as things are seen from a more general point ofview, but also a parti
ular
ase as the only e�
ient solutions were alreadyin
luded in the s
ope of the original TCHO.TCHO2 en
rypts a plaintext x in the following way:TCHO2enc(x, r1||r2) = C(x) + SℓLP (r1) + Sℓγ(r2).46

Let y be a
iphertext of some plaintext x. De
ryption works as follows:1. K is used to delete SLP
in y:

K ⊗ y ≈ C̃(x) + Sℓ−dγw = y′where C̃(x) is equal to a trun
ated
odeword C(x′), with x′ = f(x) fora
ertain linear appli
ation f .2. y′ is de
oded to �nd x′, and x = f−1(x′) is re
overed.Note that the matrix of f−1
an still be pre
omputed, sin
e it only dependson K and the
ode C used.4.2 LFSR
odes with trinomialsA �rst proposal, by Willi Meier, was to use, instead of an arbitrary primitivepolynomial, a trinomial as feedba
k polynomial of the LFSR en
oding theplaintext. In that
ase, de
oding algorithms more e�
ient than MLD exist;the Algorithm B in [JJ99℄ or Gallagher de
oding as used, e.g., in [Wag02℄for fast
orrelation atta
ks,
an be applied. The su

ess probability of thesealgorithms depends on the
orrelation value pγw , and the ratio between thelength of known output and the size of the LFSR for whi
h the initial state issear
hed for. Again,
on
erning the reliability of these iterative algorithms,only experimental results seem to be available. For trinomials it
an be seenfrom Table 3 in [JJ99℄ that, for example,
orre
t de
oding is expe
ted ifthe known output has length 100 times the LFSR-length, and pγw is 0.6 orlarger. This
learly improves the
omplexity of the de
oding, but we see inthe next se
tion that it
an be redu
ed again.4.3 Blo
k repetition
odes4.3.1 Des
ription and reliabilityThese
odes o�er straightforward en
oding and de
oding algorithms: for ablo
k repetition
ode of dimension k and length ℓ = mk, the
odeword ofa bitstring x of length k is formed of m
ontiguous repetitions of x, and sothe minimum distan
e of the
ode is m (m is also equal to the expansion
oe�
ient). De
oding is performed using majority logi
 de
oding (MJD),whi
h is equivalent to MLD for these
odes, but runs in time O (ℓ− d),instead of O (

k · 2k
). This
omplexity gap allows to en
rypt blo
ks largerthan ceasy, and even any length less than ℓ− d. Note that using a repetition
ode is equivalent to setting Q = XdQ + 1 in TCHO (with dQ = k).Here C̃ has minimum distan
e m′ = ⌊(ℓ−d)/k⌋, but de
oding more than

⌊(m′−1)/2⌋ errors (the theoreti
al bound for deterministi
 error
orre
tion)47

will be possible. The probability of erroneous de
oding is exa
tly the prob-ability that at least one bit is more frequently erroneous than
orre
t, thatis (if we assume that the
orrelation in Sγw indu
ed by the deletion of SLPhas no
onsequen
e here):
ρ ≈ 1−





m′

∑

i=⌈m′/2⌉
piγw(1− pγw)m

′−i
(

m′

i

)





k

. (4.1)This probability
an also be expressed using the
entral limit theorem (sum-ming k times on the m′ bits). If τ is the random variable of the number oferrors on a single bit, the probability that an error o

urs in the de
oding ofthis bit is Pr[τ > m′/2], whi
h is equal to
Pr

[

τ −m′(1− pγw)
√

m′pγw(1− pγw)
>
√
m′ pγw − 1

2
√

pγw(1− pγw)

]

≈ 1− ϕ(
√
m′η)with η = γw/

√

1− γ2w. And so the failure probability obtained is
ρ ≈ k · ϕ(−η

√
m′). (4.2)Here ϕ is the
umulative distribution fun
tion of a standard normal distri-bution:

ϕ(z) =
1√
2π

∫ z

−∞
e−t

2/2dt.If the generator G3 was used, the error probability would be expresseddi�erently; if ζ = ⌊(ℓ−d)(1−pγw)⌉) is the exa
t weight of the pseudo-randombitstring, then the probability that given bit is badly de
oded be
omes
∇ =

(

ℓ

ζ

)−1

·
⌈m′/2⌉
∑

i=0

(

m

i

)(

ℓ−m′

ζ − i

)

,hen
e the probability of bad de
oding is
ρ′ ≥ 1− (1−∇)k.The value obtained is just a lower bound, sin
e it
onsiders the k bitstringsof length m′ independently, whereas they are not. Even so, this bound is
lose to the exa
t value, and experimentally it is also
lose to the value of ρfound in (4.2).We
an now ask the question: what error probability
an we a

ept ? Wemust be
areful in that
hoi
e, indeed a value as low as 2−23 (≈ 10−16) lookssmall enough, but it implies in average one error for 223 blo
ks of length k,that is, for k = 64, an expe
tan
y of one error for 64 megabytes of dataen
rypted. In 1943, the mathemati
ian Emile Borel informally introdu
ed48

four di�erent s
ales [Bor43℄, to state that a given probability is negligible;at the terrestrial s
ale, even 1/1000 is negligible, but at the
osmi
 s
ale weshould only negle
t a probability lower than 10−50. He de�nes an event withnegligible probability as one "whi
h shall never happen, or, at least, shallnever be observed"1. In our
ase, we must already make some assumptions:will TCHO2 be used daily to
ipher dozens of hard disks, or only monthlyto en
rypt 128 bits of some se
ret key ? The se
ond a�rmation soundsmore realisti
, regarded to the
ost in spa
e and time of TCHO2. We shouldalso remember that requiring an error probability smaller than the one ofhardware failure would be somewhat stupid. So we should be able to toleratea failure probability of 10−10 at our �
ryptographi
 s
ale�, that is, a wrongde
ryption of a blo
k every 500 Mb of data en
rypted, or one key of 128 bitsover 100 000 000.
k dP d w γ 1− pγw ℓ ρI 32 ∈ [6 600, 7 200] 13 470 89 0.9832 0.39 32 000 1.0 · 10−6II 64 ∈ [9 000, 9 900] 17 550 97 0.9877 0.35 30 000 4.0 · 10−4III 128 ∈ [5 900, 8 200] 24 420 51 0.9813 0.31 48 000 2.9 · 10−6IV 128 ∈ [5 600, 10 400] 20 300 83 0.9837 0.37 62 000 1.7 · 10−4V 128 ∈ [8 500, 9 075] 17 996 81 0.9870 0.36 68 000 7.0 · 10−11VI 128 ∈ [5 800, 7 000] 25 820 45 0.9810 0.29 50 000 8.9 · 10−9Table 4.1: Examples of parameters for TCHO2 with repetition
odes.Table 4.1 shows some parameters suiting the se
urity
onstraints (
f.Assumptions 1 and 4), for chard = 80. When a high se
urity is not required,and a somewhat high error probability
an be tolerated, mu
h more pra
ti
alparameters may be obtained.4.3.2 Experimental resultsTable 4.2 shows performan
es for the repetition
odes s
enarios des
ribedin Table 4.1, based on the implementation of TCHO. En
ryption time isroughly equal to the time needed to
ompute SℓLP (r1)

(in all s
enarios Sℓγ is
omputed in less than 1 ms), while for de
ryption the most expensive op-1He then develops this thought: �When we stated the single law of
han
e, "eventswhose probability is su�
iently small never o

ur", we did not
on
eal the la
k of pre
isionof the statement. There are
ases where no doubt is possible; su
h is that of the
ompleteworks of Goethe being reprodu
ed by a typist who does not know German and is typing atrandom. Between this somewhat extreme
ase and ones in whi
h the probabilities are verysmall but nevertheless su
h that the o

urren
e of the
orresponding event is not in
redible,there are many intermediate
ases. We shall attempt to determine as pre
isely as possiblewhi
h values of probability must be regarded as negligible under
ertain
ir
umstan
es. It isevident that the requirements with respe
t to the degree of
ertainty imposed on the singlelaw of
han
e will vary depending on whether we deal with s
ienti�

ertainty or with the
ertainty whi
h su�
es in a given
ir
umstan
e of everyday life.� (Chapter 3, Ibid.)49

eration is the multipli
ation by K (majority de
oding and produ
t by thepre
omputed matrix always require less than 1 ms). We give average timesfor a key generation, and the average number of polynomials fa
torized (tri-als) during the pro
edure. The theoreti
al error probability ρ was a

uratelyveri�ed experimentally, and so is not repeated here.en
ryption de
ryption key gen. trialsI 29 ms 73 ms 330 s 12II 37 ms 53 ms 360 s 6III 42 ms 47 ms 360 s 3IV 56 ms 170 ms 213 s 2V 80 ms 215 ms 805 s 10VI 55 ms 70 ms 682 s 4Table 4.2: Performan
es of TCHO2 with repetition
odes.Results in Table 4.2 show that, while sele
ting parameters, a trade-o�must be made between key generation time, en
ryption and de
ryption time,and
iphertext expansion. Indeed we
annot obtain both a fast key genera-tion, a low error probability, and fast en
ryption/de
ryption; the prohibitivetime required by a key generation
an be redu
ed by using larger degreeranges, thereby in
reasing ρ and the time of en
ryption and de
ryption,whilst a small degree range allows better su

ess probability but dramati-
ally slows down key generation. In
reasing ℓ redu
es ρ but indu
es a hugeexpansion and a high time of en
ryption and de
ryption. We review the prosand
ons of ea
h 128 bits s
enario proposed:III A large interval [dmin, dmax] is
hosen, so the key generation time isredu
ed, but ρ is high.IV Compared to III, d is redu
ed, thus key generation is faster, but ρ ishigher.V Here we use a small interval and a larger ℓ, to rea
h a mu
h lowerfailure probability, but key generation be
omes mu
h slower.VI A high degree is
hosen for K, it allows to redu
e its weight, and thelength ℓ of a
iphertext, but key generation is still long.So far our software implementation of TCHO2 is mu
h slower than op-timized ones of
ryptosystems like NTRU [Sho05℄, RSA-OAEP [Wal98℄, orellipti

urves-based systems [Gra06℄, but may perform mu
h better on adedi
ated ASIC, sin
e no
omplex arithmeti
 is required, and both LFSRand pseudo-random generators are known to be very fast in hardware (anLFSR implementation in hardware requires about as many gates than theregister's length, and outputs one bit per
lo
k
y
le).50

4.4 Asymptoti
 parametersHere we show that se
ure parameters
an be expressed only in terms of thedimension k and chard, by giving expressions involving
onstant values in the
onstraints formulas. For instan
e, set w = chard, d = chard
2k, ℓ = α1d,

dmin = chard
2, dmax = α2chard

2, and γ = 1−β/chard. The se
urity
onstraintsare satis�ed provided that α1 > 1, α2 > 1, and β ≥ ln 4, with the
onstraintthat k = O (chard) and k and chard are large enough.Indeed, the
onstraint on the hardness of lwpm, w log d
dmax

≥ chard,
anbe rewritten k ≥ 2α2 whi
h always holds for a reasonnable α2. We also need
γ ≤ 2

