
Analysis and Design of Symmetric Cryptographic Algorithms

Jean-Philippe Aumasson

October 23, 2009

Abstract

This thesis is concerned with the analysis and design of symmetric cryptographic algorithms,
with a focus on real-world algorithms.

The first part describes original cryptanalysis results, including:

• The first nontrivial preimage attacks on the (reduced) hash function MD5, and on the full
HAVAL. Our results were later improved by Sasaki and Aoki, giving a preimage attack
on the full MD5.

• The best key-recovery attacks so far on reduced versions of the stream cipher Salsa20, se-
lected by the European Network of Excellence ECRYPT as a recommendation for software
applications, and one of the two ciphers (with AES) in the NaCl cryptographic library.

• The academic break of the block cipher MULTI2, used in the Japanese digital-TV standard
ISDB. While MULTI2 was designed in 1988, our results are the first analysis of MULTI2
to appear as an international publication.

We then present a general framework for distinguishers on symmetric cryptographic algorithms,
based on the cube attacks of Dinur and Shamir: our cube testers build on algebraic property-
testing algorithms to mount distinguishers on algorithms that possess some efficiently testable
structure. We apply cube testers to some well known algorithms:

• On the compression function of MD6, we distinguish 18 rounds (out of 80) from a random
function.

• On the stream cipher Trivium, we obtain the best distinguisher known so far, reaching
885 rounds out of 1152.

• On the stream cipher Grain-128, using FPGA devices to run high-complexity attacks, we
obtain the best distinguisher known so far, and can conjecture the existence of a shortcut
attack on the full Grain-128.

These results were presented at FSE 2008, SAC 2008, FSE 2009, and SHARCS 2009.

The second part of this thesis presents a new hash function, called BLAKE, which we submitted
to the NIST Hash Competition. Besides a complete specification, we report on our implemen-
tations of BLAKE in hardware and software, and present a preliminary security analysis. As of
August 2009, BLAKE is one of the 14 submissions accepted as Second Round Candidates by
NIST, and no attack on BLAKE is known.

Keywords: cryptanalysis, cryptography, , hash functions, stream ciphers, block ciphers

i

ii

Résumé

Cette thèse présente de nouvelles attaques sur plusieurs algorithmes de cryptographie symétrique
utilisés en pratique, dont:

• Les premières attaques non-triviales d’inversion de la fonction de hachage MD5 (réduite).
Nos résultats ont depuis été améliorés par Sasaki et Aoki, culminant avec une attaque sur
la version complète de MD5

• Les meilleures attaques sur le stream cipher Salsa20, récemment sélectionné par le réseau
d’excellence européen ECRYPT comme recommandation pour les applications software.

• Des attaques sur la version complète MULTI2, le block cipher utilisé par le standard
japonais de télévision numérique (ISDB). Depuis la creation de MULTI2 en 1988, aucune
analyse de MULTI2 n’a été publiée.

Nous présentons ensuite une nouvelle classe de méthodes algébriques (nommée cube testers)
pour distinguer un algorithme symétrique d’un algorithme “idéalement pseudo-aléatoire”, à
partir des cube attacks de Dinur et Shamir et d’algorithmes de test de propriétés algébriques.
Plusieurs applications des cube testers sont présentées:

• À la fonction de compression de MD6: nous détectons des propriétés sur au plus 18 rounds;
en comparaison, les cube attacks atteignent 15 rounds.

• Au stream cipher Trivium, avec un distingueur sur 885 rounds, contre 771 pour la précedente
meilleure attaque, et 1152 dans la version complète.

• Au stream cipher Grain-128, en utilisant une implémentation sur des FPGA, nous obtenons
les meilleures attaques connues.

Ces résultats ont été presentés à FSE 2008, SAC 2008, FSE 2009, et SHARCS 2009.

La seconde partie de cette thèse est consacrée à BLAKE, la fonction de hachage que nous avons
soumise à la NIST Hash Competition. Après une spécification complète, nous présentons nos
implémentations hardware et software, et une analyse préliminaire de l’algorithme. Jusqu’à
aujourd’hui (août 2009), aucune attaque contre BLAKE n’a été publiée.

Mots clés: cryptanalyse, cryptographie, fonctions de hachage, stream ciphers, block ciphers

iii

iv

Contents

1 Introduction 1

1.1 Hash Functions and Stream Ciphers in 2009 . 2

1.2 Overview . 3

2 Background 5

2.1 Notations . 5

2.2 Formal Definitions . 5

2.2.1 Stream Ciphers . 6

2.2.2 Block Ciphers . 6

2.2.3 Hash Functions . 7

2.3 Constructing Hash Functions . 7

2.3.1 Merkle-Damg̊ard Hash . 7

2.3.2 Modern Constructions . 8

2.3.3 Hashing with Block Ciphers . 9

2.4 On Cryptanalytic Attacks . 10

3 The Cryptanalyst’s Toolbox 13

3.1 Bruteforce Search . 13

3.1.1 Multi-Target and Parallel Bruteforce . 13

3.1.2 In Practice . 13

3.2 Differential Cryptanalysis . 14

3.2.1 Differences and Differentials . 14

3.2.2 Finding Good Differentials . 15

3.2.3 Using Differentials . 16

3.2.4 Message Modification Techniques . 17

3.2.5 Advanced Differential Attacks . 17

3.3 Efficient Black-Box Collision Search . 18

3.3.1 Tails and Cycles . 18

3.3.2 Cycle Detection Based Methods . 19

3.3.3 Parallel Search with Distinguished Points 20

3.3.4 Application to Meet-in-the-Middle . 20

3.4 Multicollision Search for Iterated Hashes . 21

3.4.1 Fixed Points . 21

3.4.2 Joux’s Method . 22

3.4.3 Kelsey and Schneier’s Method . 22

3.4.4 Faster Multicollisions . 23

3.5 Quantum Attacks . 24

v

I Cryptanalysis 27

4 Preimage Attacks on the Hash Functions MD5 and HAVAL 29

4.1 Description of MD5 and HAVAL . 29

4.1.1 The Compression Function of MD5 . 30

4.1.2 The Compression Function of HAVAL . 31

4.2 Preimage Attacks on the Compression Function of MD5 32

4.2.1 Preimage Attack on 32 Steps . 32

4.2.2 Preimage Attack on 45 Steps . 34

4.2.3 Preimage Attack on 47 Steps . 36

4.3 Preimage Attacks on the Compression Function of HAVAL 36

4.3.1 Preimage Attack A . 37

4.3.2 Preimage Attack B . 38

4.4 Extension to the Hash Functions . 38

4.5 Conclusion . 40

5 Key-Recovery Attacks on the Stream Ciphers Salsa20 and ChaCha 41

5.1 Salsa20 and ChaCha . 41

5.1.1 Salsa20 . 41

5.1.2 ChaCha . 42

5.2 The PNB Technique . 43

5.3 Key Recovery on Salsa20 . 45

5.4 Key Recovery on ChaCha . 46

5.5 Conclusion . 46

6 Cryptanalysis of the ISDB Scrambling Algorithm MULTI2 47

6.1 Description of MULTI2 . 47

6.2 Related-Key Guess-and-Determine Attack . 51

6.3 Linear Cryptanalysis . 52

6.4 Related-Key Slide Attack . 52

6.5 Conclusion . 54

7 Cube Testers 55

7.1 Introduction to Cube Attacks . 55

7.2 Cube Testers . 59

7.2.1 Preliminaries . 59

7.2.2 Building on Algebraic Property Testing 61

7.3 Application to MD6 and Trivium . 64

7.3.1 MD6 . 64

7.3.2 Trivium . 67

7.4 Application to Grain-128 and Grain-v1 . 68

7.4.1 Brief Description of Grain-128 . 69

7.4.2 Software Bitsliced Implementation . 69

7.4.3 Hardware Parallel Implementation . 70

7.4.4 Evolutionary Search for Good Cubes . 72

7.4.5 Experimental Results and Extrapolation 74

7.4.6 Observations on Grain-v1 . 75

7.5 Conclusion . 76

vi

II Design of the Hash Function BLAKE 77

8 Preliminaries 79

8.1 Design Principles . 80

8.2 Expected Strength . 81

8.3 On Hashing with a Salt . 81

9 Specification 83

9.1 BLAKE-32 . 83

9.1.1 Constants . 83

9.1.2 Compression Function . 83

9.1.3 Hashing a Message . 86

9.2 BLAKE-64 . 87

9.2.1 Constants . 87

9.2.2 Compression Function . 87

9.2.3 Hashing a Message . 88

9.3 BLAKE-28 . 88

9.4 BLAKE-48 . 88

9.5 Conclusion . 89

10 Implementations 91

10.1 General Considerations . 91

10.2 ASIC and FPGA . 92

10.3 8-bit Microcontroller . 94

10.4 Large Processors . 95

10.4.1 Portable Implementations . 96

10.4.2 SSE2 Implementations . 97

10.4.3 Benchmark Results . 98

10.5 Conclusion . 99

11 Rationale and Analysis 101

11.1 Choosing Permutations . 101

11.2 Compression Function . 102

11.2.1 The G Function . 102

11.2.2 Round Function . 103

11.2.3 Structure of the Compression Function . 105

11.3 Iteration Mode . 107

11.4 Indifferentiability . 107

11.5 Pseudorandomness . 107

11.6 Applicability of Generic Attacks . 108

11.6.1 Length Extension . 108

11.6.2 Multicollisions . 108

11.6.3 Long-Message Second Preimages . 109

11.6.4 Side-Channel Attacks . 109

11.7 Dedicated Attack Strategies . 109

11.7.1 Exploiting Symmetric Differences . 109

11.7.2 Differential Attack . 110

11.7.3 Slide Attack . 110

11.7.4 Finding Fixed Points . 110

11.8 Conclusion . 111

vii

Bibliography 113

Currivulum Vitae 125

viii

Acknowledgments

This thesis is based primarily on six conference papers: [12] and [16] from FSE 2008, [15]
from SAC 2008, [10] and [14] from FSE 2009, and [9] from SHARCS 2009. It seems appropriate
to briefly sketch the story of each of these works.

The idea of PNB’s, at the heart of our attacks on Salsa20 and ChaCha [12], was found by
Shahram Khazaei in summer 2007. At the same period, Simon Fischer had started a work on
Rumba—then a potential SHA-3 candidate—with Christian Rechberger. Excited by the pre-
liminary results, I joined these two projects, starting a productive collaboration with Simon and
Shahram. Our results on Rumba were awarded the prize for the “most interesting cryptanalysis
of Rumba”, and I’d like thank to Dan and Tanja for the artistic certificates they made for us.

At that time, I was also writing my first paper with Raphael C.-W. Phan, a good friend
with whom I now share a couple of other publications [7, 13, 18, 171, 172]. It was planned from
the beginning to submit LAKE to FSE 2008, and we were of course also thinking about the
SHA-3 competition, yet BLAKE turned out much different. I’m grateful to all those who have
analyzed LAKE, for they indirectly contributed to the design choices made for BLAKE. Special
thanks go to Luca Henzen for his great work on the hardware side.

My second collaboration [15] with the amazing team of Graz was hatched at FSE 2008,
when I shared with Christian and Florian some ideas on how to invert MD5, inspired by
Leurent’s result on MD4. We began thinking how to improve the attack, and Florian later
noticed that it could be extended to HAVAL. Florian is a brilliant cryptanalyst, and I’d like to
thank him for everything I learnt from our collaboration.

The next publication [10] was triggered by the invited talks of CRYPTO 2008, when
Ronald Rivest presented MD6, while Adi Shamir presented cube attacks. After discovering
distinguishers on reduced MD6 (using methods accidentally related to cube attacks), I attended
a talk at ETHZ by Adi Shamir, who mentioned his unpublished results on MD6. I informed
him of my results, and we eventually decided to merge our works. I am particularly honored by
this collaboration, and I thank Itai for our good collaboration and for his last-minute findings!
Warm thanks also go to Ron Rivest for the interest he showed for my work, which was a great
motivation for me. We then pursued our the collaboration, jointly with Luca Henzen, to attack
Grain-128 [9].

The next paper on the list is my other FSE 2009 publication [14]: Shortly after he
joined LASEC as a postdoc, Jorge Nakahara told me he had some results on a cipher I’d never
heard about: MULTI2. We received assistance from “timecop”, Jack Laudo, and Pascal Junod
regarding the practical issues, while Kazumaro Aoki and Mitsuru Matsui helped us to find some
old papers in Japanese. It was really fun to attack this archaic cipher, and I’d like to thank
Jorge for initiating the project, and Pouyan Sepehrdad for his enthusiastic collaboration and
for his nice talk at FSE.

I would like to express my profound gratitude to Willi Meier, for his unconditional support,
and for his always professional, yet not overserious, supervision of my PhD. Willi’s expert
scientific guidance and tolerance for my style have provided the best possible research advisor
for me.

Special thanks are due to Raphael C.-W. Phan, for his help and advices, his profession-
alism, and for our past and future collaborations.

I had the chance to benefit of optimal working conditions at FHNW and EPFL. I’m
grateful to Heinz Burtscher for accepting a cryptographer in his team of physicists at FHNW,
and for reminding me to fill my CATS entries! At EPFL, I thank Serge Vaudenay for accepting
to supervise my master and doctoral theses, and for reserving me the biggest office in LASEC!

Finally, my unbounbed gratitude goes to my parents for their years-long support, and to
Paula for her continued love and care.

ix

x

Chapter 1

Introduction

Cryptology is often presented as the science of secret, and as the reunion of cryptography—the
design of algorithms and protocols—and of cryptanalysis—their analysis, and the search for
attacks. Introductions to the field commonly say a few words about classical cryptography (like
the simplistic “Caesar cipher”), and summarize the history of cryptography in the twentieth
century, from Turing’s cryptanalysis of Enigma and Shannon’s notion of perfect secrecy to
Diffie-Hellman and RSA. Textbooks and lecture notes already contain plenty of witty historical
anecdotes, so we will not develop this further but rather present the subject from another angle.

One can see the principal goal of cryptography as turning order into disorder, or, more
formally, as simulating randomness: block ciphers should ideally be pseudorandom permutations
(PRP), stream ciphers should ideally be some special kinds of pseudorandom generators (PRG),
and hash functions should be pseudorandom functions (PRF). From a theoretical standpoint,
however, it is not known whether simulating randomness is possible, but it is widely believed.
Indeed, PRG’s exist if and only if one-way functions exist [109], and one-way functions are
believed to exist (which would imply P 6= NP; the converse is not proved true).

The task of cryptographers is to design algorithms that achieve some cryptographic goal
and that have no property that a random algorithm would not have, to some extent. The task
of cryptanalysts is to analyze those algorithms, and in particular to seek a structure in order to
devise specific attacks (like key-recovery or collision search), or merely to distinguish them from
ideal algorithms. When an attack is found, the needle in the haystack is discovered either by
applying a previous attack strategy, or by employing some ad hoc trick, or with a new generic
attack method. This thesis contains illustrations of those three scenarios.

One subfield of cryptography is concerned with the design of provably secure schemes and
protocols. It is sometimes called modern cryptography, and opposed to the classical approach
that builds on ad hoc constructions and on third-party cryptanalysis. In the provable security
approach, one formally defines notions of security, and specifies a model used for conducting
proofs. The most common model is the so-called standard model1, which minimizes abstractions
as “oracles”. Common assumptions are the hardness of factoring and discrete logarithm (and
variants thereof), or that AES is a good PRP. Although it relies on unproved assumptions and
contains a part of abstraction, the standard model is regarded as the most realistic one.

When assumptions in the standard model are insufficient to achieve (or to prove) security,
one often resorts to the random oracle model (ROM). Formalized by Bellare and Rogaway [24],
the ROM gives to parties access to one or several public random functions that typically accept
as input bit strings of any finite length. Schemes proved secure in the ROM are generally
significantly more efficient than schemes proved secure in the standard model. But this model

1Not to be confused with the standard model of particle physics.

1

is often treated with suspicion, especially since the exhibition of uninstantiable schemes proved
secure in the ROM [72,148]. Similar results were given by Black [62] for the ideal cipher model,
which was recently proved to be polynomially equivalent to the ROM [78].

Although it provides essential guidance in the design of real-world schemes, the provable
security approach does not guarantee security in the physical world, for any model fails to
capture all the possible attack channels. Perhaps more importantly, security proofs do no
extend to the physical world because PRP’s, PRF’s, PRG’s are in practice all instantiated
with symmetric algorithms that are not proved secure (proved secure algorithms exist, but
are highly inefficient), while random oracles have no physical existence. Thus, cryptographic
schemes eventually rely on cryptanalysis for acquiring confidence in their security. In particular,
the approach of focused public cryptanalysis through cryptography competitions has proved its
effectiveness; for instance, most researchers are now comfortable with the assumption that AES
is a good PRP.

This thesis is a contribution to symmetric cryptography and cryptanalysis, with emphasis
on real-world cryptography. Our cryptanalysis results indeed cover algorithms that are widely
deployed, be it for internet security or for digital-TV copyright protection. Besides security, we
will also be concerned with practical efficiency and implementability constraints, in the design
and analysis of a new hash function. Design of a new algorithm is certainly a delicate task, for
one has to maximize both security and efficiency, two goals that tend to be incompatible. More-
over, it is in general difficult to quantify security, unlike efficiency, which makes cryptography
as much an art as a science.

1.1 Hash Functions and Stream Ciphers in 2009

A large fraction of this thesis is concerned with cryptographic hash functions2. Hash functions
are cryptographic algorithms that take as input a bit string of arbitrary length and return a
bit string of fixed length. Formally, a hash function is a mapping h : {0, 1}⋆ 7→ {0, 1}n, with
128 ≤ n ≤ 512 in general-purpose applications.

Hash functions are ubiquitous cryptographic tools: they are used in a multitude of pro-
tocols, be it for digital signatures within massive high-end servers, or for authentication of
tiny radio-frequency identification tags. Hash functions should satisfy diverse, and sometimes
incompatible, criteria of security, of speed, of power consumption, or of simplicity, to name a
few. Security is particularly difficult to achieve and to evaluate (and even difficult to define in
a sound manner) as the short history of cryptography demonstrates; compare for instance the
classical security notions in [174] with the Swiss-army-knife requirements presented in [98]. Yet
the minimal security requirements of a hash function are:

• Efficiency: Computing h(x) is easy for any x;

• Collision resistance: It is computationally difficult to find x 6= y such that h(x) = h(y);

• Preimage resistance: Given a random range element y, it is computationally difficult
to find x such that h(x) = y.

Modern applications require hash functions to achieve more sophisticated security notions, and
one can informally say that a good hash function should “look like” a random function. No-
tions such as indistinguishability, indifferentiability [148], or seed incompressibility [108] aim at
modeling such ideal behavior.

2Not to be confused with the hash functions used for table lookup.

2

Last past years have seen a surge of research on cryptographic hashing, since the discovery
of devastating collision attacks [75, 208, 219] on the two most commonly used hash functions,
MD5 and SHA-1. A notable milestone was the forgery of a MD5-signed certificate [205]. Such
results have lead to a lack of confidence in the current U.S. (and de facto worldwide) hash
standard, SHA-2 [161], due to its similarity with MD5 and SHA-1. As a response to the potential
risks of using SHA-2, the U.S. National Institute of Standards and Technology (NIST) launched
a public competition, the NIST Hash Competition, to select a new hash standard [164] that will
be called3 SHA-3. It is expected that SHA-3 has at least the security of SHA-2, and achieves
this with significantly improved efficiency.

By the deadline set on October 31, 2008, NIST received 64 submission packages; 51 were
accepted as first round candidates, and published at the beginning of December. In the mean-
time, about 30 submissions had been published on the internet, and notably on the SHA-3
Zoo4 of the ECRYPT project. Cryptanalysts could thus start analyzing the submissions just
a few days after the submission deadline, and so “low-hanging fruits” were quickly broken.
This competition catches the attention not only from academia, but also from industry—with
candidates submitted by IBM, Hitachi, Intel, and Sony—and from governments organizations.
The First SHA-3 Conference took place in February 2009 in Leuven, Belgium, where 36 out of
64 candidate algorithms were presented by their designers. In July 2009, NIST announced its
selection of 14 candidates for the second round of the competition. Leading research groups in
the cryptanalysis of hash functions include the Graz Institute of Technology’s IAIK team (Aus-
tria), K.U. Leuven’s COSIC group (Belgium), and University of Luxembourg’s LACS laboratory
(Luxembourg).

A nonnegligible part of this thesis is devoted on stream ciphers. As mentioned earlier,
stream ciphers should ideally be some special kind of PRG, and they are generally more suited
to hardware implementations than block ciphers. However, stream ciphers seem more difficult
to design than block ciphers, and the short history of cryptography is rich in examples of weak
stream ciphers. An international effort was launched in 2004 to develop good stream ciphers
through a public competition: the ECRYPT eSTREAM project5, after four years of analy-
sis, selected four stream ciphers recommended for software applications and four for hardware
applications. So far one of the four hardware ciphers has been broken.

1.2 Overview

Chapter 2 gives a synthetic introduction of symmetric cryptographic algorithms, with emphasis
on hash functions, and discusses related issues like the difficulty of comparing cryptanalytic
attacks.

Chapter 3 describes selected tools for cryptanalysis, continuing the pragmatic approach
introduced in the previous chapters. It concludes our introductory part with a brief presentation
of the potential impact of quantum computers on symmetric cryptography.

Part I of this thesis is devoted to original cryptanalysis results.

The famous hash function MD5 was designed in 1991, and it resisted cryptanalysis until
Wang’s collision attacks in 2004. However, no preimage attacks have been published on it in
more than 15 years. In Chapter 4, we describe such attacks on MD5 reduced to up to 47 out of

3Some believe that the name “SHA-3” is not appropriate, for it suggests that the function is yet another
version of SHA; proposals for a better name include “AHS” (for Advanced Hash Standard) or “ASH” (for
Advanced Standard for Hashing).

4See http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.
5eSTREAM is a project by the European network of excellence ECRYPT (2005-2008), see

http://www.ecrypt.eu.org.

3

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://www.ecrypt.eu.org

its 64 rounds, and show that the techniques used apply to the full version of the hash function
HAVAL.

Chapter 5 presents attacks on reduced versions of the stream ciphers Salsa20 and ChaCha.
Salsa20 was a candidate in the eSTREAM competition, and was finally selected in the portfolio
of software ciphers. ChaCha is a variant of Salsa20 that seems more secure, yet not slower,
than Salsa20. Our best attacks, which are also the best known results on these ciphers, apply
to Salsa20 and to ChaCha reduced to eight and seven rounds, respectively, out of 20.

Chapter 6 continues our series of dedicated attacks with a cryptanalysis of MULTI2, the
block cipher used in the Japanese standard protocol for digital-TV. This cipher is mainly used
for copy control, and has remained unbroken since 1988. We present several attacks that break
all the versions of MULTI2, but which are not realizable in practice, and thus do not directly
affect the security of the digital-TV systems deployed.

Chapter 7 takes a step towards automated cryptanalysis with the presentation of cube
testers, a class of generic algebraic methods related to the cube attacks of Dinur and Shamir.
Cube testers combine techniques of cube attacks with property-testing algorithms, and poten-
tially apply to broad classes of cryptographic algorithms. We show applications of cube testers
to the hash function MD6, and on the stream ciphers Trivium and Grain. In particular, we
present the first realization of a hardware “cracking machine” implementing high-degree cube
testers.

In Part II of the thesis, we present BLAKE, our hash function candidate to the SHA-3
competition.

After a brief introduction in Chapter 8 , we give a complete specification of BLAKE in
Chapter 9. Chapter 10 then reports on our implementations of BLAKE and on benchmarks
on various platforms, from ASIC to Intel Core 2 processors. Finally, design rationale and a
preliminary analysis of BLAKE are given in Chapter 11.

4

Chapter 2

Background

HASH, x. There is no definition for this word—nobody knows what hash is.

—Ambrose Bierce, The Devil’s Dictionary

2.1 Notations

We use notations common in the cryptography literature, and each chapter defines its proper
notations. A word is either a 32-bit or a 64-bit string, depending on the context; numbers in
hexadecimal basis are written in typewriter with upper case letters (for example F0 = 240). The
notation log denotes the logarithm in base 2, and ln denotes the natural logarithm. Table 2.1
summarizes the main symbols used.

Symbol Meaning

← variable assignment
+ addition modulo 232 or (modulo 264)
− subtraction modulo 232 or (modulo 264)
⊕ bitwise exclusive OR (XOR)
∧ bitwise logical AND
∨ bitwise logical OR
¬ bitwise negation

≫ n rotation of n bits towards less significant bits
≪ n rotation of n bits towards more significant bits
〈ℓ〉n encoding of the integer ℓ over n bits
∪ union of sets
∩ intersection of sets

Table 2.1: Main symbols.

2.2 Formal Definitions

Our definitions (inspired by [212]) are for keys of fixed length, rather than asymptotic, and define
security with respect to some parameters rather than to the dichotomy polynomial/superpolynomial
time. We made this choice because the latter model, although more comfortable for theo-
retical analysis, fails to model security in the physical world; it makes no sense to consider

5

superpolynomial-time attacks as inefficient when security parameters are fixed. For example,
an attack that recovers a κ-bit key in 2κ−c trials for some constant c breaks a cipher if, e.g.,
κ = 128 and c = 118. Actually most of the attacks on ciphers and hash functions have a
complexity exponential in the security parameter.

2.2.1 Stream Ciphers

A stream cipher is a map S : {0, 1}κ × {0, 1}n 7→ {0, 1}ℓ that takes as input a κ-bit key, an
n-bit initial value (IV), and that produces a sequence of bits called the keystream. Typical
parameters are κ = 256, n = 128, ℓ = 264. Ideally, a stream cipher should be a special kind
pseudorandom generator (PRG). Letting Fn,ℓ be the set of all functions G : {0, 1}n 7→ {0, 1}ℓ,
we have the following definition.

Definition 1 A function F : {0, 1}κ × {0, 1}n 7→ {0, 1}ℓ is a (t, ǫ)-secure stream cipher if for
every oracle algorithm T that has complexity at most t,

∣

∣

∣

∣

Pr
k

(

TFk() = 1
)

− Pr
G∈Fn,ℓ

(

TG() = 1
)

∣

∣

∣

∣

≤ ǫ .

In other words, a stream cipher should look like a PRG even when part of the seed is controlled
by the attacker.

In practice, the goal of the attacker is to recover the key k, or just to detect some structure
proper to the stream cipher (ones speaks of a distinguisher).

The most famous stream cipher is undoubtedly RC4: designed by Rivest in 1987, it is
still safe in practice (despite attacks in [150]), and is a key component of the WEP and WPA
protocols that secure Wi-Fi networks. Another well-known stream cipher is A5/1 because of its
use in GSM cellphones and of its suboptimal security [22, 59]. State-of-the-art stream ciphers
include Salsa20 and Rabbit for software, and Grain and Trivium for hardware.

2.2.2 Block Ciphers

A block cipher is a map E : {0, 1}κ × {0, 1}m 7→ {0, 1}m such that Ek(·) is a permutation on
{0, 1}m for all k ∈ {0, 1}κ, and its inverse is written E−1. The inputs of E are a κ-bit key and
an m-bit plaintext block, and E returns an m-bit ciphertext block.

Let Pm be the set of permutations P : {0, 1}m 7→ {0, 1}m. Ideally, block ciphers should
be pseudorandom permutations (PRP):

Definition 2 A pair of functions F : {0, 1}κ × {0, 1}m 7→ {0, 1}m, G : {0, 1}κ × {0, 1}m 7→
{0, 1}m is a (t, ǫ)-secure pseudorandom permutation if:

• For every r ∈ {0, 1}κ, the functions Fr(·) and Gr(·) are efficiently computable permuta-
tions, and are inverses of each other.

• For every oracle algorithm T that has complexity at most t,

∣

∣

∣

∣

Pr
k

(

TFk,Gk() = 1
)

− Pr
P∈Pm

(

TP,P−1

() = 1
)

∣

∣

∣

∣

≤ ǫ .

That is, to any algorithm T that does not know the key k, the pair (Fk, Gk) looks like a
random permutation and its inverse. Note that this definition does not capture all the existing
requirements of a block cipher (like weak keys or known-key distinguishers [126]); the remark
applies to stream ciphers as well.

6

Certain attacks assume that the attacker can query the block cipher with related keys,
that is, keys that have some known relation with the actual secret key. Although this model
is often deemed unrealistic, related-key attacks indicate that a cipher does not behave ideally.
See [54] for a thorough treatment of the subject.

The analysis model in which block ciphers are assumed to be perfect is called the black-box
model or ideal-cipher model. This model is the analogous of the random oracle model for block
ciphers, and the two are polynomially equivalent [78].

Examples of block ciphers are AES, DES, and MULTI2.

2.2.3 Hash Functions

A hash function is a map H : {0, 1}⋆ 7→ {0, 1}n, where 128 ≤ n ≤ 512 for general-purpose
hash functions. In practice, however, the input length is generally bounded, and the domain of
H is in fact ∪ℓ

j=1{0, 1}j , for some large ℓ. For example, ℓ = 264 and n = 256 for BLAKE-32
(see Chapter 9). Furthermore, sound definitions require keyed hash functions, or hash function
families, so one redefines hash functions as mappings H : {0, 1}κ × ∪ℓ

j=1{0, 1}j 7→ {0, 1}n.
Ideally, keyed hash functions should be pseudorandom functions (PRF):

Definition 3 A function F : {0, 1}κ×{0, 1}ℓ 7→ {0, 1}n is a (t, ǫ)-secure pseudorandom function
if for every oracle algorithm T that has complexity at most t we have

∣

∣

∣

∣

Pr
k

(

TFk() = 1
)

− Pr
G∈Fℓ,n

(

TG() = 1
)

∣

∣

∣

∣

≤ ǫ .

Definition 3 captures the notions of collision resistance and preimage resistance for keyed
hash functions. More specific notions were introduced in [187]: the always- and everywhere-
variants of (second) preimage resistance (aPre, aSec, ePre and eSec). In [186], Rogaway ad-
dresses the problem of defining collision resistance for single-instance hash functions: his “human
ignorance model” formalizes the notion that even if an efficient algorithm is known to exist, it
may be difficult for humans to find it.

The idealized model of hash functions is the random oracle model. Canetti, Goldreich,
and Halevi [72] showed that there exist schemes secure in the random oracle mode, but insecure
with any function whose implementation is known.

2.3 Constructing Hash Functions

Since they deal with inputs of arbitrary length, concrete hash functions iterate the application
of a small-domain function, the compression function, which takes as input fixed-length chunks
of message plus some intermediate hash value. Here we briefly review the methods proposed
for constructing hash functions, starting with the classical ones and finishing with the state-of-
the-art constructions.

2.3.1 Merkle-Damg̊ard Hash

The first formal construction of an iterated hash dates back to the late seventies, with Rabin’s
work [180, 181]: given a compression function F : {0, 1}n × {0, 1}m 7→ {0, 1}n, a function H is
constructed to hash the message (m1 . . .mℓ) as:

1. for i = 1, . . . , ℓ

2. hi ← F (hi−1, mi)

7

3. return hℓ

Here, h0 is called the initial value (IV), and is fixed by advance by the design. Rabin actually
used this construction to make a hash function out of the block cipher DES (where the chaining
value acts as the plaintext, and the message block as the key). However, it turned out to be
suboptimal, since one could compute preimages in 2n/2 trials by a meet-in-the-middle attack.

Damg̊ard and Merkle [84, 157] independently showed in 1989 that the iterated hash H is
collision-resistant if F is collision-resistant, when the bitlength of the message is appended at its
end, a technique sometimes referred as MD-strengthening. In other words, the so-called Merkle-
Damg̊ard (MD) construction preserves the property of collision resistance (and also preimage
resistance). This construction has since been used in a multitude of designs, notably by MD5,
SHA-1, and the SHA-2 family. However, some undesirable properties were discovered in it which
motivated the research for improved constructions. These properties include:

• Length extension: Given a digest H(m), and writing p the bit string padded to m, one
can easily deduce the digest of H(m‖p‖m′) for any m′, without knowing m. This can be
critical when some part of m is secret (e.g., in certain MAC constructions).

• Long-message second preimages: Based on observations by Dean [86], Kelsey and
Schneier showed [124] that second preimages of long messages can be found in less than
2n trials (and at least 2n/2).

• Multicollisions: Joux showed [119] how to find several messages mapping to the same
hash value at a cost logarithmic in the number of messages. Other techniques [8, 124]
apply when fixed points can be found efficiently for F .

• Non-indifferentiability: The notion of indifferentiability [148] formalizes the idea that
there exist constructions that give a function indistinguishable from a random oracle, as
long as the compression function has no flaw (viewed differently, the construction induces
no weakness). One way to differentiate a MD hash from an ideal one is to use the length
extension property.

2.3.2 Modern Constructions

To avoid (some of) the above properties, improved constructions have been proposed, notably
by designers of SHA-3 candidates. These constructions generally fall in at least one of these
categories:

• HAIFA-like: In 2007, Biham and Dunkelman [49] proposed HAIFA as an improvement
of the MD construction. With HAIFA, the compression function takes as additional input
a counter and a salt, respectively to prevent length extension and long-message second
preimage attacks, and to allow randomized hashing [107]. The sequence of counter values
can be seen as a prefix-free code, which makes the construction indifferentiable from a
random oracle [77]. Examples of functions with a HAIFA-like construction are BLAKE,
SHAvite-3 [50], and SWIFFTX [5].

• Sponge-like: Cryptographic sponges were proposed by Bertoni et al. in 2007 [38] and
showed to satisfy the indifferentiability property [40]. Strictly speaking, a sponge hash
function is based on a permutation rather than on a compression function, and uses a large
state to avoid meet-in-the-middle preimage attacks. Examples of sponge-like designs are
CubeHash [33], Keccak [39], and LUX [160].

8

• Wide-pipe: These are constructions that use intermediate hash values at least twice as
large as the digest, in order to avoid Joux’s multicollision attacks [143]. A hash function
can be both HAIFA-like (or sponge) and wide-pipe, while a secure sponge-like function
is necessarily wide-pipe. Examples of wide-pipe designs are ECHO [26], Grøstl [102], and
MD6 [185].

More exotic constructions include tree-based hash functions, which do not make a linear
iterated hash but rather construct a tree whose leaves are message blocks, and each compression
function takes as input its children nodes. Examples of such constructions are MD6 [185] and
ESSENCE [144] (see also [25] for previous constructions).

Besides their resistance to generic attacks, hash constructions are also evaluated according
to their ability to preserve security properties: a property is preserved when it is satisfied by
the hash function if it is satisfied by the compression function. For sponges, however, talking of
preservation is generally irrelevant, for collisions don’t exist for a permutation, and preimages
are generally trivial to find. A study of the property-preservation of various constructions is
presented in [3].

2.3.3 Hashing with Block Ciphers

One strategy to construct compression functions is to reuse block ciphers. The main motivations
for this approach are:

• Trust: If the security of a hash function is reducible to that of its underlying block cipher,
then using a well analyzed block cipher gives more confidence than a new algorithm.

• Compact implementations: The code used for encryption with the block cipher can
be reused by the hash function, thus reducing the space occupied by the cryptographic
components in a program.

Another significant advantage specific to the reuse of AES is speed: the new AES instructions
in Intel processors will significantly speed-up AES, and hash functions may take profit of this.

Counterarguments to block cipher-based hashing are:

• Structural problems: Generally the block and key lengths of block ciphers do not
match the values required for hash functions; e.g., AES uses 128-bit blocks, whereas
general-purpose hash function should return digests of at least 224 bits. One thus has to
use constructions with several instances of the block cipher, which is less efficient.

• Slow key schedule: The initialization of block ciphers is typically slow, which motivates
the use of fixed-key permutations rather than families of permutations. However, results
indicate that approach cannot give compression functions both efficient and secure [64,
188, 189]. A proposal for fixing this problem was to used a tweakable block cipher [141],
where an additional input, the tweak, is processed much faster than a key.

We now briefly summarize the historical development of block cipher-based hashing.

The idea of making hash functions out of block ciphers dates back at least to Rabin [180],
who proposed in 1978 to hash (m1, . . . , mℓ) as

DESmℓ
(. . . (DESm1

(IV) . . .) .

Subsequent works devised less straightforward schemes, with one or two calls to the block
cipher within a compression function [135, 147, 158, 175, 179]. In 1993, research went a step

9

further when Preneel, Govaerts, and Vandewalle (PGV) [176] conducted a systematic analysis
of all 64 compression functions of the form F (hi−1, mi) = Ek(p)⊕f , for k, p, f ∈ {mi, hi−1, mi⊕
hi−1, v} for some constant v. They showed that only four of these schemes resist all considered
vulnerabilities, and that eight others just have the attribute of easily found fixed points. A
decade later, Black et al. [65] proved the security of hash functions based on these twelve PGV
schemes in the ideal cipher model.

Note that the PGV schemes cannot be proved collision resistant under the PRP assump-
tion only; to see this, take a block cipher E and construct the block cipher Ẽ as

Ẽk(m) =







k if m = k

Ek(k) if m = E−1
k (k)

Ek(m) otherwise

.

If the MMO construction [147] Ehi−1
(mi)⊕mi is instantiated with Ẽ, then collisions are easy

to find, yet Ẽ inherits the PRP property from E.
After a quiet period during the nineties, the results of [65] triggered a regain of interest

for block cipher-based hashing: in 2005, Black et al. [64] proved that a compression function of
the form

F2 (hi−1, mi, Ek(F1(hi−1, mi)))

cannot be proved secure with respect to Ek when k is fixed. This result was extended by Rog-
away and Steinberger [188,189], who gave generic upper bounds on the security of permutation-
based hash functions, and constructions achieving those bounds. Along the same lines, Shrimp-
ton and Stam [202] studied combinations of fixed permutations, and Lee et al. extended [136]
the results of [65] to 22 other constructions. In [18], we studied the security of block-cipher based
constructions used within HAIFA-like constructions. Finally, a unified approach was proposed
by Stam [206] that captures all previous constructions with a single block cipher call.

Examples of pre-SHA-3 designs based on block ciphers are Whirlpool [23], Maelstrom [94]
and Grindahl [129] (subsequently broken [168]), which all build on AES.

Some submissions to the SHA-3 competition are based on AES: ECHO, Fugue, LANE,
Shamata, SHAvite-3, Vortex, to name a few. They all use an ad hoc construction to make a
compression function out of AES. However, the security of AES as a block cipher is not always
sufficient for the security of the compression function: for example, SHAMATA and Vortex
have been broken [11,116] (ironically, one attack on Vortex works because AES is a good block
cipher), and some properties of AES could be used to find collisions for the compression function
of SHAvite-3 [170].

2.4 On Cryptanalytic Attacks

To close this chapter, we briefly discuss the difficulties of comparing the efficiency of cryptana-
lytic attacks. Indeed, not any attack is actually an attack in the sense of “more efficient than
the best generic attack”. There are countless examples of alleged key-recovery attacks that
run “in time 2x”, x < κ, yet they are significantly less efficient than bruteforce key search. In
particular, the SHA-3 competition has seen several examples of alleged attacks whose efficiency
estimates were disputed by the authors of the algorithm attacked. Careful analyses of the cost
of attacks have to consider the following issues:

• Negligible factors: Theoretical computer science omits constant multiplicative factors or
small additive factors in expressions of complexity, because one is interested in asymptotic
complexities. In cryptanalysis such “negligible” factors are also often neglected, yet they

10

are generally not negligible: for instance, an attack running in one year is much different
from an attack that takes a decade to finish. An illustration is an attack on some stream
cipher that runs in “about 2x”, but where each of the 2x operations is the solving of a
linear system of equations, which makes the attack significantly slower than exhaustive
search.

• Different units: Assume that 128-bit AES is an ideal pseudorandom permutation. Since
AES-128 makes ten rounds, it costs on average 2127 computations of AES to recover a
key, and 10 × 2127 computations of an AES round. Now consider a modified 128-bit
AES with 10 000 rounds: it takes 10 000× 2127 computations of a round to recover a key,
hence it’s 1000 times more secure than the original version, yet this was assumed to be
perfect! Despite the logical fallacy, this tale illustrates well one side of the inherent problem
of estimating the cost of cryptanalytic attacks: different units give different complexity
expressions. And it’s frequent that a 2x-operation attacks considers operations that are
more than 2n−x times slower than a bruteforce trial.

• Parallelism: Some attacks use physical space as a memory to store some tables, and
they access them in a read-only way. Other attack models rather fill space with circuits
or microprocessors and make them run a key search in parallel (so that N computing
units recover an n-bit key in time 2n/N). Unfortunately, parallelization does not provide
such a linear speedup to all algorithms, and so not to all attacks. It is thus not trivial to
compare attacks on parallel machines, yet this can be of importance to determine which
attack is the best one. For instance, an attack that is faster than bruteforce on a PC may
become much slower when implemented on a cluster of Playstation 3’s, for example.

• Memory accesses: Although in theory it makes sense to assume that accessing an
element in a huge table has a negligible cost, in practice it may be millions of times slower
than trying one key in an exhaustive search. For example, an attack that makes 254

queries to a table of 232 words in order to recover a 64-bit key is likely to be slower than
bruteforce in practice.

• Different computers: For a fair comparison, attacks should be compared with respect to
a same machine. But which should be chosen? A desktop with a Core2 microprocessor,
a COPACOBANA1, or a LEGO Turing Machine2? Moreover, attack A may be more
efficient than attack B on a machine X, while it may become slower on machine Y .

A proposal for comparing (implementations of) attacks is to compare their price-performance
ratio: this metric common in engineering and economics is indeed relevant for comparing attacks,
as pointed out by several researchers [30, 91]. It is however difficult to estimate, for it relies
on “standard” hardware prices which evolve over time. Furthermore, the assumption that the
cost for an attacker is proportional to these “standard prices” seems rather unrealistic, and the
real-world relevance of this metric is limited by other criteria for an attack that depend on the
context (such as the potential benefit of a successful attack).

Another pragmatic approach considers that claiming that, say, a 2240-operation attack
breaks a 256-bit cipher simply doesn’t make sense, for such huge numbers are far from any
physical reality anyway. That approach suggests to consider attacks as actual attacks when a
(successful) realization with current technology is realistic.

Finally, a more radical approach is to consider as an attack on, say, a block cipher, the
demonstration of any property that sets it apart from a randomly chosen permutation. Here

1See http://www.copacobana.org/.
2See http://legoofdoom.blogspot.com/.

11

http://www.copacobana.org/
http://legoofdoom.blogspot.com/

one considers that the existence of some specific structure in the algorithm constitutes a flaw
that should preferably be avoided, since it demonstrates that the cipher is not as good as it is
expected to be. Examples of such attacks are the recent results on AES-256 [58].

12

Chapter 3

The Cryptanalyst’s Toolbox

3.1 Bruteforce Search

Bruteforce search designates black-box methods for recovering a key, given some pairs plain-
text/ciphertext to test the correctness of a key. A bruteforce search algorithm does not neces-
sarily succeeds with probability one, unlike exhaustive search.

3.1.1 Multi-Target and Parallel Bruteforce

First consider the key-recovery problem regardless of the implementation. Given pairs (m, Ek(m)),
and knowing the algorithm of E, one needs to try 2n keys to find k with probability one. More
generally, an attack that tries N ≤ 2n distinct keys succeeds with probability N/2n. Now as-
sume that one targets K < N/2n keys instead of a single one, and wants to find at least one of
them: an attack that tries N keys then succeeds with probability K ×N/2n.

Parallelism provides a linear speedup to bruteforce search: an attack that makes N trials
can be distributed on C computers, so that it runs in time for N/C trials. For example, 230

computers running in parallel can theoretically find a preimage of at least one 224-bit digest
out of 232 targets with success probability 2−32 in time for 2130 trials. For comparison, a serial
attack that runs in time 2130 with only one target succeeds with probability 2−94. Note that
contrary to preimage search, collision search is not trivially parallelizable (see §3.3).

3.1.2 In Practice

In practice, issues like memory accesses can make attacks much slower than what would be
expected from their algorithm analysis. Indeed, “current practice in stating the cost of an
algorithm is very processor-centric; we count the total number of operations performed by all
processors.” This quote is from Wiener [221], who studied in detail the full cost of cryptana-
lytic attacks; “The full cost of an algorithm run on a collection of hardware is the number of
components multiplied by the duration time.”

Note that he does not refer to the cost of an attack, but of a particular implementation of
an attack; “To say something useful about an algorithm itself rather than the combination of the
algorithm and the hardware that implements it, we seek the implementation of the algorithm
that minimizes full cost. This often involves choosing the optimal degree of parallelism.” Wiener
also provides clarifications on the implementation of time/memory tradeoffs (as Hellman’s [113]),
and addresses the often neglected communication cost between processors and a large memory.
Although Wiener’s analyses are asymptotic, they are of great assistance to determine whether
a cryptanalytic attack is “better” than bruteforce.

13

The parallelization of cryptanalytic attacks and the design of dedicated hardware was also
discussed by Bernstein [30], with informal descriptions of a two-dimensional “standard parallel
brute-force key-search machine”; a machine that has “conjecturally, chance close to 2−32 of
finding [the target key] k1 after the time for 264 AES computations; [or] chance close to 2−22 of
finding at least one of the 210 target keys after the time for 264 AES computations”.

Examples of concrete realizations of cryptanalytic machines are:

• The EFF DES Cracker: This [100] is a machine built by the Electronic Frontier Foun-
dation to perform bruteforce search of DES (56-bit) keys, and then costing $250 000. With
its 1 500 chips running in parallel it could find a 56-bit key in 56 hours1: “The machine
was examining 92,625,000,000 keys per second when it found the answer. The key was
found after searching almost exactly a quarter of the key space (24.8%).”

• COPACOBANA: The Cost-Optimized Parallel Code-Breaker [106, 133] is an FPGA-
based machine optimized for running cryptanalytic attacks2. Designed in 2006 by a team
from the university of Bochum, it consists of 120 off-the-shelf FPGA’s, and costs less than
e10 000. For example, a COPACOBANA can be used to search for one DES key in about
nine days.

• PlayStation 3 cluster: Sony’s video game console PlayStation 3 (PS3) features a pow-
erful Cell microprocessor that makes it well suited for running distributed cryptanalytic
attacks. A cluster of about 200 PS3’s at EPFL’s LACAL laboratory was used [207] to
predict the winner of the 2008 US elections (sic), and more recently for creating a rogue
MD5-signed CA certificate [205]: “The birthdaying takes about 18 hours on the 200 PS3s
using 30GB of memory that was equally divided over the PS3s”, using the parallel collision
search presented in §3.3.

3.2 Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir in the late eighties, and first
applied to DES [55] (see to [41] for historical anecdotes). It has since become the favorite tool
of cryptanalysts, because of its simplicity and generality. Differential cryptanalysis exploits cor-
relations between the difference in the input and the corresponding difference in the output of
a cryptographic algorithm. The term actually covers a broad class of attacks, from simple dis-
tinguishers to advanced techniques like boomerang attacks [217]. This section introduces some
basic definitions and applications of differential cryptanalysis, and finally overviews advanced
techniques.

3.2.1 Differences and Differentials

Let E be a block cipher with κ-bit key and n-bit blocks. In the context of differential attacks, a
differential for E is a pair (∆in, ∆out) ∈ {0, 1}n×{0, 1}n, where ∆in is called the input difference,
and ∆out the output difference. One associates to a differential the probability that a random
input conforms to it, that is, the value

p∆ = Pr
k,m

(Ek(m⊕∆in) = Ek(m)⊕∆out) .

Ideally, p∆ should be close to 2−n for all ∆’s. Therefore if a differential with probability
p∆ ≫ 2−n exists, E no longer qualifies as a pseudorandom permutation. Note that we consider

1See http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html.
2See http://www.copacobana.org/.

14

http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
http://www.copacobana.org/

differences with respect to the XOR operation, which is the most common type of difference,
but not the only one used (for example, the collision attacks on MD5 [218] use differences with
respect to integer addition).

Suppose that Ek can be decomposed as

Ek = EN
k ◦ EN−1

k ◦ · · · ◦E2
2 ◦ E1

k ,

where E1, . . . , EN are block ciphers with κ-bit key and n-bit blocks. A differential characteris-
tic3 for E is a sequence of differentials ∆1, . . . ,∆N , where ∆i

in = ∆i−1
out , 1 < i ≤ N . An input

to Ek conforms to the differential characteristic if the consecutive differences when evaluating
m and m ⊕∆1

in are respectively ∆1
out, . . . ,∆

k
out. The probability associated with a differential

characteristic ∆, under some independence assumption4, is the product of the probabilities
associated with each differential in the characteristic, that is

p∆ ≈ p1
∆ × p2

∆ × · · · × pN
∆ .

Differential characteristics are typically used on sequences of rounds, that is, when Ei
k represents

the i-th round of the function (be it a block cipher, a stream cipher, or a hash function). When
all rounds are identical, one may search for iterative differentials (i.e., such that ∆in = ∆out)
on the round function to form a differential characteristic of the form ∆in, . . . ,∆in.

We defined differentials over a permutation family, but the definition generalizes to any
mapping. Finding good differentials generally means finding differentials ∆ that hold with a
high-probability p∆.

3.2.2 Finding Good Differentials

Good differentials are often found by making linear approximation of the function attacked. For
example, suppose that some function only includes the operations +, ⊕, and ≫. If one replaces
all additions by XORs, then the function behaves linearly, with respect to GF(2), therefore an
input difference always leads to the same output difference. Now note that x + y equals x⊕ y
if and only if x∧ y = 0, that is, when no carry appears in the addition. Heuristically, when the
input difference has a low weight, and when there is a small number of additions, the propagation
of the difference will follow that of the linearized model with nonnegligible probability.

To estimate the probability of a differential found by linear approximation, one has to
estimate the probability that all active integer additions behave like XOR’s, with respect to
the input difference considered. Under reasonable independence assumptions, the problem can
be reduced to estimating the probability that each individual addition behaves linearly given a
random input, which is:

p∆,∆′ = Pr
x,y

(

(x⊕∆) + (y ⊕∆′) = (x + y)⊕ (∆⊕∆′)
)

.

We have p∆,∆′ = 2−w, where w is the Hamming weight of ∆ ∨ ∆′, excluding the weight of
the most significant bit. Note that we don’t require the addition to behave fully linearly, but
just that no carry perturbs the diffusion of the differences. The more general problem of the
differential behavior of addition has been studied by Lipmaa et al. in [139,140].

Differentials may also be nonlinear: [139] provides an algorithm that, given two differences
in two summands, returns the output difference that has the highest probability, which is not
necessarily linear.

3Sometimes also called “differential path” or “differential trail”.
4Namely, an hypothesis of stochastic equivalence.

15

3.2.3 Using Differentials

We briefly review how differentials can be used to mount cryptanalytic attacks.

Distinguishers

A simple application of a differential ∆ = (∆in, ∆out), with probability p∆ ≫ 2−n for some
block cipher E : {0, 1}κ × {0, 1}n 7→ {0, 1}n is to mount a distinguisher, i.e., an algorithm that
distinguishes E from an ideal cipher. The attack can be sketched as follows:

1. repeat 1/p∆ times

2. pick a random m

3. obtain δ = Ek(m)⊕ Ek(m⊕∆in)

4. if δ = ∆out

5. return “nonrandom”

6. return “random”

The algorithm succeeds with probability close to one, since 1/p∆ trials are expected before
finding a conforming input for the cipher, against 2n−1 for an ideal cipher. A variant of this
attack considers truncated differential, that is, differentials for which the output difference is
considered only over a fraction of the output bit. For example, our attacks on Salsa20 and
ChaCha in Chapter 5 exploit a truncated differential on a single output bit.

Key Recovery

Differential cryptanalysis has often been used for mounting key-recovery attacks. Below we give
a simplistic example that illustrates the strategy of those attacks.

Consider a block cipher E : {0, 1}κ × {0, 1}n 7→ {0, 1}n constructed as E = Ẽ ◦ Ê, where
Ẽ and Ê are block ciphers with a key of κ/2 bits; when encrypting with E, the first half of the
key is used by Ê, and the second half by Ẽ.

Suppose that Ẽ is a good PRP, but that we know a good differential ∆ = (∆in, ∆out) for
Ê, of probability p∆ ≫ 2−n/2. To attack E, we first collect tuples (mi, Ek(mi), Ek(mi ⊕∆in)),
i = 1, . . . , N , for random mi’s (which will all be distinct with high probability, for reasonable
N ’s). Then we can recover the second half of the key as follows:

1. for all k̃ ∈ {0, 1}κ/2

2. for i = 1, . . . , N

3. if Ẽ−1

k̃
(Ek(mi))⊕∆out = Ẽ−1

k̃
(Ek(mi ⊕∆in))

4. return k̃

Once k̃ is detected, the first half of k can be recovered by exhaustive search. In practice, one can
optimize the attack by using statistical key-ranking methods [121]. The number of repetitions
N should be adjusted with respect to the desired success probability (see [20] for an extensive
study of distinguishers’ parameters).

16

Collisions

Let H be a MD hash function with compression function F : {0, 1}n×{0, 1}m 7→ {0, 1}n, where
n is the size of the chaining value, and m is the size of a message block. Assume that we know a
good differential ∆ = (∆in, ∆out) for F (h0, ·), where h0 is the fixed IV of H, such that ∆in 6= 0,
and ∆out = 0. Such a ∆ is sometimes called a vanishing differential.

To find collision using the ∆ above, it suffices to try about 1/p∆ random distinct message
blocks mi, and for each compute F (h0, mi) and F (h0, mi ⊕ ∆in), and check for a collision.
The collision attacks on MD5 are essentially based on nontrivial vanishing differentials, whose
probability is amplified using message modification techniques.

Note that differentials with ∆out of low Hamming weight can serve to finding near colli-
sions, that is, collision over only a fraction of the digest bits.

3.2.4 Message Modification Techniques

Given a differential of probability p∆, one can find a conforming input by trying random inputs
in about 1/p∆ trials. This complexity can be drastically reduced by reducing the search space to
specific classes of inputs, by identifying conditions on the message that increase the probability
to conform to the differential.

A first simple technique is linearization, for the case of differential characteristics obtained
by linear approximation; the characteristic will be followed if all active integer additions behave
like XOR’s, that is, if the addition induces no carries. Given for example an expression (a+(b ≫

12)⊕ (c+d)), it is easy to find values of a, b, c, d such that the two additions behave like XOR’s.
It is also fairly easy to characterize the set of values for which the expression behaves linearly.
This is exactly what linearization is about: explicitly finding conditions on the input such that
the first steps of the algorithm behave linearly. However, this method becomes infeasible when
the expression becomes too complex.

The notion of neutral bits was introduced by Biham and Chen [47] for attacking SHA-0.
Given a pair of inputs conforming to some differential, a bit is said to be neutral if flipping it
in both inputs gives another conforming pair. Neutral bits can easily be identified for a fixed
pair of messages, but if several neutral bits are complemented in parallel, then the resulting
message pair may not conform anymore. A heuristical approach was introduced in [47], using
a maximal 2-neutral set. A 2-neutral set of bits is a subset of neutral bits, such that the
message pair obtained by complementing any two bits of the subset in parallel also conform
to the differential. The size of this set is denoted n. In general, finding a 2-neutral set is an
NP-complete problem—the problem is equivalent to the Maximum Clique Problem from graph
theory, but good heuristical algorithms for dense graphs exist, see for example [71].

Finally, more advanced message modification techniques can also be used, like probabilistic
neutral bits [12], conditions on the message to force a particular behavior of the algorithm, etc.
(see, e.g., [63, 198] for a study of message modification techniques for MD5). In our attacks on
the Rumba20 compression function [12], we used linearization to save a factor 24 by linearizing
the differential of the first round (18 bits have to be fixed). Then, using neutral bits, we could
save a factor 23.

3.2.5 Advanced Differential Attacks

Below we overview some advanced techniques for exploiting good differentials.

The class of high-order [127] differential attacks consider high-order differences rather
than differences of degree one: such attacks include square attacks [82], integral attacks [130],
or saturation attacks [142]. Computing a high-order differential of maximal degree over a

17

restricted set of N input bits is equivalent to computing the XOR of the 2N output obtained
by running over all the values of the input bits. Cube attacks and cube testers (see Chapter 7)
can actually be seen as sorts of high-order differential attacks.

The boomerang attack, introduced by Wagner in 1999 [217], works on a cipher E = Ẽ ◦ Ê
by exploiting a differential ∆̂ = (∆̂in, ∆̂out) for Ê and another differential ∆̃ = (∆̃in, ∆̃out) for
Ẽ−1. It is based on the observation that if an input m is such that

1. ∆̂ is followed by m, that is,

Êk(m)⊕ Êk(m⊕ ∆̂in) = ∆̂out ;

2. ∆̃ is followed by both Ek(m) and Ek(m⊕ ∆̂in), that is,

Ẽ−1
k (Ek(m))⊕ Ẽ−1

k

(

Ek(m)⊕ ∆̃in

)

= ∆̃out

Ẽ−1
k

(

Ek(m⊕ ∆̂in)
)

⊕ Ẽ−1
k

(

Ek(m⊕ ∆̂in)⊕ ∆̃in

)

= ∆̃out ;

then we can obtain with probability p∆̂ the relation

E−1
k (Ek(m)⊕ ∆̃in)⊕ E−1

k (Ek(m⊕∆in)⊕ ∆̃in) = ∆̂in .

The actual attack works by querying for encryption of inputs with difference ∆̂in, then querying
for decryption of each the values received with a difference ∆̃in, and finally checking for a
difference ∆̂in in the results of the last two queries.

The rectangle attack [51] is a variant of the boomerang attack that works when blocks
are smaller than keys. Boomerang (or rectangle) attacks were applied to build distinguishers
or to mount key-recovery attacks [52,56,123]. The boomerang attack has also been used in the
context of hash function [120].

The miss-in-the-middle technique (a term coined by Biham et al. in [46]), was first applied
by Knudsen [128] to construct a 5-round impossible differential of the DEAL block cipher. The
idea was later generalized by Biham et al. [46] as a generic construction to build impossible
differentials for ciphers of any structure. Consider a cipher E = Ẽ ◦ Ê such that for Ê there
exists a differential ∆̂ and for Ẽ−1 there exists a differential ∆̃, both with probability one,
where ∆̂out 6= ∆̃out. It follows that the differential (∆̂in, ∆̃in) has probability zero, since it
would require ∆̂out = ∆̃out. This technique can be extended to the related-key setting. For
example, related-key impossible differentials were found for 8-round AES-192 [53,118].

3.3 Efficient Black-Box Collision Search

The collision search problem is, given a function F with a finite range, to find distinct inputs x
and x′ such that F (x) equals F (x′). Collision search is an important tool in cryptanalysis, most
notably for computing discrete logarithms, making meet-in-the-middle attacks, or finding hash
function collisions. After a brief review of historical results, this section describes the state-of-
the-art serial and parallel methods for searching collisions. In particular, it gives precise time
and space complexity estimates, and details the applications of interest for this thesis.

3.3.1 Tails and Cycles

Let Fn denote the set of all functions from a domain D of size n to a codomain of size n, with
n finite. Let F be random element of Fn (that is, a random mapping from and to n-element

18

sets). The range of F is expected to contain n(1−1/e) ≈ 0.63n distinct elements. Therefore, F
is expected to have collisions F (x) = F (x′), x 6= x′. Efficient methods for finding such collision
exploit the structure of F as a collection of cycles.

Consider the infinite sequence {xi = F (xi−1)}0<i, for some arbitrary starting value x0.
Because D is finite, this sequence will eventually begin to cycle. Hence, there exist two smallest
integers µ ≥ 0 (the tail length) and λ ≥ 1 (the cycle length) such that xi = xi+λ for every
i ≥ µ. Such a structure then yields a collision at the point where the cycle begins: F (xµ−1) =
F (xµ+λ−1) = xµ.

The birthday paradox illustrates well the above structure: in a sequence of random num-
bers in {1, . . . , n}, the expected number of draws before a number occurs twice is asymptotically
√

πn/2. This is because the expected values of the tail length µ and of the cycle length λ sum
to
√

πn/8 +
√

πn/8 =
√

πn/2. This value is sometimes called the rho length, because of the
rho shape of the sequence, as noticed by Pollard [173].

A trivial collision search algorithm repeats the following: pick random x and x′, return
them as a collision if F (x) equals F (x′), otherwise continue the search. About n trials are
required, since x and x′ collide with probability 1/n. A less trivial algorithm exploits the
existence of cycles by storing a sequence {xi = F (xi−1)}0<i<

√
πn/2

, sort it, and look for a

collision. State-of-the-art methods eliminate the large memory requirements and the cost of
sorting a large list. In the following we review these methods, starting with explicit cycle-
detection methods, then presenting modern techniques that tailored to supercomputers. Finally,
we explain how to apply those methods to concrete cryptanalytic problems.

3.3.2 Cycle Detection Based Methods

The low-memory cycle-detection method of Floyd is at the base of Pollard’s rho method for
factoring and computing discrete logarithms5. It is based on the following observation from [131,
§3.1,Ex.6]:

Theorem 3.3.1 For a periodic sequence x0, x1, x2, . . . , there exists a unique i > 0 such that
xi = x2i and the smallest such i lies in the range λ ≤ j ≤ λ + µ.

Based on Theorem 3.3.1, Floyd’s method picks a starting value x0 = x′
0 and compares the

values xi = F (xi−1) and F (F (x′
i−1)), i ≥ 1. The expected number of iterations before reaching

a match is [19]
√

π5n/288.
Floyd’s algorithm detects that the sequence has reached a cycle, but does not give the

values of λ and µ, nor a collision for F . This can be done as follows, once xi = x2i is found:
generate xj and xj+i, j ≥ 0, until finding xj = xj+i; at the first equality we have j = µ. If none
of the values xj+i equals xi then λ = µ, otherwise λ is the smallest such j. This operation costs
on average 2

√

πn/2 evaluations of F . Finally, detecting the cycle and locating the collision
with the above method costs

3
√

π5n/288 + 2
√

πn/2 ≈ (3.09 + 2.51)
√

n = 5.60
√

n

evaluations of F , and requires negligible memory (storage of a few xi’s). Slightly more efficient
variants of Floyd’s algorithm were proposed by Brent [19] and Teske [211]. Sedgewick et al.
showed how to eliminate the redundant computations by using a small amount of memory [200],
but their algorithm is not as general as Floyd’s (in particular, it cannot be combined with
Pollard’s rho factoring method).

5“Floyd’s algorithm” was actually first described in [131], and credited to Floyd without citation. Floyd’s 1967
paper [99] describes an algorithm for listing cycles in a directed graph but that differs from the cycle-detection
algorithm considered here.

19

3.3.3 Parallel Search with Distinguished Points

A disadvantage of Floyd’s algorithm (and thus of Pollard’s rho method) is that it cannot be par-
allelized efficiently: m processors don’t provide a 1/m reduction of complexity. This is because
one has to wait for a given invocation of F to end before the next can begin. Efficient paral-
lelization of collision search takes a different approach, by using the idea of distinguished points,
The idea of using distinguished points (i.e., points that have some predefined easily checkable
property, like having ten leading zero bits) was proposed by Quisquater and Delescaille [178]
for searching DES collisions, and earlier noted by Rivest [87, p.100] in the context of Hell-
man’s time-memory tradeoff. Below we describe a simple method for efficient parallelization of
collision search using distinguished points, and due to van Oorshot and Wiener [215].

Let m be the number of processors available, and consider some easily checked property
P (D that a random point satisfies with probability θ < 1. To perform the search, each
processor

1. Selects a starting value x0;

2. Computes xi = F (xi−1), i > 0, until a distinguished point xd ∈ P is reached;

3. Adds xd (along with x0 and d) to a common list for all processors;

4. Repeats the process.

The algorithm halts when a same distinguished point appears twice in the common list, which
means that two distinct sequences (x0, . . . , xi) and (x′

0, . . . , x
′
j) lead to same value xi = x′

j (one
should ensure that a same starting value is not used twice). With high probability, one will
easily deduce a collision from these two sequences (if the first sequence leads to the starting
point of the second, then no collision will be found). Details can be found in [215].

The above algorithm runs in time about
√

πn/2/m + 2.5/θ to locate a collision, hence
parallelization provides a linear speedup of the search.

3.3.4 Application to Meet-in-the-Middle

Parallel collision search using distinguished points can be directly applied to find collisions for
hash functions. It can also be adapted to compute discrete logarithms in cyclic groups. Here
we show how it can be used to perform meet-in-the-middle (MITM) attacks, which are used in
Chapter 4 for computing preimages of MD5 and HAVAL.

The problem considered is, given two functions F1 and F2 in Fn, to find x and x′ (not
necessarily distinct) such that F1(x) equals F2(x

′). A solution can be found by defining an
easily checked property P, and by considering the function

F (x) =

{

F1(x) if x ∈ P
F2(x) otherwise

.

Under reasonable assumptions on F1 and F2, and assuming that a random x satisfies P with
probability 1/2, a collision F (x) = F (x′) will be useful as soon as x satisfies P but not x′. When
the cost of computing F1 and F2 significantly differs (for example if one of them represents a
shortcut preimage attack on some component), the property P can be adapted to optimize the
complexity of the attack, so that F1 is called more often than F2.

Note that the MITM problem considered here, and often encountered in cryptanalysis,
differs from what is called MITM in [215]. Indeed, the latter attack looks for a single “golden
value”, and its complexity heavily depends on the domain size, whereas in the former complexity
only depends on the range size. Example of applications of memoryless MITM are our attacks
on the SHA-3 candidate MCSSHA-3 [17] and on MD5 (see Chapter 4).

20

3.4 Multicollision Search for Iterated Hashes

We will now focus on the problem of finding N ≥ 2 colliding messages for a MD hash function.
We call such a set of messages a multicollision, or more precisely, an N -collision. We assume
the hash functions built on a compression function F : {0, 1}n × {0, 1}m 7→ {0, 1}n.

An extension of the birthday attack computes N -collisions6 within about (N !)1/N ×
2n(N−1)/N calls to F . This was believed to be the optimal until the technique of [119], which
requires only ⌈log N⌉ × 2n/2 calls to F . Kelsey and Schneier subsequently reduced this cost to
3 × 2n/2 [124] (plus some memory), provided that F admits easily found fixed points. Albeit
seldom cited, this technique is more powerful than Joux’s in the sense that the cost of find-
ing a N -collision is independent of N , yet a drawback is the length of the colliding messages,
significantly larger.

Note that our goal is to find the description of colliding messages, and not to effectively
construct them. Hence, the time cost of finding a N -collision is not lower-bounded by N , neither
are the space requirements.

This section first introduces the notion of fixed point, then describes the above techniques,
along with a method optimal under certain circumstances (an observation that we presented at
INDOCRYPT 2008 [8]).

3.4.1 Fixed Points

A fixed point for a compression function F is a pair (h, m) such that F (h, m) = h. For a
random F , finding a fixed point requires about 2n trials, by exhaustive search. Because it does
not represent a security threat per se, neither it helps to find preimages or collisions, easily find
fixed points has not been perceived as an undesirable attribute: in 1993, