
Faster Multicollisions∗

Jean-Philippe Aumasson

FHNW, Windisch, Switzerland

Abstract. Joux’s multicollision attack is one of the most striking results
on hash functions and also one of the simplest: it computes a k-collision
on iterated hashes in time ⌈log2 k⌉ · 2n/2, whereas k!1/k · 2n(k−1)/k was
thought to be optimal. Kelsey and Schneier improved this to 3 · 2n/2 if
storage 2n/2 is available and if the compression functions admits eas-
ily found fixed-points. This paper presents a simple technique that re-
duces this cost to 2n/2 and negligible memory, when the IV can be cho-
sen by the attacker. Additional benefits are shorter messages than the
Kelsey/Schneier attack and cost-optimality.

Keywords: hash function, collision.

1 Introduction

Cryptographic hash functions are key ingredients in numerous schemes like
public-key encryption, digital signatures, message-authentication codes, or mul-
tiparty functionalities. The last past years the focus on hash functions has dra-
matically increased, because of new attacks on the compression algorithm of
MD5 and SHA-1 and on their high-level structure, e.g. multicollision attacks.
We introduce these attacks below.

Consider an arbitrary function f : {0, 1}n × {0, 1}m 7→ {0, 1}n. A classic
construction [23, 24] defines the iterated hash of f as the function

hH0
(M1 . . . Mℓ):

for i = 1, . . . , ℓ do
Hi ← f(Hi−1,Mi)

return Hℓ

where H0 is called the initial value (IV), and f the compression function. Damg̊ard
and Merkle [6, 17] independently proved in 1989 that h is collision-resistant if f
is collision-resistant when the bitlength of the message is appended at its end
(a technique referred as MD-strengthening). This technique also prevents the
fixed-point attack—a folklore multicollision attack—whose basic idea is that if
M satisfies f(H0,M) = H0, then hH0

(M . . . M) = H0.
The problem we will focus on is how quickly one can compute k distinct mes-

sages mapping by hH0
to the same value, when MD-strengthening is applied (call

∗Article previously accepted to SECRYPT 2008, but withdrawn by the author
because unable to attend the conference. This author was supported by the Swiss
National Science Foundation under project no. 113329.

this a k-collision). An extension of the birthday attack computes k-collisions1

within about k!1/k · 2n(k−1)/k calls to f , which was believed to be the optimal
until the technique of [9] that requires only ⌈log2 k⌉ · 2n/2 f -calls. Kelsey and
Schneier subsequently reduced this cost to 3 · 2n/2 [11], provided that storage
2n/2 is available, and that f admits easily found fixed-points. Though seldom
cited, this technique is more powerful than Joux’s in the sense that the cost of
finding a k-multicollision is independent of k, yet a drawback is the length of
the colliding messages, significantly larger.

1.1 Contribution

This paper reviews the previous techniques for computing k-collisions, and presents
a novel method whose main features are

– a cost independent of the number of colliding messages k (with 2n/2 trials)
– short colliding messages (with ⌈log2 k⌉ blocks)
– negligible storage requirements

Limitations of the attack are the need for easily found fixed-points, and the
IV chosen by the attacker. This means that the IV used for the multicollisions
cannot be set to a predefined value, which corresponds to the model called “semi-
free-start collisions” in [13], “collision with different IV” in [20], and “collision
(random IV)” in [16]. Within this model, our technique is optimal, because k-
collisions become as expensive as collisions.

The practical impact of this attack is limited, because it does not break
the complexity barrier 2n/2. However, in terms of price/performance ratio (or
“value” [20, §2.5.1]) it outperforms all the previous attacks, since for the same
price as a collision, one gets k-collisions.

1.2 Related Work

Multicollisions received a steady amount of attention since Joux’s attack: [18, 8]
generalized them to constructions where a message block can be used multiple
times; [29] revisited the birthday attack for multicollision; dedicated multicolli-
sion attacks were found for MD2 [12] and MD4 and HAVAL [30]. Finally, [10]
used multicollisions for the “Nostradamus attack”.

1.3 Notations

Let f : {0, 1}n × {0, 1}m 7→ {0, 1}n be the compression function of the iterated
hash hH0

, for an arbitrary H0, where MD-strengthening is applied. If f admits
easily found fixed-points, write FPf : {0, 1}m 7→ {0, 1}n a function such that for
all M , FPf (M) is a fixed-point for f , i.e. f(FPf (M),M) = FPf (M).

