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Abstract. Joux’s multicollision attack is one of the most striking results
on hash functions and also one of the simplest: it computes a k-collision
on iterated hashes in time ⌈log2 k⌉ · 2n/2, whereas k!1/k · 2n(k−1)/k was
thought to be optimal. Kelsey and Schneier improved this to 3 · 2n/2 if
storage 2n/2 is available and if the compression functions admits eas-
ily found fixed-points. This paper presents a simple technique that re-
duces this cost to 2n/2 and negligible memory, when the IV can be cho-
sen by the attacker. Additional benefits are shorter messages than the
Kelsey/Schneier attack and cost-optimality.
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1 Introduction

Cryptographic hash functions are key ingredients in numerous schemes like
public-key encryption, digital signatures, message-authentication codes, or mul-
tiparty functionalities. The last past years the focus on hash functions has dra-
matically increased, because of new attacks on the compression algorithm of
MD5 and SHA-1 and on their high-level structure, e.g. multicollision attacks.
We introduce these attacks below.

Consider an arbitrary function f : {0, 1}n × {0, 1}m 7→ {0, 1}n. A classic
construction [23, 24] defines the iterated hash of f as the function

hH0
(M1 . . . Mℓ):

for i = 1, . . . , ℓ do
Hi ← f(Hi−1,Mi)

return Hℓ

where H0 is called the initial value (IV), and f the compression function. Damg̊ard
and Merkle [6, 17] independently proved in 1989 that h is collision-resistant if f
is collision-resistant when the bitlength of the message is appended at its end
(a technique referred as MD-strengthening). This technique also prevents the
fixed-point attack—a folklore multicollision attack—whose basic idea is that if
M satisfies f(H0,M) = H0, then hH0

(M . . . M) = H0.
The problem we will focus on is how quickly one can compute k distinct mes-

sages mapping by hH0
to the same value, when MD-strengthening is applied (call
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this a k-collision). An extension of the birthday attack computes k-collisions1

within about k!1/k · 2n(k−1)/k calls to f , which was believed to be the optimal
until the technique of [9] that requires only ⌈log2 k⌉ · 2n/2 f -calls. Kelsey and
Schneier subsequently reduced this cost to 3 · 2n/2 [11], provided that storage
2n/2 is available, and that f admits easily found fixed-points. Though seldom
cited, this technique is more powerful than Joux’s in the sense that the cost of
finding a k-multicollision is independent of k, yet a drawback is the length of
the colliding messages, significantly larger.

1.1 Contribution

This paper reviews the previous techniques for computing k-collisions, and presents
a novel method whose main features are

– a cost independent of the number of colliding messages k (with 2n/2 trials)
– short colliding messages (with ⌈log2 k⌉ blocks)
– negligible storage requirements

Limitations of the attack are the need for easily found fixed-points, and the
IV chosen by the attacker. This means that the IV used for the multicollisions
cannot be set to a predefined value, which corresponds to the model called “semi-
free-start collisions” in [13], “collision with different IV” in [20], and “collision
(random IV)” in [16]. Within this model, our technique is optimal, because k-
collisions become as expensive as collisions.

The practical impact of this attack is limited, because it does not break
the complexity barrier 2n/2. However, in terms of price/performance ratio (or
“value” [20, §2.5.1]) it outperforms all the previous attacks, since for the same
price as a collision, one gets k-collisions.

1.2 Related Work

Multicollisions received a steady amount of attention since Joux’s attack: [18, 8]
generalized them to constructions where a message block can be used multiple
times; [29] revisited the birthday attack for multicollision; dedicated multicolli-
sion attacks were found for MD2 [12] and MD4 and HAVAL [30]. Finally, [10]
used multicollisions for the “Nostradamus attack”.

1.3 Notations

Let f : {0, 1}n × {0, 1}m 7→ {0, 1}n be the compression function of the iterated
hash hH0

, for an arbitrary H0, where MD-strengthening is applied. If f admits
easily found fixed-points, write FPf : {0, 1}m 7→ {0, 1}n a function such that for
all M , FPf (M) is a fixed-point for f , i.e. f(FPf (M),M) = FPf (M).

1Plural is used because from any k-collision we can derive many other k-collisions,
by appending the same arbitrary data at the end of colliding messages.



Then, fix a unit of time (e.g. an integer addition, a call to f , a MIPS-year,
etc.), and a unit of space (e.g. a bit, a 32-bit word, a n-bit chaining value, a
128 Gb hard drive, etc.), and write the cost of computing f as Tf time units
and Sf space units (resp. TFP and SFP for FPf ); we assume these costs input-
independent; we disregard the extra cost of auxiliary operations and memory
accesses (though of certain practical relevance); we also disregard the constant
factor caused by “memoryless” birthday attacks [28, 22].

Note that our goal is to find (the description of) many messages with same
digest, not to effectively construct them. Hence, the time cost of finding a k-
collision is not lower-bounded by k (e.g. k steps of a Turing machine), neither
are the space requirements.

2 Joux Multicollisions

This method computes 2k-collisions for k times the cost of finding a single col-
lision: Assuming m < n, first compute a colliding pair (M1,M

′

1), i.e. such that
f(H0,M1) = f(H0,M

′

1) = H1, then compute a second colliding pair (M2,M
′

2)
such that f(H1,M2) = f(H1,M

′

2) = H2, and so on until (Mk,M ′

k) with Hk−1

as IV. Hence, for a symbol X ∈ {M,M ′}, any of the 2k messages of the form
X1 . . . Xk has intermediate hash values H1, . . . ,Hk, and 2k-collisions can be de-
rived from these 2k messages by appending extra blocks with correct padding.
The cost of the operations above is time k · 2n/2 ·Tf , and negligible space.
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Fig. 1. Illustration of Joux’s method for k = 2: first a collision f(H0, M1) =
f(H0, M

′

1) = H1 is computed, then a second collision f(H1, M2) = f(H1, M
′

2) = H2 is
found; the 4 colliding messages are M1M2, M1M

′

2, M ′

1M2, and M ′

1M
′

2.

Fig. 1 gives an intuitive presentation of the attack; computing a 2k-collision
can be seen as the bottom-up construction of a binary tree, where each collision
increases by one the tree depth. Note that a chosen IV does not help the attacker.

3 Kelsey/Schneier Multicollisions

As an aside in their paper on second-preimages, Kelsey and Schneier reported
a method for computing k-collisions when f admits fixed-points [11, §5.1]; an



advantage over Joux’s attack is that the cost no longer depends on k. Here we
will detail this result, which benefited of only a few informal lines in [11], and is
seldom refered in literature.

3.1 Fixed-Points

A fixed-point for a compression function f is a pair (H,M) such that f(H,M) =
H. For a random f finding a fixed-point requires about 2n trials, by brute force
search. Because it does not represent a security threat per se, neither it helps to
find preimages or collisions, that property has not been perceived as an undesir-
able attribute: in 1993, Preneel, Govaerts and Vandewalle considered that “this
attack is not very dangerous” [21], and according to Schneier in 1996, this “is
not really worth worrying about” [27, p.448]; the HAC is more prudent, writing
“Such attacks are of concern if it can be arranged that the chaining variable has
a value for which a fixed point is known” [16, §9.102.(iii)].

The typical example is the Davies-Meyer construction for blockcipher-based
compression functions, which sets f(H,M) = EM (H)⊕H. Hence, for any M a
fixed point is (E−1

M (0),M):

EM (E−1
M (0))⊕ E−1

M (0) = 0⊕ E−1
M (0) = H.

Therefore, each message block M has a unique H that gives f(H,M) = H and
that is trivial to compute2.

Note that the functions MD4/5 and SHA-0/1/2 all implicitly follow a Davies-
Meyer scheme (where integer addition replaces XOR). More generally, an it-
erated hash may admit fixed-points for a sequences of compressions rather
than a single compression—e.g. for two compressions, defining f ′(H,M,M ′) =
f(f(H,M),M ′). Generic multicollision attacks apply as well to this type of func-
tion, up to a redefinition of f and m.