1− chard
dmin , that is, 1− β

chard

≤ 1− 2 ln 2
chard

chard
2and so we need β ≥ ln 4. Some routine but tedious
al
ulus shows thatthe failure probability ρ is asymptoti
ally bounded with su
h parameters.However the parameters thus obtained for TCHO2 may not be pra
ti
al forsmall values of k and chard, sin
e not tight with the se
urity
onstraints. Withthe parameters above, key generation runs in time O (

chard
4k2

), en
ryptionin O (

chard
2k

), and de
ryption in O (

chard
3k + k2

), for parameters providingsemanti
 se
urity against adversaries running in time less than O (2chard).In
omparison, RSA with modulus of k bits o�ers key generation in time
O

(

k4
), en
ryption in O (

k2
) de
ryption in O (

k3
), and OW-CPA se
urity(namely, the infeasibility to fa
torize the modulus) against adversaries run-ning in time

O
(

e(
64

9
k)1/3(ln k)2/3

)(GNFS
omplexity), and so 2chard se
urity holds with chard = O
(

k1/3
), whereasin TCHO2 the blo
k size and the se
urity level are almost independent pa-rameters (we only need k = O (chard)).4.5 Comparison with other
ryptosystemsAlthough software performan
es of with our implementation are
learly worsethan other asymmetri

ryptosystems', TCHO2 may be mu
h more
ompet-itive in hardware. Indeed, hardware implementation of RSA [RSA78℄ ismu
h more
omplex [Ko
95℄, for example it requires Montgomery methodto redu
e the number of modular redu
tion, whi
h is also non-trivial toimplement. NTRU [HPS98℄ also requires modular redu
tions, and uses aspe
ial kind of produ
t between two polynomials with integer
oe�
ients,whereas TCHO2 only works over F2, mu
h more hardware-friendly. Ellipti

urve based systems implementation is also non-trivial (it works on a large�nite �eld). Another singularity of TCHO2 is the independen
e betweena
iphertext length and the se
urity (). whi
h
ontrast with RSA, NTRU,M
Elie
e [ME78℄, and GGH [GGH97℄ for example.51

One may noti
e that TCHO2 looks like M
Elie
e: en
ryption is �en
odeand add noise�, de
ryption is �redu
e noise and de
ode�. Like TCHO2 itinvolves a matrix produ
t, a pre
omputed inversion of matri
es related to theprivate key. M
Elie
e is based on Goppa
odes instead of LFSR
odes, andmostly relies on the NP-hardness of the problem of de
oding an arbitrarylinear
ode. But it su�ers from a huge publi
 key (typi
ally 219 bits forse
ure parameters, whereas TCHO2's is about 213). Sin
e majority de
odingis mu
h more simple than de
oding Goppa
odes, we are
onvin
ed thatTCHO2 is more appropriate than M
Elie
e. In addition, both publi
 andprivate key are mu
h smaller than in M
Elie
e, and de
ryption requires onematrix-ve
tor produ
t instead of two. Our huge
iphertext expansion is
learly a drawba
k, but may be a

eptable when
iphertexts are not to bekept in memory, and the sole purpose is to en
rypt se
ret keys of a symmetri
s
heme.4.6 Con
lusionThis variant of TCHO with repetition
odes is mu
h more e�
ient: en
ryp-tion and de
ryption algorithms are faster, larger blo
ks
an be en
rypted, apre
ise estimate of the de
ryption failure probability is given, and experimen-tal results are mu
h better than for TCHO. Besides of that, a huge expansionis required to rea
h both a negligible error probability and an assumed 280se
urity (assuming that
hoosing chard = 80 is reasonnable today).Eventually, the bitstream SLP
+Sγ
an be regarded as trapdoor pseudo-random generator, where the trap allows to redu
e the noise enough in orderto de
ode the noised
odeword, Other generators of this kind would makeit possible to use other
odes (not only linear ones), if the use of the trapdoes not alter the noised pattern. The Blum-Goldwasser [BG85℄
ipher is anexample of trapdoor PRG, where the trap allows to re
over the seed of thegenerator, and thus the entirely
an
el the pseudo-random bitstream.

52

Chapter 5Se
urityIn this
hapter we prove semanti
 se
urity of TCHO and TCHO2, and designtwo hybrid en
ryption s
hemes o�ering IND-CCA se
urity.5.1 One-wayness and non-malleabilityLet's begin with the weakest se
urity level:Proposition 6. TCHO2 is (2chard , 2−chard)-OW-CPA se
ure.Proof. It dire
tly follows from the se
urity assumptions 1, and 2 that aplaintext
annot be re
overed with probability greater than 2−chard in timeless than 2chard . Hen
e TCHO2 is (2chard , 2−chard)-OW-CPA se
ure.We now state two negative results on TCHO2 se
urity:Proposition 7. TCHO is not (O (ℓ) , 1−ε)-OW-CCA se
ure, for some small
ε > 0.Proof. Given a sound
iphertext, it su�
es to modify one bit and ask anora
le to de
rypt it to get with high probability the plaintext
orrespondingto the original
iphertext, thus the algorithm runs in
onstant time, withexa
tly one query to the ora
le. The positive value ε is the probability thata
iphertext of some random message is not sound, that should be small forwell
hosen parameters.As a
onsequen
e, it is not IND-CCA se
ure either, nor NM-CCA se
ure.Proposition 8. TCHO2 is not (O (ℓ) , 1)-NM-CPA se
ure.Proof. If y is a sound
iphertext of x, then y+x′|| . . . ||x′ is a sound
iphertextof x+ x′, for any x′ ∈ {0, 1}k , with probability 1, thus TCHO2 is malleablein
onstant time, without any en
ryption query.53

Also remark the property that the sum of n sound
iphertexts is a sound
iphertext, with the same parameters ex
ept the bias now equal to γw. How-ever the obtain
iphertext shall be impossible to de
rypt, even if n = 2, forwell
hosen parameters.We
an de�ne a non-stri
t notion of sound
iphertext for a given key:at de
ryption, when performing MJD, if the average proportion of
orre
tbits for all the o�set does not mat
h with the bias γ (for a random bitstringwe get in average as many zeros as ones for a given o�set), then with highprobability this is not well
onstru
ted
iphertext. However, independentlyof a key pair, any bitstring of length ℓ may be a valid
iphertext. Re
allthat we talk abound sound
iphertexts instead of valid ones, sin
e the latteradje
tive is
ommonly used for obje
ts that
ould not have beed produ
edby the en
ryption algorithm.5.2 Semanti
 se
urityThe results in this se
tion are stated for TCHO2, but hold for TCHO aswell.5.2.1 A su�
ient
onditionTheorem 7. If SℓLP
+ Sℓγ
annot be distinguished from Sℓ0 in time t with anadvantage larger than ε, then there exists µ su
h that TCHO2 is (t − µ, ε)-IND-CPA se
ure.Proof. We pro
eed by redu
tion: let Aror = (Aror

1 ,Aror
2) be an adversary ina real-or-random game, whi
h, given a
hosen plaintext x = Aror

1 (1k) and abitstring z of length ℓ, de
ides whether z is a
iphertext of x or of an unknownrandomly
hosen plaintext x′; this adversary returns Aror
2 (z) ∈ {0, 1}, andsu

eeds with an advantage ε, in time t. Sin
e a
iphertext of TCHO2
onsists of some bitstring noised with a random sour
e, the
iphertexts spa
eis equal to {0, 1}ℓ, so there are no trivial instan
es of the problem, and everyelement of {0, 1}ℓ
an be a
iphertext of one or several messages.We build an adversary against the problem of distinguishing SℓLP

+ Sℓγfrom Sℓ0 in the following way: given an unknown instan
e Sℓ⋆,
hoose a plain-text x = Aror
1 (1k) independently of Sℓ⋆, and
ompute z = C(x) + Sℓ⋆, thenreturn Aror

2 (z). If Sℓ⋆ is random, then so is z, otherwise z is a sound
iphertextof x, therefore we got an adversary distinguishing a noised LFSR stream fromrandom with exa
tly the same advantage than a real-or-random one, in timegreater than t. As real-or-random se
urity implies [BDJR97℄ with no losssemanti
 se
urity, TCHO2 is IND-CPA se
ure unless a signi�
ant advantage
an be obtained on the above problem.54

5.2.2 Distinguishing a noisy LFSR from randomLet P be a random polynomial, su
h that deg(P) ≤ ℓ. In order to determinewhether a bitstring is SℓLP
+ Sℓγ or Sℓ0, one
an try to de
ode it (i.e. re
overthe initial state of LP). It is impossible (
f. Assumption 2) when dP ≥ 2chardand γ ≤ 21−chard/dP − 1. Another strategy
onsist in multiplying the streamby P , and de
iding whether the obtained stream has bias γwP or not. It isimpossible to distinguish a random sour
e with bias γwP from a uniform oneas soon as γwP < 2−chard/2. Instead of multiplying by P , one
an multiplyby multiples of P of lower weight and degree less than ℓ and exploit theobtained bits1. For a random P there are in average (t−2

v−2

)

2−dP multiples ofweight v and degree t with non-zero
onstant term, ea
h multiple requiringat least (ℓ − t)v operations. Hen
e the total number of bits of bias γv one
an obtain using all the multiples of weight v is approximately (for the worst
P)

Nv ≈ 2−dmax

ℓ
∑

t=v

(ℓ− t)
(

t− 2

v − 2

)

≈ 2−dmax

(

ℓ− 1

v

)

. (5.1)The
ost of �nding these Nv bits
an be lower-bounded by vNv. If γv issmall, the advantage of the best distinguisher is [BSW89℄
Adv ≈ γv

√

Nv/(2π).Now, a distinguishing atta
k will be possible if the
omplexity vNv requiredto obtain Nv bits giving an advantage Adv of 1 is smaller than 2chard . Thevalue of v for whi
h Adv = 1 is
v =

dmax

log(ℓγ2e)− log dmax
. (5.2)It leads to a new assumption.Assumption 4. If dP ≥ 2chard, γ ≤ 21−chard/dP − 1, and vNv > 2chard , where

Nv and v are given by equations (5.1) and (5.2), then SℓLP
+ Sℓγ
annot bedistinguished from Sℓ0.Note that the examples of parameters given in Table 4.1 satisfy this
onstraint. We dedu
e the following result.Theorem 8. Under Assumptions 1 and 4, TCHO2 is (2chard , 2−chard)-IND-CPA se
ure.5.3 Hybrid en
ryption IND-CCA se
ureIn [FV06℄ the
lassi
al Fujisaki-Okamoto
onstru
tion [FO99℄ is applyed toTCHO. Here we propose to build an IND-CCA se
ure s
heme based on1The same idea was used in Se
tion 2.1.3 to
ompute I.55