1Plural is used because from any k-collision we can derive many other k-collisions,
by appending the same arbitrary data at the end of colliding messages.

Then, fix a unit of time (e.g. an integer addition, a call to f , a MIPS-year,
etc.), and a unit of space (e.g. a bit, a 32-bit word, a n-bit chaining value, a
128 Gb hard drive, etc.), and write the cost of computing f as Tf time units
and Sf space units (resp. TFP and SFP for FPf); we assume these costs input-
independent; we disregard the extra cost of auxiliary operations and memory
accesses (though of certain practical relevance); we also disregard the constant
factor caused by “memoryless” birthday attacks [28, 22].

Note that our goal is to find (the description of) many messages with same
digest, not to effectively construct them. Hence, the time cost of finding a k-
collision is not lower-bounded by k (e.g. k steps of a Turing machine), neither
are the space requirements.

2 Joux Multicollisions

This method computes 2k-collisions for k times the cost of finding a single col-
lision: Assuming m < n, first compute a colliding pair (M1,M

′

1), i.e. such that
f(H0,M1) = f(H0,M

′

1) = H1, then compute a second colliding pair (M2,M
′

2)
such that f(H1,M2) = f(H1,M

′

2) = H2, and so on until (Mk,M ′

k) with Hk−1

as IV. Hence, for a symbol X ∈ {M,M ′}, any of the 2k messages of the form
X1 . . . Xk has intermediate hash values H1, . . . ,Hk, and 2k-collisions can be de-
rived from these 2k messages by appending extra blocks with correct padding.
The cost of the operations above is time k · 2n/2 ·Tf , and negligible space.

H0

H0

H0

H0 M ′

1

M1

M ′

1

M1

H1

H1

M2

M ′

2

H2

H
H

Hj

H
H

Hj

�
�

�*

�
�

�*
H

H
Hj

�
�

�*

Fig. 1. Illustration of Joux’s method for k = 2: first a collision f(H0, M1) =
f(H0, M

′

1) = H1 is computed, then a second collision f(H1, M2) = f(H1, M
′

2) = H2 is
found; the 4 colliding messages are M1M2, M1M

′

2, M ′

1M2, and M ′

1M
′

2.

Fig. 1 gives an intuitive presentation of the attack; computing a 2k-collision
can be seen as the bottom-up construction of a binary tree, where each collision
increases by one the tree depth. Note that a chosen IV does not help the attacker.

3 Kelsey/Schneier Multicollisions

As an aside in their paper on second-preimages, Kelsey and Schneier reported
a method for computing k-collisions when f admits fixed-points [11, §5.1]; an

advantage over Joux’s attack is that the cost no longer depends on k. Here we
will detail this result, which benefited of only a few informal lines in [11], and is
seldom refered in literature.

3.1 Fixed-Points

A fixed-point for a compression function f is a pair (H,M) such that f(H,M) =
H. For a random f finding a fixed-point requires about 2n trials, by brute force
search. Because it does not represent a security threat per se, neither it helps to
find preimages or collisions, that property has not been perceived as an undesir-
able attribute: in 1993, Preneel, Govaerts and Vandewalle considered that “this
attack is not very dangerous” [21], and according to Schneier in 1996, this “is
not really worth worrying about” [27, p.448]; the HAC is more prudent, writing
“Such attacks are of concern if it can be arranged that the chaining variable has
a value for which a fixed point is known” [16, §9.102.(iii)].

The typical example is the Davies-Meyer construction for blockcipher-based
compression functions, which sets f(H,M) = EM (H)⊕H. Hence, for any M a
fixed point is (E−1

M (0),M):

EM (E−1
M (0))⊕ E−1

M (0) = 0⊕ E−1
M (0) = H.

Therefore, each message block M has a unique H that gives f(H,M) = H and
that is trivial to compute2.

Note that the functions MD4/5 and SHA-0/1/2 all implicitly follow a Davies-
Meyer scheme (where integer addition replaces XOR). More generally, an it-
erated hash may admit fixed-points for a sequences of compressions rather
than a single compression—e.g. for two compressions, defining f ′(H,M,M ′) =
f(f(H,M),M ′). Generic multicollision attacks apply as well to this type of func-
tion, up to a redefinition of f and m.

3.2 Basic Strategy

We first consider the simplest case, i.e. when any IV is allowed. Recall the fixed-
point attack mentioned in §1, which exploits a fixed-point f(H,M) = H to
build the multicollision hH(M) = hH(MM) = hH(MMM . . . M) = H. MD-
strengthening protects against this attack, since it forces the last blocks of the
messages to be distinct. The idea behind Kelsey/Schneier multicollisions is to
bypass MD-strengthening using a second fixed-point. This fixed-point will be
used to adjust the length of all messages to a similar value, to get the same
padding data in all messages. Fig. 2 illustrates this attack: fix n > 2; if the first
fixed-point is repeated k times, then the second fixed-point is repeated n − k
times to have n blocks in total. The last block imposed by MD-strengthening
will thus be the same for all messages. Assuming one exploits the fixed-point
f(H0,M0) = H0, the second fixed-point is integrated via a meet-in-the-middle
technique (MITM) that goes as follows:

2Similar fixed-points can be found for the constructions numbered 5 to 12 in [21].

1. Compute a list L1:

(M1, f(H0,M1)), . . . , (M2n/2 , f(H0,M2n/2)).

2. Compute a list L2:

(M ′

1,FP(M ′

1)), . . . , (M
′

2n/2 ,FP(M2n/2)).

3. Look for a collision on the second pair element (Mi,Hj) ∈ L1, (M ′

j ,Hj) ∈ L2.
4. Construct colliding messages of the form M0 . . . M0MiM

′

j . . . M ′

j , such that
the length of the whole message is kept constant.

The attack runs in time 2n/2 · Tf + 2n/2 · TFP, and needs storage Sf + SFP +
2n/2 · S(n+m), with S(n+m) the space used to store a (n + m)-bit string. These
values are independent of the size of the multicollision. The length of messages
is addressed later.

H0 - H0 . . . H0
- Hj - Hj Hj - Hn

H0 - H0 H0
- Hj - Hj . . . Hj - Hn

Fig. 2. Schematic view of the Kelsey/Schneier multicollision attack, for an IV chosen
by the attacker: a first fixed-point allows to expand the message, while a second one
adjust the lengths to a similar value.

When the IV is restricted to a specific value, the first fixed-point has to be
introduced with another MITM; time cost grows to 2 · 2n/2 · Tf + 2n/2 · TFP,
and storage is similar (the second MITM reuses the space allocated for the first
one).

3.3 Multiple Fixed-Points and Message Length

In the above attack, a k-collision contains messages of about k blocks. In com-
parison, Joux’s method produces messages of ⌈log2 k⌉ blocks. This gap can be
reduced by using more than two fixed-points: Assume that K > 2 fixed-points
are integrated in the message. The attack now runs in time (K − 1)(2n/2 ·Tf +
2n/2 ·TFP), counting (K − 1) MITM’s, for a chosen IV. Also suppose a limit of
ℓ blocks per message (e.g. a maximum number of blocks allowed by a design,
typically 264), with ℓ > 2K.

Given the limit ℓ, how large can be a multicollision in terms of K? The
number of constructible colliding messages is equal to the number of compositions

of ℓ having at most K non-null summands3. The number we are looking for is

3A composition (or ordered partition) of a number is a way of writing it as an
ordered sum of positive integers. For example, 3 admits four compositions: 3, 2 + 1,
1 + 2, 1 + 1 + 1.

Cℓ,K =
∑K−1

i=0

(

ℓ
i

)

(summing over the number of separators), so we will get a
Cℓ,K-collision.

For example, consider SHA-256, which admits fixed-points: with K = 8 one
finds 257-collisions in time about 14 ·2128, with 1024-block messages; in compari-
son Joux’s method computes 257-collisions in time about 57 · 2128, with 57-block
messages, and if we fix the message length to 1024 it finds 21024-collisions, in
time about 1024 · 2128. This stresses that a small number of fixed-points leads
to much longer messages. Performance becomes similar for the two attacks (in
terms of time cost, message length, and k) when K = ⌊ℓ/2⌋.

4 Faster Multicollisions

This section presents a method applicable when the compression function admits
easily found fixed-points (like MD5, SHA-1, SHA-256), and when the IV can be
chosen by the attacker. Despite its relative simplicity it has not mentioned in
the literature, as far as we know.

H0

H0

H0

H0 M ′

1

M1

M ′

1

M1

H0

H0

M1

M ′

1

H0

H
H

Hj

H
H

Hj

�
�

�*

�
�

�*
H

H
Hj

�
�

�*

Fig. 3. Illustration of our technique for k = 2: a fixed-point collision f(H0, M1) =
f(H0, M

′

1) = H0 is computed, then the four colliding messages are M1M1, M1M
′

1,
M ′

1M1, and M ′

1M
′

1. Contrary to Joux’s attack, H0 is here chosen by the attacker.

4.1 Description

The key idea of the attack is that of fixed-point collision, i.e. a collision for the
function FPf ; since FPf outputs n-bit this costs time TFP ·2

n/2 and space SFP. A
fixed-point collision is a pair (M,M ′) such that FPf (M) = FPf (M ′) = H0, and
thus f(H0,M) = f(H0,M

′) = H0. The distribution of H0 (as a random variable)
depends on f and FPf ; e.g. for Davies-Meyer schemes based on a pseudoranom
permutation (PRP), this will be uniform.

Once found a fixed-point collision (M,M ′), a 2k-collision can be constructed
by considering all the k-block sequences in the set {M,M ′}k followed by an

arbitrary sequence of blocks M⋆ with convenient padding. For example, a 4-
collision will be

H0
M
→ H0

M
→ H0

M⋆

→ H

H0
M
→ H0

M ′

→ H0
M⋆

→ H

H0
M ′

→ H0
M
→ H0

M⋆

→ H

H0
M ′

→ H0
M ′

→ H0
M⋆

→ H

The sole significant computation is for finding a fixed-point collision, hence the
whole attack costs time TFP · 2

n/2 and memory SFP (with negligible overhead).
For instance, for a Davies-Meyer function computing FPf has the same cost as
computing f , thus time cost is Tf · 2

n/2. Observe that the attack requires no
call to the compression function itself, but just to the derived function FPf .

If computing fixed-points is nontrivial but easier than expected, this attack
becomes more efficient than Joux’s as soon as k > TFP/Tf (for computing
2k-collisions).

4.2 Finding Fixed-Point Collisions

For a PRP-based Davies-Meyer compression function, the cost of finding a fixed-
point collision (i.e. FPf (M) = FPf (M ′)) equals the cost of finding a collision
(i.e. f(H0,M) = f(H0,M

′)); indeed in both cases the function is essentially
one query to the PRP, thus the same refined birthday-based methods can be
used [28, 22].

This suggests that for Davies-Meyer functions (like MD5, SHA-1, SHA-256)
finding a fixed-point collision is cost-equivalent to finding a collision: indeed the
goal is now to find (M,M ′) such that E−1

M (0) = E−1
M ′(0), while classical collisions

need EM (H) = EM ′(H). Therefore, if E is a PRP then finding a fixed-point
collision with fixed IV is exactly as hard a finding a collision.

For hash functions that don’t have obvious fixed-points, finding a fixed-point
collision is at least as hard as finding a collision. Contrary to Davies-Meyer
schemes, the ability to find fixed-IV collisions does not directly allow to find
fixed-point collisions.

The statements above cover other blockcipher-based schemes that allow the
easy finding of fixed-points (cf. the 8 schemes in [21]). We conjecture that known
techniques for finding collisions on MD5 and SHA-1 can be adapted to find fixed-
point collisions within similar complexity.

4.3 Distinct-Length Multicollisions

The attacks of Joux and Kelsey/Schneier find colliding messages of same length.
A variant of our technique allows to find sets of messages that collide and do
not all have the same block length. The idea is to find a fixed-point collision
f(H,M) = f(H,M ′) = H such that M and M ′ contain valid padding bits,

that is, are of the form . . . 10 . . . 0‖ℓ. The chosen message bitlength ℓ should
be different for M and M ′, and be consistent with the number of zeros added.
Finding a fixed-point collision with these restrictions is not more expensive than
in the general case as soon as at least n/2 bits in the message blocks are not
padding bits.

Once a pair (M,M ′) with the above conditions is found, we can directly
describe multicollisions. Suppose for example that M = . . . 10 . . . 0‖ℓ and M ′ =
. . . 10 . . . 0‖ℓ′, where ℓ encodes the length of a 2-block message, and ℓ′ encodes the
length of a 3-block message. Then the messages M‖M , M ′‖M , M‖M‖M ′,. . . ,
M ′‖M ′‖M ′ all have the same hash value by hH , and have suitable message
length encoding.

4.4 Comparison to Joux and Kelsey/Schneier

Compared to Joux’s technique, ours has the advantage of a cost independent
of k; optimality of the algorithm follows (with respect to the assumption that
a single collision costs at least 2n/2 f -calls). Compared to Kelsey/Schneier, our
technique benefits of short messages (⌈log2 k⌉ for a k-collision), and no storage
requirement. However, our attack is limited by the chosen IV, which makes it
irrelevant for many applications of hash functions.

Consider for example an attacker with 2130 · Tf power to attack SHA-256:
with Joux’s technique he finds 4-collisions, with Kelsey/Schneier’s he finds k-
collisions with k-block messages if memory 2128 ·S(768) is available, and with our
method he finds k-collisions of length ⌈log2 k⌉ for 4 different IV’s, for any k.

4.5 Application to Concatenated Hash Functions

Let the hash function H(M) = hH0
(M)‖h′

H′

0

(M), where h is an iterated hash

whose compression function f admits fixed-points, and h′ and ideal hash func-
tion (in practice, h and h′ might be the same function, and use different IV’s).
Suppose further that both hash to n-bit digests.

A basic birthday attack finds collisions onH within 2n calls to h, and as many
to h′; Joux reduced this cost to n/2 · 2n/2 · Tf + 2n/2 · Th′ . Our multicollision
technique applies similarly, if the IV of h can be chosen by the attacker: first
compute a 2n/2-collision for h, in time 2n/2 ·TFP, then look for a collision on h′

among these messages, in time 2n/2 ·Th′ . Assuming Th′ = Tf , we get an overall
cost 2n/2+1 ·Tf , instead of (n+1) ·2n/2 ·Tf with Joux’s technique. Our method
is almost optimal, since it almost reaches the cost of computing a collision on h
or h′ (up to a factor 2).

4.6 Countermeasures

The foremost question is “do we really need countermeasures?” A pragmatic
answer would be negative, arguing that the barrier 2n/2 remains intact thus the
security level is not reduced; however, from a price/performance perspective,

security is clearly damaged. So if cheap countermeasures exist there seems to be
really few reasons to ignore them.

The first obvious measure against our attacks and Kelsey/Schneier’s is to
avoid easy-to-find fixed-points. For example by using one of the four blockcipher-
based constructions in [21] that have no fixed-points. Another choice is to “dither”
the hash function, i.e. adding a stage-dependent input to the compression func-
tion, cf. [2, 25, 5, 11, 1, 4]). For example by adding a counter to the input of f ,
such that Hi = f(Hi−1,Mi, i). Dithering however doesn’t protect against Joux’s
method, since this computes a new collision for every dither value.

Joux’s attack can be prevented by a technique like the “wide-pipe” and
“double-pipe” of [14] or the similar chop-MD [5] construction, which enlarge
the chain values compared to the hash value. This trick also makes our at-
tack unapplicable, because it increases the cost of finding fixed-point collisions.
Kelsey/Schneier attacks are applicable when fixed-points are easily found.

Another construction proposed in [15] prevents from all multicollision attacks
presented here, including ours. Generally, our attack will work for some hash
construction when both Joux’s and Kelsey/Schneier do, hence won’t work when
at least one does not apply.

A construction published in Dean’s thesis [7, §5.6.3, credited to Lipton] con-
sists in hashing M as M̃‖M̃ , with M̃ the padded message, to simulate a “variable
IV”. This prevents all nontrivial multicollision attacks, but is unreasonably in-
efficient.

5 Conclusions

We presented a multicollision attack applicable to iterated hashes when the
IV can be chosen by the attacker, and when fixed-points for the compression
function are easy to find. This can be seen as a variant of Joux’s attack when
some restrictions are put on the hash function (Joux’s attack works for any IV
and doesn’t need fixed-points).

Our attack leaves open two related issues:

1. Can we find other generic attacks on iterated hashes that exploit easily-found
fixed-points?

2. How to find fixed-point collisions for dedicated hash functions?

Current known generic attacks using fixed-points are those of Dean for second-
preimages [7, 5.3.1], Kelsey/Schneier for multicollision [11], and ours in this
paper. Fixed-point collisions are likely to be found using similar techniques as
collisions, for blockcipher-based functions. Positive results to those two issues
would lead to new generic attacks (finding collisions or preimages) and new
dedicated attacks (finding fixed-points).

Acknowledgements

I wish to thank the referees of ICALP 2008 for many helpful comments, and
John Kelsey for suggesting the attack of §4.3.

References

1. Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John
Kelsey, Adi Shamir, and Sébastien Zimmer. Second preimage attacks on dithered
hash functions. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of LNCS,
pages 270–288. Springer, 2008.

2. Jean-Philippe Aumasson and Raphael C.-W. Phan. How (not) to efficiently dither
blockcipher-based hash functions? In Serge Vaudenay, editor, AFRICACRYPT,
volume 5023 of LNCS, pages 308–324. Springer, 2008.

3. Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA.
Second NIST Cryptographic Hash Workshop, 2006.

4. Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278, 2007. Extended version of [3].

5. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO, volume 3621 of LNCS, pages 430–448. Springer, 2005.

6. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 416–427. Springer, 1989.

7. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Prince-
ton University, 1999.

8. Jonathan Hoch and Adi Shamir. Breaking the ICE - finding multicollisions in
iterated concatenated and expanded (ICE) hash functions. In Matthew J. B.
Robshaw, editor, FSE, volume 4047 of LNCS, pages 179–194. Springer, 2006.

9. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS,
pages 306–316. Springer, 2004.

10. John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus
attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of LNCS, pages
183–200. Springer, 2006.

11. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In Ronald Cramer, editor, EUROCRYPT, volume 3494
of LNCS, pages 474–490. Springer, 2005.

12. Lars R. Knudsen and John Erik Mathiassen. Preimage and collision attacks on
MD2. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of LNCS,
pages 255–267. Springer, 2005.

13. Xuejia Lai and James Massey. Hash function based on block ciphers. In Rainer A.
Rueppel, editor, EUROCRYPT, volume 658 of LNCS, pages 55–70. Springer, 1992.

14. Stefan Lucks. Design principles for iterated hash functions. Cryptology ePrint
Archive, Report 2004/253, 2004.

15. Ueli M. Maurer and Stefano Tessaro. Domain extension of public random functions:
Beyond the birthday barrier. In Alfred Menezes, editor, CRYPTO, volume 4622
of LNCS, pages 187–204. Springer, 2007.

16. Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

17. Ralph Merkle. One way hash functions and DES. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 428–446. Springer, 1989.

18. Mridul Nandi and Douglas Stinson. Multicollision attacks on generalized hash
functions. Cryptology ePrint Archive, Report 2004/330, 2004. Later published
in [19].

19. Mridul Nandi and Douglas Stinson. Multicollision attacks on a class of hash func-
tions. IEEE Transactions on Information Theory, 53:759–767, 2007.

20. Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

21. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Douglas R. Stinson, editor, CRYPTO, volume
773 of LNCS, pages 368–378. Springer, 1993.

22. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search?
Application to DES (extended summary). In Jean-Jacques Quisquater and Joos
Vandewalle, editors, EUROCRYPT, volume 434 of LNCS, pages 429–434. Springer,
1989.

23. Michael Rabin. Digitalized signatures. In Richard Lipton and Richard DeMillo,
editors, Foundations of Secure Computation, pages 155–166. Academic Press, 1978.

24. Michael Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, MIT, 1979.

25. Ronald Rivest. Abelian square-free dithering for iterated hash functions. ECRYPT
Conference on Hash Functions, 2005. Also presented in [26].

26. Ronald Rivest. Abelian square-free dithering for iterated hash functions. First
NIST Cryptographic Hash Workshop, 2005.

27. Bruce Schneier. Applied Cryptography. John Wiley & Sons, second edition, 1996.
28. Robert Sedgewick, Thomas G. Szymanski, and Andrew Chi-Chih Yao. The com-

plexity of finding cycles in periodic functions. SIAM Journal of Computing,
11(2):376–390, 1982.

29. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
paradox for multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC, volume 4296 of LNCS, pages 29–40. Springer, 2006.

30. Hongbo Yu and Xiaoyun Wang. Multi-collision attack on the compression functions
of MD4 and 3-pass HAVAL. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC,
volume 4817 of LNCS, pages 206–226. Springer, 2007.

