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Abstract. The cryptographic hash function Codefish is an out-
come of a research project led by the company KRIPTO Research
and the University of Debrecen in Hungary, and sponsored by the
European Union and the Hungarian Government. It is commer-
cialised by KRIPTO Research, for use in security protocols like
digital signature, authentication, or message checksum. Codefish
benefits of strong mathematical foundations, since it grounds its
security on the difficulty of solving norm form equations. This pa-
per demonstrates that it is insecure for cryptographic applications,
by presenting practical attacks for solving the problems Second
Preimage and Collision.

1. Introduction

Hash functions play a fundamental role in modern cryptography.
They appear in a variety of protocols, be it for encryption, authenti-
cation, or message integrity; it is commonplace to refer to them as the
Swiss Army knife of cryptographers.

A hash function maps a message of arbitrary length to some small
fixed length bit string, called hash-value, fingerprint, or digest. For a
hash function h to be secure, the three following problems should be
hard to solve:

• Preimage: given a random image y, find x such that h(x) = y
• Second Preimage: given a random message x, find x′ 6= x

such that h(x) = h(x′).
• Collision: find x and x′ such that h(x) = h(x′) and x 6= x′.

Codefish is the product name of a cryptographic hash function intro-
duced in 2004 by Bérczes, Ködmön, and Pethő [1]; it is an outcome of
a project led by the company KRIPTO Research1 and the University
of Debrecen in Hungary, and sponsored by the European Union and
the Hungarian Government.

The author is supported by the Swiss National Science Foundation, under
project number 113329.

1See http://www.kripto.hu/.
1



2 JEAN-PHILIPPE AUMASSON

Codefish grounds its security on the difficulty of solving norm form
equations, claiming mathematical proofs that it is preimage and colli-
sion resistant—in other words, that the problems Preimage and Col-
lision are hard to solve, which implies that Second Preimage is
hard as well.

This paper shows that, despite the mathematical guarantees given,
it is easy to find many preimages of zero for Codefish (i.e. solving
Collision), and presents how to solve efficiently Second Preimage.
These results do not contradict the proofs of the designers, because they
considered a non-standard notion of collision-resistance, similar to the
notion of universal hashing.

Our attacks are practical and represent concrete threats when Code-
fish is used, e.g. , for digital signature, checksum, or authentication
protocols. For example it allows an adversary to forge valid DSA
signatures, and HMAC message authentication codes. The software
commercialised should thus urgently be patched.

2. Description of Codefish

Let s be the product of two 512-bit primes, and n be a small integer.
Define a word Xi as a an element of Zs, and a block as a n-tuple of
words.

Codefish follows a rather unusual iterated scheme: it hashes X1 . . . X`,
` > n, by computing H1 = N (X1, . . . , Xn), then

H2 = N (H1, Xn+1, . . . , X2n−1), H3 = N (H1, X2n, . . . , X3n−2)

and so on until X` is reached. Null inputs are added to fill the last
block, if needed. The digest returned is the last Hi computed. A
general formula of the recursion is

Hi+1 = N (Hi, Xn+i(n−1), . . . , Xn+(i+1)(n−1)).

The compression function N returns the determinant in Zs of the n×n
circulant matrix constructed from the input words: e.g. to compress
X1 . . . Xn it computes

N (X1, . . . , Xn) = det




X1 X2 . . . Xn

Xn X1 . . . Xn−1

. . . . . . . . . . . .
X2 X3 . . . X1


 .

A nice property of circulant matrices is that their eigenvalues are of the
form

∑n
i=1 Xiω

i−1, where ω is here an n-th root of unity in Zs (see [2,3]
for more about circulant matrices).
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On the KRIPTO company’s website2, the datasheet of Codefish spec-
ifies an additional parameter m, that allows N to take a reduced num-
ber of input words, i.e. redefining

N (X1, . . . , Xm) = det




X1 X2 . . . Xm 0 . . . 0
0 X1 . . . Xm−1 Xm . . . 0

. . . . . . . . . . . . . . . . . . . . .
X2 X3 . . . 0 0 . . . X1


 .

This clearly speeds up the computation of determinants, but increases
the number of calls to N .

3. Homomorphic Property

It is well known that the inverse of a circulant matrix is circulant, and
that the product of two circulant matrices is circulant. Furthermore,
recall that for any n×n matrices A and B over the same abelian ring,
we have det(A)× det(B) = det(AB).

Let arbitrary blocks X1 . . . Xn and Y1, . . . , Yn. It follows that

N (X1, . . . , Xn)×N (Y1, . . . , Yn) = N (Z1, . . . , Zn)

with Zi =
∑n

j=1 XjYn−j+1+i, i = 1, . . . , n, where indexes are reduced
modulo n. We can thus find the digest of Z1 . . . Zn without com-
puting explicitly N , provided that h(X1 . . . Xn) = N (X1 . . . Xn) and
h(Y1 . . . Yn) = N (Y1 . . . Yn) are known. This property is generally per-
ceived as undesirable, though does not help to find collisions.

4. Finding Preimages of Zero

Observe that N (0, . . . , 0) = 0; hence, for any ` > 0, if X1 = X2 =
· · · = X` = 0 then h(X1 . . . X`) = 0. This is because all intermediate
hash values H1, . . . , H`−1 are null, and the last block is padded with ze-
ros. More generally, N (X1, . . . , Xn) = 0 whenever the circulant matrix
formed from X1 . . . Xn has determinant 0 in Zs.

For example, if the additional parameter m is used, and set equal
to n, then a one-block message X1 . . . Xn has the zero hash value if
X1 = X2 = · · · = Xn.

If m < n, choosing X1 . . . Xm with X1 = −X2 mod s, X1 and X2

coprime with s, and X3 = · · · = Xm = 0, also leads to a matrix with
null determinant.

The observation above can be used to find a preimage of zero from
any given prefix: Let X1 . . . X` be an arbitrary message, and suppose
` is of the form m + k(m − 1); append the block Y1 . . . Ym with Y1 =

2See http://www.kripto.hu/kripto/codefish.html.
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· · · = Ym = h(X1 . . . X`): N then finally computes the determinant of
a constant matrix, so we get h(X1 . . . X`Y1 . . . Ym) = 0.

We demonstrated the easiness of finding preimages of the zero digest
for Codefish; however, this does not break preimage resistance, because
we are still not able to find preimages of a random image. Nevertheless,
it clearly breaks its collision resistance.

5. Solving Second Preimage

Recall that for any matrix A the equality det(AT ) = det(A) holds.
For Codefish, we can exploit this property to solve the problem Second
Preimage, as follows: Let X1, . . . , Xn be the first n words of the
message received; write A the corresponding circulant matrix; compute
AT , and denote its first line (Y1, . . . , Yn). We can now replace X1 . . . Xn

by Y1 . . . Yn = X1XnXn−1 . . . X2 to form a second message with same
hash value as the original one.

Why does this work? (1) since X1 . . . Xn is a random block, we have
X1 . . . Xn 6= Y1 . . . Yn that holds with high probability, and (2) the
circulant matrices constructed from these entries have the same deter-
minant, from our preliminary observation. It follows N (X1, . . . , Xn) =
N (Y1, . . . , Yn), and thus the second message created will have same
digest as the received one, which solves the problem Second Preim-
age.

Another attack exploits a symmetry of the algebra of circulant ma-
trices (see [3]). Denoting circ(X1, . . . , Xn) the circulant matrix whose
first row is (X1, . . . , Xn), we have for 0 < k < n

det circ(X0, . . . , Xn−1) = (−1)k(n−1) det circ(Xk, Xk+1, . . . , . . . , Xk−1),

where k + 1, k − 1, etc. are reduced modulo n.
From the first block of a message it is thus easy to find a distinct block

that has the same image by the compression function. For example,
for an odd n and an arbitrary X1, . . . , Xn for which exist i, j such that
Xi 6= Xj, we have

N (X1, . . . , Xn) = (X2, . . . , Xn, X1).

6. Conclusion

We have shown that the hash function Codefish is not collision-
resistant, by presenting a simple method that finds many preimages
of the null hash value. Our attack is practical and applies to all in-
stances of Codefish.

We have then shown that Codefish is not second-preimage resistant.
We presented two attacks that exploit algebraic properties of circulant
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matrices. However, the parameters proposed for practical use make
these attacks unfeasible for long messages. But they remain feasible
for short messages; for example for the parameters propose m = 5, n =
7, the second-preimage attacks apply for message of at most 4 Kbits
(because in this case using the symmetric property leads to a valid
message block, i.e. with null blocks at the end).
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