TCHO2 using two generi
 hybri

onstru
tions, with di�erent requirements.Roughly, the basi
 KEM/DEM needs a stronger en
ryption s
heme and morerandom bits than the Fujisaki-Okamoto variant, but the latter requires tworandom ora
les instead of one, and the message has to be en
rypted beforeen
apsulating the key.5.3.1 KEM/DEMHere the generi
 KEM/DEM
onstru
tion [CS04℄ is used to build an IND-CCA se
ure s
heme. Under Assumptions 1 and 4, TCHO2 is OW-CPA se-
ure [FV06℄. It is known [Den02℄ that a OW-CPA se
ure asymmetri
 s
hemeleads to a IND-CCA se
ure KEM, so it allows us to build a IND-CCA hy-brid en
ryption s
heme with the generi
 KEM/DEM
onstru
tion [CS04℄,using Sym, a symmetri

ipher that guarantees indistinguishability undernon-adaptive
hosen plaintext and
iphertext atta
ks, and a random ora
le
H:En
ryption. Given a message x:1. Choose uniformly a random σ in {0, 1}k , and a random bitstring r ofsu�
ient length.2. Compute the symmetri
 key: ψ ← H(σ).3. En
apsulate the key: χ← TCHO2enc(σ, r).4. En
rypt the message x: y ← Symenc(ψ)(x).5. Output the
iphertext (χ, y).De
ryption. Given a
iphertext (χ, y):1. Compute the en
apsulated key: ψ ← H(TCHO2dec(χ)).2. De
rypt the message: x← Symdec(ψ)(y).3. Output the plaintext x.5.3.2 Fujisaki-Okamoto revisitedIn [AGK05, AGKS05℄ the Fujisaki-Okamoto
onstru
tion is
onverted to atag-KEM/DEM framework. The en
ryption s
heme obtained o�ers IND-CCA se
urity when the publi
 en
ryption s
heme is OW-CPA and Γ-uniform(see de�nition in [FO99℄), and the symmetri

ipher one-time se
ure (OW).For instan
e, one
an simply
hoose Symenc(ψ)(x) = x+ F (ψ) for some ran-dom ora
le F , but Sym
an be either a stream
ipher or a blo
k
ipher.56

The
onstru
tion requires two random ora
les H and G. The IND-CPA se-
urity of TCHO2 implies OW-CPA se
urity, and the proof of Γ-uniformity ofTCHO [FV06℄ applies to TCHO2 as well. So the following hybrid en
ryptions
heme is IND-CCA se
ure.En
ryption. Given a message x:1. Choose a random σ uniformly in {0, 1}k .2. Compute the symmetri
 key: ψ ← G(σ).3. En
rypt the message x: y ← Symenc(ψ)(x).4. En
apsulate the key: χ← TCHO2enc(σ,H(σ||y)).5. Output the
iphertext (χ, y).De
ryption. Given a
iphertext (χ, y):1. Compute the en
apsulated key: ψ ← G(TCHO2dec(χ)).2. De
rypt the message: x← Symdec(ψ)(y).3. Output the plaintext x.5.3.3 Pra
ti
al
on
ernsLike for a KEM/DEM, only the key of the symmetri
 s
heme is en
ryptedwith TCHO2, and so parameters shall be
hosen in fun
tion of the key length.Table 4.1 shows example of parameters for a key of 128 bits, a typi
al lengthfor symmetri
 s
hemes. So the two
onstru
tions en
rypt a message with anoverhead of as many bits as in a
iphertext of TCHO2.On a 4 MHz pro
essor (0.25 µs
y
le time), a message is en
rypted usingan hybrid
onstru
tion with an overhead of ℓ bits, whi
h is
omputed in lessthan 15 ms for ℓ = 50000, when a fast sour
e of random bits is available.The additional
ost of the symmetri
 en
ryption shall not be an obsta
le,and de
ryption should also be very fast for repetition
odes, sin
e it only
onsists of some simple bitwise operations, and of the
ounting of the bits inthe trun
ated
odeword.In our software implementation, we may use as symmetri

ipher thePRG ISAAC, already used by the generator of biased pseudo-random bits,with as symmetri
 key a seed on 128 bits.
57

Chapter 6Derived
onstru
tionsWe �rst present a variant of TCHO2 over a larger �nite �eld, then two othervariants, one redu
ing the expansion but not semanti
ally se
ure, and onea
hieving indistinguishability of
iphertexts against some
hosen-
iphertextadversaries,
alled ICCA.6.1 TCHO2 over Fq6.1.1 Des
riptionHere K,P ∈ Fq[X], LFSR register elements and output are elements of Fq.Again, K has degree d and weight w, P has degree dP ∈ [dm, dM].A plaintext is now an element of Fkq , where k is the dimension of therepetition
ode.
Sγ is rede�ned: it produ
es a stream of elements of Fq; 0 with probability

pγ , otherwise a random element of Fq, so ea
h b ∈ F⋆q appears with probability
(1− pγ)/q, thus 0 e�e
tively appears with probability pγ + (1− pγ)/q.We still have K ⊗ SLP

= 0, and K ⊗ (SLP
+ Sγ) ≈ Sγw . We will note

p = pγw hereafter.At de
ryption, we obtain
K ⊗ (SLP

+ Sγ + x||x|| . . . ||x) = Sγw + x′|| . . . ||x′for some x′ ∈ Fkq . As usual, x is repeated m = ℓ/k times, while x′ is repeated
m′ = (ℓ− d)/k times.The linear appli
ation transforming x to x′ is de�ned the same way thanon F2.6.1.2 ReliabilityConsider x′i, the i-th element of the transformed plaintext x′. It is repeated
m′ times, the expe
ted number of unnoised elements is p · m′. The otherelements are noised with elements of Fq (in
luding 0). So the number of58

�
lear� elements is p ·m′ + 1−p
q ·m′ on average, where the term 1−p

q ·m′
anbe negle
ted for high enough values of γ and q (e.g. when γ = 0.985, w = 80,and q = 256).Unlike on F2, we do not require absolute majority of
lear elements, hen
ewe
an allow an error probability greater than 1/2.By
onsidering an isolated repetition of x′i, let (nj)j=0,...,q be dis
reterandom variables, where n0 is the number of unnoised elements among the
m′ repetitions, and nj , 1 ≤ j ≤ q is the number of elements noised with the
j-th element of Fq, for an arbitrary ordering where the �rst element is 0. Therandom variable n0 follows a binomial law with parameters (m′, p + 1−p

q),while ea
h nj, 1 ≤ j ≤ q, follows a binomial law with parameters (m′, 1−p
q).Let µj = Pr[n0 < nj], the probability that the unnoised bits �lose� againthe j-th noise element, that is,

µj =

m′−1
∑

r=0

Pr[n0 = r] Pr[nj > r],and so µj = µj′, ∀1 ≤ j ≤ j′ ≤ q. Let µ = µq. It
an also be expressed witha standard normal law as
µ = ϕ

(

−
√
m′ p
σ

)where σ = −p2 + p+ 21−p
q , and ϕ is is the
umulative distribution fun
tionof a standard normal distribution:
ϕ(z) =

1√
2π

∫ z

−∞
e−t

2/2dt.Thus the probability that the element x′i is bad de
oded is less than
(q − 1) · µ.We dedu
e a bound on the probability of bad de
oding of a word
omposedof k elements (x′i)i=0,...,k−1:̃

ρ ≤ 1− (1− (q − 1)µ)k.Basi
ally, we shall de
ode well the element x′i when p≫ 1−p
q , and p ·m′ ≤

2, sin
e we need at least two o

uren
es of the good element to
hoose it,whilst the probability that a given element of F⋆q
omes twi
e is negligible.Moreover, the polynomial P should not allow one to get an advantage onde
oding, so we need γdm/2 to be small (dm ≥ 2 · chard).The
onstraints on lwpm remains with this s
heme.Experiments show that the expansion fa
tor does not get better than forTCHO2 on F2, sin
e the number of bits of a plaintext and a
iphertext arerespe
tively k · log q and ℓ · log q, if q is a power of 2.59

Example 11. We found parameters giving a low error probability for K ofdegree about 6 000, ℓ = 12000, q = 232 and k = 8, so it en
rypt 128 bits in
384 000 bits, with a private key on 192 000 bits.Eventually, this variant leads to lower values of d and ℓ, but the numberof bits of a key and a
iphertext shall in
rease. Implementation in hardwaremay be harder, however it may speed up LFSR's pro
essing in software whenusing extension �elds of degree 8 or 32. The number of random bits in termsof ℓ and dP will in
rease (to randomly pi
k elements of Fq), however we shalluse smaller ℓ and dP than in TCHO2.6.2 A weakly se
ure s
heme with redu
ed expan-sionAssume that the PRG
an be seeded with exa
tly k bits. Let's
all this news
heme TCHO3. One en
rypts a plaintext x on dP bits with the followingalgorithm:1. set r $←− {0, 1}k ,2. set y ← SLP (x) + C(r) + Sγ(r),3. return the
iphertext y.The de
ryption algorithm is:1. re
over r from y (usual TCHO2 de
ryption),2.
ompute SLP (x) by eliminating Sγ(r) and C(r),3. get the initial state x, whi
h is the bitstring formed by the �rst dP bitsof SLP (x),4. return the plaintext x.The de
ryption pro
edure is almost the same than in TCHO2, an adversary
learly obtains no more information on the
odeword from a
iphertext.Complexities of en
ryption and de
ryption do not signi�
atively
hange.Like its elder, this new s
heme is not OW-CCA se
ure, for the same rea-sons. It is also malleable in any adversarial model, sin
e xoring a
iphertextof x with some SLP (x′) results in a sound
iphertext of x+ x′.We make a new assumption, on the PRG Sγ :Assumption 5. If the PRG Sγ is seeded on k ≥ chard bits, then, for random
r and r′ bitstring of length k, Sγ(r) + C(r)
annot be distinguished from
Sγ(r′) + C(r) with probability greater than 2−chard and time less than 2chard .60

Proposition 9. If k ≥ chard and the se
urity
onstraints of TCHO2 aresatis�ed, then TCHO3 is OW-CPA se
ure.Proof. If k < chard, an exhaustive sear
h on r
ould be performed, hen
e werequire k ≥ chard. By Assumption 4, a CPA adversary knowing SLP (x)+Sγ(r)has no information on x. We also assumed that the pseudo-random genera-tor behaved like an ideal one, and so r
annot be re
overed either (otherwisewe
ould �nd SLP (x), that would
ontradi
t the assumption).Moreover, weproved (
f. Theorem 8) that SLP (x) + Sγ(r) +C(r′) does not leak any infor-mation on r′ to a CPA adversary. Therefore, by Assumption 5, an adversary
annot extra
t any information on x nor on r from SLP (x) + Sγ(r) + C(r).We dedu
e that TCHO3 is OW-CPA se
ure.Proposition 10. TCHO3 is not IND-CPA se
ure.Proof. In an IND game, where x1 and x2 are the
hosen plaintexts, and y the
iphertext of xb, b ∈ {0, 1} built by the
hallenger, an adversary
an
ompute
y′ = (Xk + 1)⊗ (y + SLP (x1)).If b = 1, then y′ ≈ Sγ2 , otherwise it will have bias 0. By
omputing theweight of y′, she thus
orre
tly guess b with high probability, for
ommonparameters: if there are about as many zeros as ones in y′, then she returns

x2, otherwise (
learly more zeros than ones), she returns x1.The degree dP is not �xed, but belongs to an interval [dmin, dmax], thusthe length of a message blo
k may depend on the key generation outputs.Against this, we suggest to set dmin to a suitable message length (e.g. amultiple of 32), and systemati
ally pad with zeros the remaining bits when
dP > dmin.Compared to the original TCHO2, the
iphertext expansion is
learlyredu
ed: it allows for example to en
rypt 5 800 bits instead of 128 in a
iphertext of 50 000 bits (expansion turns from 390 to 8).6.3 Towards IND se
urity against
hosen-
iphertextadversariesTCHO2 is not OW-CCA, sin
e the atta
ker
an ask for the de
ryption of the
hallenge
iphertext modi�ed of only one bit, and re
over with high prob-ability the original message. In an adversarial model similar to CCA wherethe adversary would not be able to ora
le-de
rypt if the message returned isthe
hallenge's one may prevent this kind of atta
k: however, sin
e TCHO2is malleable, one
an easily build a
iphertext of x+x′ for any known x′, andthus re
over the
hallenge message x by querying the ora
le for the plaintext
x+x′. To solve this, we should modify the en
ryption pro
edure to introdu
e61

a stri
t notion of valid
iphertext, for example by introdu
ing redundan
yproper to the plaintext, so as to make impossible the forgery of a valid
i-phertext, of x+ x′ for example (this is a parti
ular
ase of malleability, andNM-CCA se
urity is equivalent to IND-CCA se
urity). In the following we de-�ne the model ICCA, and show a
onstru
tion for whi
h IND-ICCA se
urityis rea
hed.6.3.1 De�nitions of ICCA and IPAWe introdu
es a variant of the CCA model:De�nition 16. An adversary is
alled an irreversible adaptive
hosen
i-phertext (ICCA) adversary if she
an query the de
ryption ora
le whenevershe wants, to de
rypt any
iphertext ex
ept the
hallenges, and any othervalid
iphertext of their plaintexts. The number of queries and the numberof atomi
 operations must be polynomially bounded.This states that the adversary fails as soon as she queries for the de-
ryption of a
iphertext whose mat
hing plaintext is already involved in thegame: the model gives no trivial way for the adversary to guess whether a
iphertext is a
riti
al one or not; if an atta
k fails be
ause of the query ofa
riti
al
iphertext, this event is not part of the information obtained bythe atta
ker, that is, she does not know that the submitted plaintext indeeden
rypts a plaintext of the
hallenges, but this has a priori no e�e
tive sense,ex
ept if the atta
ker does not know the rules of the game, or if its memory
an be modi�ed, or if she is s
hizoid. Is the ICCA model really absurd ?If an adversary queries for the de
ryption of some message, she probablydoes not know the answer. Meanwhile, the
hallenger wants her not to knowthat some messages en
rypt some publi
ly known
iphertext m. Assumeshe queries for the de
ryption of a
iphertext of m: the game will end, im-pli
itely saying to the adversary �you should not know what just happened,please forget it�, whi
h is indeed absurd. But a
on
rete way to make thiss
enario sound would be one where
iphertexts are sent to the ora
le, but notremembered by the adversary: when the query is legitimate (the
iphertextdoes not en
rypts m), the ora
le would return both the
iphertext and theplaintext, otherwise it would return nothing, assuming that the atta
ker didnot keep any
opy of the
iphertext emitted.We now introdu
e a parti
ular form of the plaintext awareness notion,introdu
ed in [BR94℄ (see also [BDPR98℄), that will help us to prove IND-ICCA se
urity. Informally, an asymmetri

ryptosystem is said to be IPA(irreversibly plaintext aware) if it is pra
ti
ally impossible for an adversaryto produ
e a valid
iphertext distin
t from the ones already known (e.g.given by a
hallenger) without knowing the mat
hing plaintext, while havinga

ess to an en
ryption ora
le (the publi
 key), with the restri
tion that theadversary should only build
iphertexts for whi
h the mat
hing plaintext is62

distin
t from all the
hallenges given in the
orresponding game, and from allthe plaintexts mat
hing the known
iphertexts. This impli
itly states thatan observer of the adversary re
ording every information involved in the
onstru
tion algorithm should be able to de
rypt the
iphertext produ
ed(otherwise the adversary would not know the plaintext, that
ontradi
ts theinitial postulate). In the
lassi
al de�nition, the restri
tion stated above doesnot hold; for instan
e, RSA is not plaintext aware, sin
e any integer stri
lyless than the modulus is a valid
iphertext. We now give a more formalde�nition of the IPA notion:De�nition 17. Let A be a Turing ma
hine querying a random ora
le, takingas input
• pk: a publi
 key
hosen by a
hallenger,
• L: a list of
iphertexts of random unknown plaintexts,su
h that both |L|, the number of ora
le queries, and the number of atomi
operations are in = O (Poly (|pk|)). This ma
hine outputs a bitstring y,whi
h is a valid
iphertext of some plaintext not en
rypted L (w.r.t. pk) withprobability greater than some ε > 0, over all the L, in time t. We
all thema
hine A a (t, ε)-
iphertext
reator.An asymmetri
 en
ryption s
heme is said to be (ε, η)-IPA if and onlyif, for all (Poly (|pk|) , ε′)-
iphertext
reator A, with ε′ ≥ ε, there exists adeterministi
 Turing ma
hine A⋆ running in time Poly (|pk|) � the extra
tor� su
h that, for all y produ
ed by A with input L and pk,

Pr[A⋆(A,L, pk) 6= D(y)] ≤ η, 0 ≥ η ≥ 1,where D is the (deterministi
) de
ryption algorithm.The s
heme is simply
alled IPA if and only if both ε and η are negligible.The list of
iphertexts L in the above de�nition models the
apa
ity ofan adversary to eavesdrop a
hannel. Note that we assume the existen
e ofan extra
tor, but not that any adversary knows, or
an easily �nd it.Proposition 11. If an asymmetri

ryptosystem is both (ε, η)-IPA and IND-CPA se
ure, with ε negligible and η su
h that
(1− 1

η
)2

chard ≥ 1− 21−chard ,then it is IND-ICCA se
ure.Proof. In an IND game, an adversary has a

ess to a de
ryption ora
le,but only one valid
iphertext � the
hallenge � is given, whose query to theora
le is forbidden. Thus the
iphertext
reators feeding the ICCA de
ryption63

ora
le all have |L| = 0. We show that, for all IND-ICCA adversary with non-negligible su

ess probability and polynomial running time, we
an build anIND-CPA adversary with equal running time and still non-negligible su

essprobability.Consider a (χ, ξ)-IND-ICCA adversary for a (ε, η)-IPA s
heme. She makesat most χ de
ryption queries to the ora
le. Using the IPA extra
tor insteadof the de
ryption ora
le leads to a perfe
t simulation with probability greaterthan
(1− 1

η
)χ,that is, the probability that ea
h
iphertext is �de
rypted�
orre
tly by theextra
tor. Note that the negation of this is not even a proved su�
ient
ondition for the failure of the atta
k, but we will assume it. The IND-CPAadversary built this way hen
e su

eeds with probability greater than

ξ − 1 + (1− 1

η
)χ.If ξ is non negligible, so is this last value, as soon as

(1− 1

η
)2

chard ≥ 1− 21−chard .Thus we built a (χ, ξ − 1 + (1 − 1
η)
χ)-IND-CPA adversary from a (χ, ξ)-IND-ICCA adversary, and so is the initial
ondition on η implies that for alle�
ient IND-ICCA adversary, the de
ryption ora
le
an be repla
ed by theIPA extra
tor. By inversion, IND-CPA se
urity implies IND-ICCA se
urity,provided that η veri�es the inequality above stated.Proposition 12. Let V(pk,sk) be the number of valid
iphertexts for the keypair (pk,sk). If an asymmetri
 s
heme is OW-CPA and

V(pk,sk)
2ℓ − V(pk,sk) ≥ 1

2chard
,then it is not IPA.Proof. If the ratio of valid
iphertexts is greater than 1/2chard , then the ad-versary who randomly pi
ks a bitstring of the same length than a
iphertextobtains a valid
iphertext with probability greater than 1/2chard . In thissimple algorithm, the only information the adversary has is this
iphertext.Hen
e if the s
heme is OW-CPA, an adversary
annot re
over the plaintext,and so no polynomial time extra
tor exists. Finally, there exists an adver-sary able to
ompute a valid
iphertext with probability greater than 1/2chardsu
h that no polynomial time extra
tor exists, whi
h
ontradi
ts the IPAde�nition. 64

6.3.2 Notion of valid
iphertext and IND-ICCA se
urityAddition of deterministi
 redundan
yAmong the k bits of the
odeword, M
ontain the plaintext, and R = k−Mthe redundan
y, de�ned by a fun
tion
R : {0, 1}M → {0, 1}R.A
iphertext of x is

y = SLP (r1) + C(x||R(x)) + Sγ(r2),for randomly
hosen r1 and r2. Given a
iphertext y, de
ryption is performedwith the following algorithm:1. re
over the
oded word x||r,2. if R(x) = r, return the plaintext x,3. return ⊥ otherwise.Assume that R is a random inje
tion: in an IND s
enario, given x1 and
x2, along with the
iphertext c of one of those, the adversary
an ask for thede
ryption of c + y||R(x1 + y) + R(x1)|| . . . ; if the ora
le answers x1 + y,then she returns x1, otherwise (for answer ⊥ or z ∈ {0, 1}M), she returns x2.Hen
e no matter how �good� is R, IND-ICCA se
urity will never be a
hieved.Addition of non-deterministi
 redundan
yNow the
odeword on k bits
ontains the plaintext on M bits, followed by
N random bits pi
ked by the en
rypter, and �nally R = k−M −N bits forto the image of the fun
tion R, whi
h now takes two arguments, x and ℵ,the latter being the bitstring of N random bits (ℵ must be in
luded in the
odeword in order to
he
k a
iphertext's validity). We de�ne

R : {0, 1}M × {0, 1}N → {0, 1}R.A
iphertext of x is
y = SLP (r1) + C(x||ℵ||R(x)) + Sγ(r2).The de
ryption algorithm of y is:1. re
over the
oded word x||ℵ||r,2. if r = R(x,ℵ), return the plaintext x,3. return ⊥ otherwise. 65

The de
ryption ora
le asso
iated would return the plaintext x, but not ℵ(nor R(x,ℵ)). From now we
onsider R as a random ora
le, and will
allthe en
ryption s
heme TCHO4.We re
all that, as TCHO2, the system
reated with non-deterministi
redundan
y
annot be IND-CCA, sin
e, in a OW game, a query to the de-
ryption ora
le with the
hallenge
iphertext with only one bit modi�edwould return with high probability the en
rypted message. Sin
e the basi
TCHO2 is IND-CPA se
ure, it trivially still holds with the non-deterministi
redundan
y above des
ribed (simply repla
e x in TCHO2 by x||ℵ||R(x,ℵ)).Note the following fa
t:
ℵ re
overed⇒ x re
overed,This impli
ation is trivial (e.g. XOR the
iphertext with x||0||(R(x,ℵ) +

R(0,ℵ))|| . . . and look for 0 as de
rypted message). However the
onverse isnot so obvious; if we had �x re
overed ⇒ ℵ re
overed�, an ICCA adversarywould win an IND game trivially: assuming that the plaintext en
ryptedis the �rst of the two
hallenges plaintexts, one re
overs ℵ, if she is wrong(she
an
he
k it by applying the strategy to re
over x from ℵ), she returnsthe other
hallenge plaintext, and the one
hosen otherwise. Therefore thisimpli
ation is su�
ient to win the IND game, but maybe not ne
essary, sin
e�nding ℵ is not formally required. Thus we
annot redu
e our problem tothe
omputation of ℵ from x given a
iphertext of x.Let's
onsider S(x), the set of all
iphertexts build by using ℵ as non-deterministi
 seed, and ξ in pla
e of R(x,ℵ). We
an de�ne a binary equiva-len
e relation over S(x) su
h that two elements are equivalent if and only ifthey were built with the same ξ. Therefore S(x)
an be partitioned into 2Rsubsets of equal size mat
hing the equivalen
e
lasses de�ned by this rela-tion. Among those
lasses, only one
ontains valid
iphertexts (and only validones): the one where ξ = R(x,ℵ). Hen
e if an adversary has no informationon R(x,ℵ), there is no way to
hoose the right
lass with a signi�
ant ad-vantage. In parti
ular, a triplet (x,ℵ,R(x,ℵ))
annot be distinguished froma triplet (x,ℵ, ψ), ψ ∈ {0, 1}R, without querying for R(x,ℵ). This argumentis used to prove the following theorem.Theorem 9. If the
onstraints required for the semanti
 se
urity of TCHO2translated to TCHO4 are satis�ed, and if R is a random ora
le, then TCHO4is (2−R, 1)-IPA.Proof. Consider an IPA adversary A; by querying the ora
le R, she getstriplets (xi,ℵi,R(xi,ℵi)), i = 1, . . . , L. Using pk, she also obtains pairs
(xi, yi), i = L + 1, . . . ,M , with M = O (|pk|α). Let y be the bitstringreturned by A. When D(y) = ⊥ or D(y) /∈ {x1, . . . , xM}, let's denote W thebitstring en
oded in C(W), de
omposed in three subbitstrings W = x||ℵ||r.We
an distinguish two
ases: 66

1. x /∈ {x1, . . . , xM}: then A su

eeds as soon as r = R(x,ℵ). We have
Pr[r = R(x,ℵ)] ≤ 2−R, sin
e R is a random ora
le.2. r 6= R(x,ℵ): then A fails with probability 1, sin
eW
annot be a valid
iphertext.By de�nition of IPA, x
annot be in {x1, . . . , xM}, so this is the only
aseswe
onsider. Finally, Pr[A su

eeds] ≤ 2−R. Hen
e any (Poly (pk) , ε)-
iphertext
reator with ε > 2−R needs to query for R(x,ℵ), and so theextra
tor su

eeds with probability stri
tly greater than 1 − 2−R, sin
e itreads the ora
le queries of the
reator. It proves that TCHO4 is (2−R, 1)-IPA.Theorem 10. If (1 − 2−R)2

chard ≥ 1 − 2−chard , then TCHO4 is IND-ICCAse
ure.Proof. We know that TCHO4 is IND-CPA. By Proposition 11 and Theorem 9,the result follows.If R is not a random ora
le but a given fun
tion, it has to satisfy severalproperties. If R is linear on ℵ (i.e. R(x,ℵ)+R(x,ℵ′) = R(x,ℵ+ℵ′)), then inan IND game, if x is one of the two plaintexts
hallenges, one only has to XORthe
iphertext with 0||ℵ′||R(x,ℵ′)|| . . . and query the de
ryption ora
le: ifit answers x, then the adversary returns x, otherwise she returns the se
ondplaintext. Hen
e R must be non-linear on ℵ. Moreover, we require that thenumber �linear pairs� is small, that is,
max
x

#{(ℵ,ℵ′),ℵ 6= ℵ′,R(x,ℵ) + R(x,ℵ′) 6= R(x,ℵ + ℵ′)}
2N · (2N − 1)

≤ 1

2chard
.If we XOR the
hallenge
iphertext with y||0||R(y,ℵ′)|| . . . , one mayobtain (x+ y)||ℵ||(R(x,ℵ) + R(y,ℵ′)) in
ertain
ases. To prevent this, werequire

max
y,ℵ′

Pr
x,ℵ

[

R(x,ℵ) + R(y,ℵ′) = R(x+ y,ℵ)
]

≤ 1

2chard
.The atta
k against IND-ICCA se
urity mentionned in the previous se
tionis infeasible as soon as N > chard and

Pr
ℵ6=ℵ′

[R(x,ℵ) = R(x,ℵ′)] ≤ 1

2chard
,
onsidering an exhaustive sear
h on the random bitstring ℵ.For instan
e, if N = chard + 1, we require R ≥ N ; so we need k >

2chard +M , e.g. to en
rypt 32 bits with 280 se
urity k should be greater than
192. It indu
es a
iphertext length of about 60 000 bits.67

Con
lusionWe studied the existing probabilisti
 en
ryption s
heme TCHO, implementedand improved it; we designed e�
ient algorithms for the generation of a bi-ased random bitstring and a large LFSR output, in
luding an almost opti-mal one for the former. The new
ryptosystem TCHO2 leads to a slightlyfaster en
ryption, and an exponentially faster de
ryption, while introdu
ingnew se
urity
onstraints and obviating the need for a primitive polynomialas publi
 key. We proved, under
ertain assumptions, that both TCHOand TCHO2
ould a
hieve semanti
 se
urity, and suggest two known hybrids
hemes to rea
h the strongest level of se
urity, namely IND-CCA se
urity.We also suggest several variants of our s
heme, either sa
ri�
ing semanti
se
urity to get a low expansion, or rea
hing IND-ICCA se
urity at the
ost ofa huger expansion.Appli
ations may be found in embedded environments, to provide a sim-ple en
ryption pro
edure. Passive RFID tags may also �nd with TCHO2 away to use publi
 key
ryptography, a
tually infeasible with other asymmet-ri
 primitives on their small ar
hite
tures; this may solve important problemsof priva
y in RFID proto
ols. The expansion would �only� result in an over-head of about 5 Kb in an hybrid framework. Moreover, unlike RSA, TCHO2would not be harmed by a quantum
omputer, sin
e no feasible quantum al-gorithm is known to solve the problems it relies on (this kind of
ryptosystemis sometimes
alled post-quantum).Finally, as TCHO2 se
urity only relies on heuristi
 assumptions, furtherwork
ould be devoted to giving
on
rete elements of proof, e.g.
on
ern-ing the problem lwpm, or �nding other models of trapdoor pseudo-randomgenerators exploiting the error
orre
tion
apa
ity of
ertain
odes.

68

Bibliography[AGK05℄ Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa.Tag-KEM/DEM: A new framework for hybrid en
ryp-tion. IACR ePrint ar
hive 2005/027, 2005. Avail-able at http://eprint.ia
r.org/2005/027. Newer versionin [AGKS05℄.[AGKS05℄ Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Vi
torShoup. Tag-KEM/DEM: A new framework for hybrid en
ryp-tion and a new analysis of Kurosawa-Desmedt KEM. In EURO-CRYPT'05, pages 128�146, 2005. Older version in [AGK05℄.[AM94℄ Leonard Adleman and Kevin M
Curley. Open problems in num-ber theoreti

omplexity, II. In L. Adleman and M.-D. Huang,editors, ANTS-I, volume 877 of Le
ture Notes in Computer S
i-en
e, pages 291�322. Springer, 1994.[Arn05℄ Jörg Arndt. Algorithms for programmers. Available athttp://www.jjj.de/fxt/, 2005.[BBS86℄ Lenore Blum, Manuel Blum, and Mi
hael Shub. A simple un-predi
table pseudo-random number generator. SIAM Journal onComputing, 15:364�383, 1986.[BDJR97℄ Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rog-away. A
on
rete se
urity treatment of symmetri
 en
ryption.In FOCS'97, page 394. IEEE Computer So
iety, 1997.[BDPR98℄ Mihir Bellare, Anand Desai, David Point
heval, and Phillip Ro-gaway. Relations among notions of se
urity for publi
-key en-
ryption s
hemes. In CRYPTO'98, pages 26�45. Springer, 1998.[Ber68℄ Elwyn R. Berlekamp. Algebrai

oding theory. M
Graw-Hill,1968.[BG85℄ M. Blum and S. Goldwasser. An e�
ient probabilisti
 publi
-keyen
ryption s
heme whi
h hides all partial information. In G. R.69

Blakley and D. C. Chaum, editors, CRYPTO'84, pages 289�302.Springer, 1985.[BGP06℄ C�me Berbain, Henri Gilbert, and Ja
ques Patarin. Quad: Apra
ti
al stream
ipher with provable se
urity. In EUROCRYPT,pages 109�128, 2006.[BHSV98℄ Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan.Many-to-one trapdoor fun
tions and their relation to publi
-key
ryptosystems. In CRYPTO '98, pages 283�298. Springer, 1998.[BLZ03℄ Ri
hard Brent, Samuli Larvala, and Paul Zimmermann. A fast al-gorithm for testing redu
ibility of trinomials mod 2 and some newprimitive trinomials of degree 3021377. Mathemati
s of Compu-tation, pages 1443�1452, 2003.[Bor43℄ Emile Borel. Les probabilités et la vie. Presses UniversitairesFrançaises, 1943.[BR94℄ Mihir Bellare and Phillip Rogaway. Optimal asymmetri
 en-
ryption. In A. De Santis, editor, EUROCRYPT'94, volume 950of Le
ture Notes in Computer S
ien
e, pages 92�111. Springer,1994.[BSW89℄ Paul T. Bateman, John L. Selfridge, and Samuel S. Wagsta�.The new mersenne
onje
ture. Ameri
an Mathemati
al Monthly,96(2):125�128, 1989.[BZ03℄ Ri
hard Brent and Paul Zimmermann. Algorithms for �ndingalmost irredu
ible and almost primitive trinomials. Primes andMisdemeanours: Le
tures in Honour of the Sixtieth Birthdayof Hugh Cowie Williams (edited by A. van der Poorten and A.Stein), 2003.[CC98℄ Anne Canteaut and Florent Chabaud. A new algorithm for�nding minimum-weight words in a linear
ode: Appli
ationto M
Elie
e's
ryptosystem and to narrow-sense BCH
odesof length 511. IEEE Transa
tions on Information Theory,44(1):367�378, 1998.[CM01℄ Sandeepan Chowdhury and Subhamoy Maitra. E�
ient soft-ware implementation of linear feedba
k shift registers. InC. Pandu Rangan and C. Ding, editors, INDOCRYPT'01, vol-ume 2247 of Le
ture Notes in Computer S
ien
e, pages 297�307.Springer, 2001. 70

[CM03℄ Sandeepan Chowdhury and Subhamoy Maitra. E�
ient soft-ware implementation of LFSR and boolean fun
tion and its ap-pli
ation in nonlinear
ombiner model. In J. Zhou, M. Yung,and Y. Han, editors, ACNS'03, volume 2846 of Le
ture Notes inComputer S
ien
e, pages 387�402. Springer, 2003.[CMI03℄ Paul Camion, Miodrag J. Mihaljevi¢, and Hideki Imai. Two alertsfor design of
ertain stream
iphers: Trapped LFSR and weakresilient fun
tion over GF(q). In K. Nyberg and H. Heys, editors,SAC 2002, volume 2595 of Le
ture Notes in Computer S
ien
e,pages 196�213. Springer, 2003.[CS04℄ Ronald Cramer and Vi
tor Shoup. Design and analysis of pra
ti-
al publi
-key en
ryption s
hemes se
ure against adaptive
hosen
iphertext atta
k. SIAM Journal on Computing, 33(1):167�226,2004.[CT00℄ Anne Canteaut and Mi
haël Trabbia. Improved fast
orrelationatta
ks using parity
he
k equations of weight 4 and 5. In B. Pre-neel, editor, EUROCRYPT'00, volume 1807 of Le
ture Notes inComputer S
ien
e, pages 573�588. Springer, 2000.[CZ81a℄ David G. Cantor and Hans Zassenhaus. A new algorithm forfa
toring polynomials over �nite �elds. Mathemati
s of Compu-tation, 36(154):587�592, 1981.[CZ81b℄ David G. Cantor and Hans Zassenhaus. A new algorithm forfa
toring polynomials over �nite �elds. Mathemati
s of Compu-tation, 36(154):587�592, 1981.[Den02℄ Alexander W. Dent. A designer's guide to KEMs. Publi
 reportNES/DOC/RHU/WP5/029/1, NESSIE proje
t, 2002. Availableat http://eprint.ia
r.org/2002/174.[DH76℄ Whit�eld Di�e and Martin E. Hellman. New dire
tions in
ryp-tography. IEEE Transa
tions on Information Theory, 22(6):644�654, 1976.[Ekd03℄ Patrik Ekdahl. On LFSR based Stream Ciphers - Analysis andDesign. PhD thesis, Lund University, 2003.[Ell70℄ James H. Ellis. The possibility of se
ure non-se
ret digital en-
ryption. GCHQ-CESG publi
ation, 1970.[FO99℄ Eii
hiro Fujisaki and Tatsuaki Okamoto. Se
ure integration ofasymmetri
 and symmetri
 en
ryption s
hemes. In M. Wiener,editor, CRYPTO'99, volume 1666 of Le
ture Notes in ComputerS
ien
e, pages 537�554. Springer, 1999.71

[FV06℄ Matthieu Finiasz and Serge Vaudenay. TCHo: the trapdoorstream
ipher. unpublished, 2006.[GGH97℄ Oded Goldrei
h, Sha� Goldwasser, and Shai Halevi. Publi
-key
ryptosystems from latti
e redu
tion problems. In CRYPTO '97,Le
ture Notes in Computer S
ien
e, pages 112�131. Springer,1997.[Gil64℄ Donald B. Gillies. Three new mersenne primes and a statisti
altheory. Mathemati
s of Computation, 18:93�97, 1964.[GM82℄ Sha� Goldwasser and Silvio Mi
ali. Probabilisti
 en
ryption &how to play mental poker keeping se
ret all partial information.In STOC'82, pages 365�377. ACM Press, 1982.[GM84℄ Sha� Goldwasser and Silvio Mi
ali. Probabilisti
 en
ryption.Journal of Computer and System S
ien
es, 28:270�299, 1984.[GM01℄ Kishan Chand Gupta and Subhamoy Maitra. Multiples of prim-itive polynomials over GF(2). In C. Pandu Rangan and C. Ding,editors, INDOCRYPT'01, volume 2247 of Le
ture Notes in Com-puter S
ien
e, pages 62�72. Springer, 2001.[Gol01℄ Oded Goldrei
h. Founda
tions of Cryptography, volume 1. Cam-bridge University Press, 2001.[GPR06℄ Zvi Gutterman, Benny Pinkas, and Tza
hy Reinman. Analysis ofthe linux random number generator. Cryptology ePrint Ar
hive,Report 2006/086, 2006. Available at http://eprint.ia
r.org/.[Gra06℄ Torbjörn Granlund. GNU multiple pre
ision arithmeti
 library(GMP), 2006. Available at http://swox.
om/gmp/.[Guy94℄ Ri
hard K. Guy. Unsolved problems in number theory. Springer,2nd edition, 1994.[GvP98℄ Shuhong Gao, Joa
him von zur Gathen, and Daniel Panario.Gauss periods: orders and
ryptographi
al appli
ations. Mathe-mati
s of Computation, 67(221):343�352, 1998.[HN99℄ Miia Hermelin and Kaisa Nyberg. Correlation properties of thebluetooth
ombiner. In ICISC'99, Le
ture Notes in ComputerS
ien
e, pages 17�29, 1999.[HPS98℄ Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: Aring-based publi
 key
ryptosystem. In J. Buhler, editor, ANTS-III, volume 1423 of Le
ture Notes in Computer S
ien
e, pages267�288. Springer, 1998. 72

[HR17℄ Godfrey H. Hardy and Srinivasa Ramanujan. The normal num-ber of prime fa
tors of a number n. The Quarterly Journal ofMathemati
s, pages 76�92, 1917. also published in "Colle
tedpapers of Ramanujan", Cambridge University Press, 1927.[HWL+91℄ D. G. Ho�man, Wal, D. A. Leonard, C. C. Lidner, K. T. Phelps,and C. A. Rodger. Coding Theory: The Essentials. Mar
elDekker, In
., 1991.[Jam00℄ K Jambunathan. On
hoi
e of
onne
tion-polynominals forLFSR-based stream
iphers. In B. K. Roy and E. Okamoto,editors, INDOCRYPT'00, volume 1977 of Le
ture Notes in Com-puter S
ien
e, pages 9�18. Springer, 2000.[Jen96a℄ Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE'96,volume 1039 of Le
ture Notes in Computer S
ien
e, pages 41�49. Springer, 1996.[Jen96b℄ Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE'96,volume 1039 of Le
ture Notes in Computer S
ien
e, pages 41�49. Springer, 1996.[JJ99℄ Thomas Johansson and Fredrik Jönsson. Fast
orrelation at-ta
ks based on turbo
ode te
hniques. In Mi
hael J. Wiener,editor, CRYPTO'99, volume 1666 of Le
ture Notes in ComputerS
ien
e, pages 181�197. Springer, 1999.[Ko
95℄ Cetin Kaya Ko
. RSA hardware implementation. Te
hni
al Re-port TR801, RSA Laboratories, 1995.[LB88℄ Pil Joong Lee and Ernest F. Bri
kell. An observation on these
urity of M
Elie
e's publi
-key
ryptosystem. In C. G. Gün-ther, editor, EUROCRYPT'88, volume 330 of Le
ture Notes inComputer S
ien
e, pages 275�280. Springer, 1988.[LP98℄ Rudolf Lidl and Günter Pilz. Applied abstra
t algebra, 2-nd ed.Springer, 1998.[Lus06℄ Peter Lus
hny. Fast Fa
torial Fun
tions, 2000�2006.http://www.lus
hny.de/math/fa
torial/.[LV04a℄ Yi Lu and Serge Vaudenay. Faster
orrelation atta
k on Blue-tooth keystream generator E0. In Matthew K. Franklin, editor,CRYPTO'04, volume 3152 of Le
ture Notes in Computer S
i-en
e, pages 407�425. Springer, 2004.[LV04b℄ Yi Lu and Serge Vaudenay. Faster
orrelation atta
k on Blue-tooth keystream generator E0. In M. K. Franklin, editor,73

CRYPTO'04, volume 3152 of Le
ture Notes in Computer S
i-en
e, pages 407�425. Springer, 2004.[Mar95a℄ Georges Marsaglia. The Diehard Battery of Tests of Randomness,1995. Available at http://stat.fsu.edu/pub/diehard/.[Mar95b℄ Georges Marsaglia. The Diehard Battery of Tests of Randomness,1995. Available at http://stat.fsu.edu/pub/diehard/.[ME78℄ Robert J. M
 Elie
e. A publi
-key
ryptosystem based on alge-brai

oding theory. Te
hni
al report, Jet Propulsion Lab DeepSpa
e Network Progress report, 1978.[MGV05℄ Subhamoy Maitra, Kishan Chand Gupta, and AyineediVenkateswarlu. Results on multiples of primitive polynomialsand their produ
ts over GF(2). Theoreti
al Computer S
ien
e,341(1-3):311�343, 2005.[MN98℄ Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a623-dimensionally equidistributed uniform pseudo-random num-ber generator. ACM Trans. Model. Comput. Simul., 8(1):3�30,1998.[MNT02℄ Atsuko Miyaji, Masao Nonaka, and Yoshinori Takii. Knownplaintext
orrelation atta
k against RC5. In CT-RSA'02, Le
tureNotes in Computer S
ien
e, pages 131�148. Springer, 2002.[MS77℄ F.J. Ma
Williams and N.J.A. Sloane. The Theory of Error-Corre
ting Codes. North-Holland, 1977.[MS88℄ Willi Meier and Othmar Sta�elba
h. Fast
orrelation atta
kson stream
iphers. In C. G. Günther, editor, EUROCRYPT'88,volume 330 of Le
ture Notes in Computer S
ien
e, pages 301�314. Springer, 1988.[MS94℄ Willi Meier and Othmar Sta�elba
h. The self-shrinking genera-tor. In A. De Santis, editor, EUROCRYPT'94, pages 205�214.Springer, 1994.[MS01℄ Itsik Mantin and Adi Shamir. A pra
ti
al atta
k on broad
astRC4. In M. Matsui, editor, FSE'01, volume 2355 of Le
ture Notesin Computer S
ien
e, pages 152�164. Springer, 2001.[PTVF92℄ William H. Press, Saul A. Teukolsky, William T. Vetterling, andBrian P. Flannery. Numeri
al Re
ipes in C: The Art of S
ienti�
Computing. Cambridge University Press, 1992.74

[Pud01℄ Marina Pudovkina. A known plaintext atta
k on the ISAACkeystream generator. IACR ePrint Ar
hive, Report 2001/049,2001. Available at http://eprint.ia
r.org/2001/049.[Rom92℄ Steven Roman. Coding and information theory. Springer, 1992.[RSA78℄ Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Amethod for obtaining digital signatures and publi
-key
ryptosys-tems. Communi
ations of the ACM, 21(2):120�126, February1978.[RSP98℄ Andreas Rieke, Ahmad-Reza Sadeghi, and Werner Poguntke. Onprimitivity tests for polynomials. In ISIT'98, 1998.[Sha48℄ Claude E. Shannon. A mathemati
al theory of
ommuni
ation.The Bell System Te
hni
al Journal, 27:379�423, 1948.[Sho90℄ Vi
tor Shoup. On the deterministi

omplexity of fa
toringpolynomials over �nite �elds. Information Pro
essing Letters,33(5):261�267, 1990.[Sho05℄ Vi
tor Shoup. NTL: A Library for doing Number Theory, 2005.Available at http://shoup.net/ntl/.[Sie86℄ Thomas Siegenthaler. Cryptanalysts representation of nonlin-early �ltered ML-sequen
es. In Franz Pi
hler, editor, EURO-CRYPT'85, volume 219 of Le
ture Notes in Computer S
ien
e,pages 103�110. Springer, 1986.[Ste87℄ Ja
ques Stern. Se
ret linear
ongruential generators are not
ryp-tographi
ally se
ure. In In Pro
eedings of the 28th IEEE Sympo-sium on Foundations of Computer S
ien
e, pages 421�426, 1987.[TM71℄ Myron Tribus and Edward C. M
Irvine. Energy and information.S
ienti�
 Ameri
an, 225(3):179�188, 1971. (Note: the table of
ontents in this volume in
orre
tly lists this as volume 224).[Ver26℄ Gilbert S. Vernam. Cipher printing telegraph systems for se
retwire and radio telegraphi

ommuni
ations. Journal of the IEEE,pages 109�115, 1926.[Wag83℄ Samuel S. Wagsta�. Divisors of mersenne numbers. Mathemati
sof Computation, 40:385�397, 1983.[Wag02℄ David Wagner. A generalized birthday problem. In M. Yung,editor, CRYPTO'02, volume 2442 of Le
ture Notes in ComputerS
ien
e, pages 288�304. Springer, 2002.75

[Wal98℄ John Walker. ENT: A Pseudorandom Num-ber Sequen
e Test Program, 1998. Available athttp://www.fourmilab.
h/random/.[Yao82℄ Andrew C. Yao. Theory and appli
ations of trapdoor fun
tions.In Pro
eedings of the 23rd Annual Symposium on the Foundationsof Computer S
ien
e, IEEE, pages 80�91, 1982.

76

Appendi
esA Weak initial states in ISAACWe reprodu
e below a paper written at the end of the internship.Abstra
t. In this note, we study the deterministi
 random bits generatorISAAC. We present more than 28 135 initial states indu
ing a strongly biaseddistribution of the bits produ
ed at the �rst round of the algorithm, and astrong distinguisher requiring 2176 samples. We also show 232 states that
an be re
overed from the �rsts 8 192 bits produ
ed in less than 30 se
ondswith a paper an a pen, and point out minor weaknesses of the algorithm. Amodi�
ation of the algorithm is proposed to �x some of the �aws presented.ISAAC is a deterministi
 random bits generator designed in 1996. Itsauthor
laims [Jen96b℄ that it has �no bad initial states, not even the stateof all zeros�. We investigated the question, and fo
us in this note on sev-eral minor weaknesses and more than 28 135 states. We start by presentingISAAC, and end with a proposal of a modi�
ation of the algorithm.1 ISAAC1.1 PresentationISAAC is derived from the stream
ipher RC4. Although it is �designed to be
ryptographi
ally se
ure� [Jen96b℄, no se
urity proof is given, and it seriouslyla
ks analysis: only statisti
al tests argue for its se
urity [Jen96b℄, and untilnow, only one publi
ation [Pud01℄ ta
kled it, presenting a state re
overyatta
k running in time 101 240.We follow the des
ription of the algorithm provided in Figure 4 of [Jen96b℄;the internal state is an array of 256 32-bit words, and at ea
h round, the algo-rithm outputs another array of 256 32-bit words. In the following, S denotesthe initial state, and Si its ith element, while β denotes the �rst output, and
βi its ith element, for i ∈ {0, . . . , 255}. The generation algorithm takes asparameters three values a, b and c, the �rst two are 32-bit, the third is 8-bit,77

initialized to an arbitrary value, and modi�ed at ea
h round: a is used as akind of entropy a

umulator, b
ontains the previous pseudo-random word,and c is a simple
ounter, in
remented at ea
h round of the algorithm. Theirinitial values are publi
, and are not part of the se
ret initial state. We givethe generation algorithm in a readable form in Algorithm .1, for an arbitraryround, where the internal state is I, the output is O, and the inputs a, b,and c are those
omputed in the previous round. The symbol ⊕ denotes thebitwise XOR, + stands for the usual integer addition, and ≪, ≫, are bitshifting operators �à la C�.Input: a, b, c, and the internal state I, an array of 256 32-bit wordsOutput: an array O of 256 32-bit words1: c→ c+ 12: b→ b+ c3: for i = 0, . . . , 255 do4: x→ Ii5: a→ f(a, i) + I(i+128) mod 2566: Ii → a+ b+ I(x≫2) mod 2567: Oi → x+ S(Ii≫10) mod 2568: b→ Oi9: end for10: return OAlgorithm .1: ISAAC algorithm for an arbitrary round.The value f(a, i) in Algorithm .1 is a 32-bit word, de�ned for all a and
i ∈ {0, . . . , 255} as:

f(a, i) =















a≪ 13 if i ≡ 0 mod 4
a≫ 6 if i ≡ 1 mod 4
a≪ 2 if i ≡ 2 mod 4
a≫ 16 if i ≡ 3 mod 4

.We dedu
e the algorithm used to
ompute the �rst ouput β from the initialstate S, depi
ted in Algorithm .2. This redundant algorithm is given for abetter understanding of the following developments.1.2 ObservationsThe notation ≡ stands for the equivalen
e modulo 232 hereafter.Theorem 1. For a random initial state S, and �xed a, b, and c,
Pr

[

∃i ∈ {1, . . . , 255}, β0 ≡ S0 + Si mod 232
]

≥ 255

256
≈ 0.9961.78

Input: a, b, c, and the initial state SOutput: the array β of 256 32-bit words1: b→ b+ c+ 12: for i = 0, . . . , 255 do3: x→ Si4: a→ f(a, i) + S(i+128) mod 2565: Si → a+ b+ S(x≫2) mod 2566: βi → x+ S(Si≫10) mod 2567: b→ βi8: end for9: return βAlgorithm .2: ISAAC algorithm
omputing the �rst ouput β from theinitial state S.Proof. Let µ = f(a, 0) + S128 + b + c + 1 + S(S0≫2) mod 256, be the valueobtained at line 5 of Algorithm .2, at the �rst iteration (i = 0). At line 6 ,when i = 0, we get β0 = S0 + λ, where λ = µ if (µ ≫ 10) mod 256 6= 0,and λ = S(µ≫10) mod 256 otherwise. Sin
e S0 is random, (S0 ≫ 2) mod 256is a random value in {0, . . . , 255}. Sin
e S128 is random, then µ is a randomvalue in {0, . . . , 232 − 1}. Hen
e µ ≫ 10 mod 256 6= 0 with probability
255/256, whi
h proves the result.When there exists 1 < i < 256 su
h that β0 = S0 + Si, S0 and i are
orre
tly guessed with probability respe
tively 2−32 and 1/255. Thus onere
overs S0 and Si for a
ertain i, with probability 2−32×1/255×255/256 =
2−40, whereas ideally this probability should be 2−64.Theorem 2. Let i a given value in {0, . . . , 255}. For a random initial state
S, and �xed a, b, and c,

Pr [β0 − β1 ≡ S0 − Si] ≥
254

2562
≈ 0.0039.Proof. We distinguish two
ases, for random S, and �xed a, b, c:

• i = 1: from the previous theorem, we get β0 ≡ S0+Sj and β1 ≡ S1+Sj,for some 1 < j < 256, with probability 254/2562 .
• i 6= 1: for similar reasons, we get β0 ≡ S0 + S1 and β1 ≡ S1 + Si withprobability 254/2562 .Eventually, for all �xed i, β0 − β1 is equivalent to S0 − Si with probabilitygreater than 254/2562 , whi
h
ompletes the proof.Generalizing this to all the
ouples (βi, βj), the average number of
olli-sions (of pairs (βi = Se + Sf , βj = Sg + Sf), for some e, f, g in {0, . . . , 255})79

is
254
∑

i=1

i× 256− i
256

≈ 43.Nevertheless, sin
e there is no trivial way to identify the
olliding pairs amongthe 128×255 = 32 640 possible ones, the interest of this last result is limited.But note that two previous fa
ts would be dramati
 if ISAAC was used as akeystream generator; it would allow a passive adversary to obtain informa-tion on the key (namely the equivalen
e
lass of S0 − Si) with probability
254/2562 .Theorem 3. Let N ∈ {1, . . . , 127}, and set Si = X for all i > N , and
Si = Y for i ≤ N , with �xed positive integers X < 29 and Y < 210. When
a = b = c = 0, the following fa
ts arise:
• if N = 0, then

β0 =

{

X + 2Y + 1 if Y ∈ {0, . . . , 3}
2X + Y + 1 if Y ∈ {4, . . . , 210 − 1} ,

• if N = 1, then
β0 =

{

X + 2Y + 1 if Y ∈ {0, . . . , 7}
2X + Y + 1 if Y ∈ {8, . . . , 210 − 1} ,

• and generally, for 0 ≤ N < 128, if S0 = · · · = SN−1 = k, then
β0 =

{

X + 2Y + 1 if Y ∈ {0, . . . ,M}
2X + Y + 1 if Y ∈ {M + 1, . . . , 210 − 1} ,with M = max{m, (m≫ 2) < N}.Proof. These results dire
tly follow from Algorithm .2. and were veri�edautomati
ally with the original sour
e
ode [Jen96b℄ for all (X,Y).The limitation of X to 29
omes from the fa
t that above this limit,

(Si ≫ 10) 6= 0 (
f. line 6 of Algorithm .2). We also need Y < 210 so that,at line 5, we do not pi
k an index less than N , that is, for whi
h Si = Y .For the general
ase, the limit M
omes from the fa
t that, at the line 5 ofAlgorithm .2, we shall pi
k the value Y as soon as Y ≫ 2 is less than N − 1,and X otherwise. Finally, we need N < 128 in order to get i + 128 > N
mod 256 for all i ∈ {0, . . . , N − 1} (
f. line 4), and so a = X. We obtainexa
tly 29 × 210 × 27 = 226 su
h states.

80

2 A
lass of more than 2
8 135 weak initial states2.1 PropertiesThe states
onsidered have a fra
tion of random elements, and the remainingelements are �xed to the same value.Set N ∈ {2, . . . , 256} su
h that Si = X, for all i < N , for a �xed positive

X < 232, and the other Si's are all random 32-bit words. Then, for a random
X:

Pr[βi ≡ 2X] ≥ N − 1− i
256

, i = 0, . . . ,N − 1.Indeed, at line 6 of Algorithm .2, we have x = X, and so S(Si≫10) mod 256is equal to X if (Si ≫ 10) mod 256 is greater than i and stri
tly less than
N , that o

urs with probability about (N − 1 − i)/256, by Theorem 1 Theinequality
omes from the fa
t that, if we pi
k an index less than i, the wordat this position is X with probability 2−32. Eventually the value 2X shallappear with high probability,
ompared to a random bitstream. There areapproximately 232×254 = 28 128 su
h weak states.For example, if N = 64 and X = 0: the last 192 elements of S arerandom, and the 64 �rst ones set to 0, then Pr[β0 = β1 = 0] ≈ 0.06. Notethat, if N is as small as 2, Pr[β0 ≡ 2X] ≈ 1/256 ≈ 0.004, mu
h higher thanthe 2−32 of an ideal generator. Now
onsider slightly di�erent states; for arandom state where there exists N ∈ {1, . . . , 253} distin
t i ∈ {2, . . . , 255}su
h that Si = S0 = S1 = X, not ne
essarily the �rsts,

Pr[β0 = 2X] ≥ N + 1

256
and Pr[β1 = 2X] ≥ N

256
.There are more than 253 × 28 096 ≥ 28 103 su
h states, ex
luding the onesalready
aptured by the previous states mentionned.Analogously, for a random state where there exists N ∈ {1, . . . , 254}distin
t i ∈ {1, . . . , 255} su
h that Si = S0 = X,

Pr[β0 = 2X] ≥ N

256
.There are more than 254 × 28 128 ≥ 28 135 su
h states. We distinguish thiskind of states from the previous one, be
ause the latter
an be used by adistinguisher, while the former are mu
h more numerous.2.2 A strong distinguisherBased on the weak states presented, a strong distinguisher (see Chapter 3of [Gol01℄) is
onstru
ted. Brie�y, a strong distinguisher is a probabilisti
polynomially bounded algorithm, querying two bla
k boxes, ea
h returning abit sample of �xed length; for one box this sample is truly random, while the81

other's is produ
ed by a pseudo-random generator with a random (unknown)initial state.Here the boxes shall output samples of 64 bits at ea
h query, and thealgorithm shall sele
t as the �ISAAC box� the one where the �rst 32 bits arethe most frequently equal to the last 32's (that is, when β0 = β1 in ISAAC),and a random box if there is equality of o

uren
es. A random state is weakwith probability greater than 28 192−8 103 = 2−89. Thus for a random state,
Pr[β0 = β1 = 2X] ≥ 2−32 + 2−89 2

2562
= 2−32 + 2−104,whereas this probability is 2−32 for a truly random bitstream.Theorem 4 ([MS01℄). Let D1, D2 be distributions, and suppose that theevent E happens in D1 with probability p and un D2 with probability p(1+q).Then for small p and q, O(1

pq2) samples su�
e to distinguish D1 from D2with
onstant probability of su

ess.Applying this theorem to our distinguisher, we get p = 2−32 and p(1 +
q) = 2−32 + 2−104, that is, q = 2−72. Hen
e the distinguisher requires about
2176 samples.2.3 Consequen
esFor more than 28 135 states, the distribution of the βi's obtained is far fromthe uniform one: 2X appears with probability greater than 2−8, mu
h higherthan the 2−32 expe
ted. If su
h a state is used, one
an re
over X withprobability greater than 1/512, sin
e β0 takes the value 2X with probabilitygreater than 1/256, and there exists two distin
t solutions to the equation
2x ≡ 2X, with unknown x. Moreover, for the �rst kind of weak states, if Nis greater than, say, 216, then 2X appears in average more than 90 times,thus X is re
overed with high probability, and the random elements
an be
omputed by exhaustive sear
h, so as to �nd the full state, in 240 iterationsof a try-and-
he
k algorithm (there are roughly 272 su
h states).3 States with a
onstant valueWhen Si = X for all i ∈ {0, . . . , 255}, and a �xed positive X < 232, as aparti
ular
ase of the states in Se
tion 6.3.2, we get

Pr[βi ≡ 2X] ≥ 256 − i− 1

256
= 1− i+ 1

256
.The expe
ted number of i su
h that βi ≡ 2X is so greater than

255
∑

i=0

(1− i+ 1

256
) = 127.5.82

Hen
e more than half of the elements produ
ed at the �rst round are ≡ 2Xin average, when Si = X for i = 0, . . . , 255. It is thus straightforward todistinguish between a real random bitstream and a one produ
ed by ISAACinitialized with a state with
onstant value, sin
e the latter shall have abouthalf of the βi equal to 2X. The full state
an even be fully re
overed, in
onstant time: the equation x ≡ 2X has two solutions, trivially
omputed.The right solution is the one that produ
es β at the �rst round.4 Modi�
ation of the algorithmWe modify Algorithm .1 to �x the weaknesses stressed (
f. line 7).Input: a, b, c, and the internal state I, an array of 256 32-bit wordsOutput: an array O of 256 32-bit words1: c→ c+ 12: b→ b+ c3: for i = 0, . . . , 255 do4: x→ Si5: a→ f(a, i) + I(i+128) mod 2566: Ii → a+ b+ I(x≫2) mod 2567: Oi → x+ a⊕ S(Ii≫10) mod 2568: b→ Oi9: end for10: return OAlgorithm .3: Modi�ed ISAAC algorithm for an arbitrary round.This new algorithm has the following properties:
• The three theorems states in Se
tion 6.3.2 do not hold: we get β0 =
S0 + Si ⊕ (a ≪ 13 + S128), for a random state, S128 is random in
{0, . . . , 232 − 1}, thus so is a ≪ 13 + S128. This
ontradi
ts the two�rst theorems. The third is trivially
ontradi
ted.

• The weak states presented in Se
tion 6.3.2 have Pr[β0 ≡ 2X] ≈ 2−32,for the same reasons than previously.
• The probability stated for the states with a
onstant value does nothold anymore, but the states are still weak: for example, the all-zerostate gives β0 = a≪ 13 with probability 255/256.The Diehard battery of tests [Mar95b℄ is a set of statisti
al tests for DBRG's,and a su

ess to them is a notorious requirement for a good DBRG. Weapplyed those tests to 10 samples of 10 Mb of the original and of the modi�edalgorithm, they all su

essfully passed all the tests. It does not prove nothing,but guarantees a minimal quality of the pseudo-random bitstream.83

5 Con
lusionA random state is weak with probability 2−57, whi
h may not be negligible,depending on the appli
ation
onsidered. Indeed, weak states might distortsimulations, and harm
ryptographi
 appli
ations. In parti
ular, the all-zerostate should be avoided. We managed to �x some of the problems pointedout, however the new algorithm does not seem se
ure either. We hope thatthese results will help to �ll the la
k of study of ISAAC, and will inspiredeeper analysis.

84

B The Blum-Goldwasser asymmetri
 stream
ipherThis s
heme was designed in 1984 [BG85℄: en
ryption is non-deterministi
,and the s
heme is IND-CPA se
ure, assuming the hardness of predi
ting asequen
e of the BBS [BBS86℄ generator, and of the fa
torization of a Bluminteger (at least as hard as a RSA modulus).The publi
-key is a Blum integer N = pq (both p and q must be
ongruentto 3 modulo 4), and the se
ret key is the
ouple fa
tors (p, q). En
ryption
onsists in the generation of a keystream (b0, . . . , bℓ−1),
omputed as follows:1. r $←− {2, ℓ − 1}2. x0 ← r2 mod N3. For i = 0, . . . , ℓ− 1(a) bi ← least signi�
ant bit of xi(b) xi+1 ← x2
i mod N4. y ← x2ℓ

0 mod NThe value y is outputed along with the en
rypted message. Given y, pand q, one retreive the pseudo-random sequen
e (b0, . . . , bℓ−1) by
omputing
x0 the following way:1. rp ← y(p+1

4
)ℓ

mod p.2. rq ← y(q+1

4
)ℓ

mod q.3. x0 ← q(q−1 mod p)rp + p(p−1 mod q)rq mod N .Why de
ryption works ? By Fermat's theorem,
x

p+1

4

i+1 = x
p−1

2
+1

i ≡ xi mod p,and so y = x2ℓ

0 ≡ xℓ mod N , whi
h implies y(p+1

4
)ℓ ≡ x0 mod p. TheBézout identity gives q(q−1 mod p) + p(p−1 mod q) ≡ 1 mod N , hen
e,

q(x0q
−1 mod p) + p(x0p

−1 mod q) ≡ x0 mod N.Note that the random value r
an also be re
overed, by setting the exponentsof rp and rq to (p+1
4)ℓ+1. Thus it
ould be
onsidered as a part of themessage in a deterministi
 s
heme. If we only
onsider the pseudo-randomstream produ
ed by a se
ret state r, it
an be
ompared to TCHO2, wherethe seed is a
odeword and the pseudo-random generation is �randomized�by SLP

and Sγ . The Blum-Goldwasser s
heme
an also be viewed as aKEM/DEM s
heme, where the en
apsulated key is r (or x0), hidden in y,85

and the symmetri

ipher is a simple XOR with the message. Thus it isnot essentially an asymmetri
 stream
ipher, sin
e the �rst se
ret re
overedthanks to the private key is not the plaintext, but the seed of the BBSgenerator; its is a trapdoor pseudo-random generator, where the trap allowsto re
over the seed, not to
an
el dire
tly the bitstream as TCHO2 does.C Number of irredu
ible and primitivepolynomialsTo get a sharper expression of the average number of trials before �nding aprimitive polynomial P in the key generation stage, and for
uriosity, we givehere some results on the number of irredu
ible and primitive polynomials on a�nite �eld, mainly taken from the COS (http://www.theory.
s.uvi
.
a/).Proposition 13. The number of irredu
ible polynomials of degree n over Fqis
Lq(n) =

1

n

∑

d|n
µ

(n

d

)

qdwhere µ is the M®bius fun
tion: µ(m) is equal to 0 if m is not square-free,otherwise (−1)k with k the number of distin
t primes in the fa
torization of
m. This result is linked with the domain of
ombinatori
s: Lq(n) is alsoequal to the number of Lyndon words (words that are smaller than any oftheir right fa
tors, for a lexi
ographi
 ordering) of length n on an alphabetof q distin
t symbols.Proposition 14. The number of primitive polynomials of degree n over Fqis

Pq(n) =
φ(qn − 1)

nwhere φ is Euler's totient fun
tion.Thus the probability that a random irredu
ible binary polynomial ofdegree n is primitive is
φ(2n − 1)

∑

d|n µ
(

n
d

)

2d
,note that, if n =

∏

pi∈P
pαi
i , there are ∏

i(αi + 1) divisors of n.Example 12. Then there are exa
tly 52 377 irredu
ible and 24 000 primitivebinary polynomials of degree 20 (45 %), and respe
tively 99 858 and 84 672of degree 21 (89 %). For prime degrees leading to a Mersenne prime, thereas as many irredu
ible as primitive polynomials.86

A known result states that L2(n)
an be asymptoti
ally approximated to
2n/n. We verify this experimentaly: for degrees in [1, 200] the average errorfra
tion of the real value is roughly 0.015, whereas it is about 8.65 ·10−17 fordegrees in [800, 1 000].Proposition 15 ([GM01℄). The exa
t number of multiples of weight v (with
onstant term 1) of any primitive polynomial of degree t is

Nd,v =
1

v − 1

(

2t − 2

v − 2

)

−Nt,v−1 −
v − 1

v − 2
(2t − v + 1)Nt,v−2with initial
onditions Nt,1 = Nt,2 = 0.

87