3.2 Basic Strategy

We first consider the simplest case, i.e. when any IV is allowed. Recall the fixed-
point attack mentioned in §1, which exploits a fixed-point f(H,M) = H to
build the multicollision hH(M) = hH(MM) = hH(MMM . . . M) = H. MD-
strengthening protects against this attack, since it forces the last blocks of the
messages to be distinct. The idea behind Kelsey/Schneier multicollisions is to
bypass MD-strengthening using a second fixed-point. This fixed-point will be
used to adjust the length of all messages to a similar value, to get the same
padding data in all messages. Fig. 2 illustrates this attack: fix n > 2; if the first
fixed-point is repeated k times, then the second fixed-point is repeated n − k
times to have n blocks in total. The last block imposed by MD-strengthening
will thus be the same for all messages. Assuming one exploits the fixed-point
f(H0,M0) = H0, the second fixed-point is integrated via a meet-in-the-middle
technique (MITM) that goes as follows:

2Similar fixed-points can be found for the constructions numbered 5 to 12 in [21].



1. Compute a list L1:

(M1, f(H0,M1)), . . . , (M2n/2 , f(H0,M2n/2)).

2. Compute a list L2:

(M ′

1,FP(M ′

1)), . . . , (M
′

2n/2 ,FP(M2n/2)).

3. Look for a collision on the second pair element (Mi,Hj) ∈ L1, (M ′

j ,Hj) ∈ L2.
4. Construct colliding messages of the form M0 . . . M0MiM

′

j . . . M ′

j , such that
the length of the whole message is kept constant.

The attack runs in time 2n/2 · Tf + 2n/2 · TFP, and needs storage Sf + SFP +
2n/2 · S(n+m), with S(n+m) the space used to store a (n + m)-bit string. These
values are independent of the size of the multicollision. The length of messages
is addressed later.

H0 - H0 . . . H0
- Hj - Hj . . . . . . Hj - Hn

H0 - H0 . . . . . . H0
- Hj - Hj . . . Hj - Hn

Fig. 2. Schematic view of the Kelsey/Schneier multicollision attack, for an IV chosen
by the attacker: a first fixed-point allows to expand the message, while a second one
adjust the lengths to a similar value.

When the IV is restricted to a specific value, the first fixed-point has to be
introduced with another MITM; time cost grows to 2 · 2n/2 · Tf + 2n/2 · TFP,
and storage is similar (the second MITM reuses the space allocated for the first
one).

3.3 Multiple Fixed-Points and Message Length

In the above attack, a k-collision contains messages of about k blocks. In com-
parison, Joux’s method produces messages of ⌈log2 k⌉ blocks. This gap can be
reduced by using more than two fixed-points: Assume that K > 2 fixed-points
are integrated in the message. The attack now runs in time (K − 1)(2n/2 ·Tf +
2n/2 ·TFP), counting (K − 1) MITM’s, for a chosen IV. Also suppose a limit of
ℓ blocks per message (e.g. a maximum number of blocks allowed by a design,
typically 264), with ℓ > 2K.

Given the limit ℓ, how large can be a multicollision in terms of K? The
number of constructible colliding messages is equal to the number of compositions

of ℓ having at most K non-null summands3. The number we are looking for is

3A composition (or ordered partition) of a number is a way of writing it as an
ordered sum of positive integers. For example, 3 admits four compositions: 3, 2 + 1,
1 + 2, 1 + 1 + 1.



Cℓ,K =
∑K−1

i=0

(

ℓ
i

)

(summing over the number of separators), so we will get a
Cℓ,K-collision.

For example, consider SHA-256, which admits fixed-points: with K = 8 one
finds 257-collisions in time about 14 ·2128, with 1024-block messages; in compari-
son Joux’s method computes 257-collisions in time about 57 · 2128, with 57-block
messages, and if we fix the message length to 1024 it finds 21024-collisions, in
time about 1024 · 2128. This stresses that a small number of fixed-points leads
to much longer messages. Performance becomes similar for the two attacks (in
terms of time cost, message length, and k) when K = ⌊ℓ/2⌋.

4 Faster Multicollisions

This section presents a method applicable when the compression function admits
easily found fixed-points (like MD5, SHA-1, SHA-256), and when the IV can be
chosen by the attacker. Despite its relative simplicity it has not mentioned in
the literature, as far as we know.
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Fig. 3. Illustration of our technique for k = 2: a fixed-point collision f(H0, M1) =
f(H0, M

′

1) = H0 is computed, then the four colliding messages are M1M1, M1M
′

1,
M ′

1M1, and M ′

1M
′

1. Contrary to Joux’s attack, H0 is here chosen by the attacker.

4.1 Description

The key idea of the attack is that of fixed-point collision, i.e. a collision for the
function FPf ; since FPf outputs n-bit this costs time TFP ·2

n/2 and space SFP. A
fixed-point collision is a pair (M,M ′) such that FPf (M) = FPf (M ′) = H0, and
thus f(H0,M) = f(H0,M

′) = H0. The distribution of H0 (as a random variable)
depends on f and FPf ; e.g. for Davies-Meyer schemes based on a pseudoranom
permutation (PRP), this will be uniform.

Once found a fixed-point collision (M,M ′), a 2k-collision can be constructed
by considering all the k-block sequences in the set {M,M ′}k followed by an



arbitrary sequence of blocks M⋆ with convenient padding. For example, a 4-
collision will be

H0
M
→ H0

M
→ H0

M⋆

→ H

H0
M
→ H0

M ′

→ H0
M⋆

→ H

H0
M ′

→ H0
M
→ H0

M⋆

→ H

H0
M ′

→ H0
M ′

→ H0
M⋆

→ H

The sole significant computation is for finding a fixed-point collision, hence the
whole attack costs time TFP · 2

n/2 and memory SFP (with negligible overhead).
For instance, for a Davies-Meyer function computing FPf has the same cost as
computing f , thus time cost is Tf · 2

n/2. Observe that the attack requires no
call to the compression function itself, but just to the derived function FPf .

If computing fixed-points is nontrivial but easier than expected, this attack
becomes more efficient than Joux’s as soon as k > TFP/Tf (for computing
2k-collisions).

4.2 Finding Fixed-Point Collisions

For a PRP-based Davies-Meyer compression function, the cost of finding a fixed-
point collision (i.e. FPf (M) = FPf (M ′)) equals the cost of finding a collision
(i.e. f(H0,M) = f(H0,M

′)); indeed in both cases the function is essentially
one query to the PRP, thus the same refined birthday-based methods can be
used [28, 22].

This suggests that for Davies-Meyer functions (like MD5, SHA-1, SHA-256)
finding a fixed-point collision is cost-equivalent to finding a collision: indeed the
goal is now to find (M,M ′) such that E−1

M (0) = E−1
M ′(0), while classical collisions

need EM (H) = EM ′(H). Therefore, if E is a PRP then finding a fixed-point
collision with fixed IV is exactly as hard a finding a collision.

For hash functions that don’t have obvious fixed-points, finding a fixed-point
collision is at least as hard as finding a collision. Contrary to Davies-Meyer
schemes, the ability to find fixed-IV collisions does not directly allow to find
fixed-point collisions.

The statements above cover other blockcipher-based schemes that allow the
easy finding of fixed-points (cf. the 8 schemes in [21]). We conjecture that known
techniques for finding collisions on MD5 and SHA-1 can be adapted to find fixed-
point collisions within similar complexity.

4.3 Distinct-Length Multicollisions

The attacks of Joux and Kelsey/Schneier find colliding messages of same length.
A variant of our technique allows to find sets of messages that collide and do
not all have the same block length. The idea is to find a fixed-point collision
f(H,M) = f(H,M ′) = H such that M and M ′ contain valid padding bits,



that is, are of the form . . . 10 . . . 0‖ℓ. The chosen message bitlength ℓ should
be different for M and M ′, and be consistent with the number of zeros added.
Finding a fixed-point collision with these restrictions is not more expensive than
in the general case as soon as at least n/2 bits in the message blocks are not
padding bits.

Once a pair (M,M ′) with the above conditions is found, we can directly
describe multicollisions. Suppose for example that M = . . . 10 . . . 0‖ℓ and M ′ =
. . . 10 . . . 0‖ℓ′, where ℓ encodes the length of a 2-block message, and ℓ′ encodes the
length of a 3-block message. Then the messages M‖M , M ′‖M , M‖M‖M ′,. . . ,
M ′‖M ′‖M ′ all have the same hash value by hH , and have suitable message
length encoding.

4.4 Comparison to Joux and Kelsey/Schneier

Compared to Joux’s technique, ours has the advantage of a cost independent
of k; optimality of the algorithm follows (with respect to the assumption that
a single collision costs at least 2n/2 f -calls). Compared to Kelsey/Schneier, our
technique benefits of short messages (⌈log2 k⌉ for a k-collision), and no storage
requirement. However, our attack is limited by the chosen IV, which makes it
irrelevant for many applications of hash functions.

Consider for example an attacker with 2130 · Tf power to attack SHA-256:
with Joux’s technique he finds 4-collisions, with Kelsey/Schneier’s he finds k-
collisions with k-block messages if memory 2128 ·S(768) is available, and with our
method he finds k-collisions of length ⌈log2 k⌉ for 4 different IV’s, for any k.

4.5 Application to Concatenated Hash Functions

Let the hash function H(M) = hH0
(M)‖h′

H′

0

(M), where h is an iterated hash

whose compression function f admits fixed-points, and h′ and ideal hash func-
tion (in practice, h and h′ might be the same function, and use different IV’s).
Suppose further that both hash to n-bit digests.

A basic birthday attack finds collisions onH within 2n calls to h, and as many
to h′; Joux reduced this cost to n/2 · 2n/2 · Tf + 2n/2 · Th′ . Our multicollision
technique applies similarly, if the IV of h can be chosen by the attacker: first
compute a 2n/2-collision for h, in time 2n/2 ·TFP, then look for a collision on h′

among these messages, in time 2n/2 ·Th′ . Assuming Th′ = Tf , we get an overall
cost 2n/2+1 ·Tf , instead of (n+1) ·2n/2 ·Tf with Joux’s technique. Our method
is almost optimal, since it almost reaches the cost of computing a collision on h
or h′ (up to a factor 2).

4.6 Countermeasures

The foremost question is “do we really need countermeasures?” A pragmatic
answer would be negative, arguing that the barrier 2n/2 remains intact thus the
security level is not reduced; however, from a price/performance perspective,



security is clearly damaged. So if cheap countermeasures exist there seems to be
really few reasons to ignore them.

The first obvious measure against our attacks and Kelsey/Schneier’s is to
avoid easy-to-find fixed-points. For example by using one of the four blockcipher-
based constructions in [21] that have no fixed-points. Another choice is to “dither”
the hash function, i.e. adding a stage-dependent input to the compression func-
tion, cf. [2, 25, 5, 11, 1, 4]). For example by adding a counter to the input of f ,
such that Hi = f(Hi−1,Mi, i). Dithering however doesn’t protect against Joux’s
method, since this computes a new collision for every dither value.

Joux’s attack can be prevented by a technique like the “wide-pipe” and
“double-pipe” of [14] or the similar chop-MD [5] construction, which enlarge
the chain values compared to the hash value. This trick also makes our at-
tack unapplicable, because it increases the cost of finding fixed-point collisions.
Kelsey/Schneier attacks are applicable when fixed-points are easily found.

Another construction proposed in [15] prevents from all multicollision attacks
presented here, including ours. Generally, our attack will work for some hash
construction when both Joux’s and Kelsey/Schneier do, hence won’t work when
at least one does not apply.

A construction published in Dean’s thesis [7, §5.6.3, credited to Lipton] con-
sists in hashing M as M̃‖M̃ , with M̃ the padded message, to simulate a “variable
IV”. This prevents all nontrivial multicollision attacks, but is unreasonably in-
efficient.

5 Conclusions

We presented a multicollision attack applicable to iterated hashes when the
IV can be chosen by the attacker, and when fixed-points for the compression
function are easy to find. This can be seen as a variant of Joux’s attack when
some restrictions are put on the hash function (Joux’s attack works for any IV
and doesn’t need fixed-points).

Our attack leaves open two related issues:

1. Can we find other generic attacks on iterated hashes that exploit easily-found
fixed-points?

2. How to find fixed-point collisions for dedicated hash functions?

Current known generic attacks using fixed-points are those of Dean for second-
preimages [7, 5.3.1], Kelsey/Schneier for multicollision [11], and ours in this
paper. Fixed-point collisions are likely to be found using similar techniques as
collisions, for blockcipher-based functions. Positive results to those two issues
would lead to new generic attacks (finding collisions or preimages) and new
dedicated attacks (finding fixed-points).
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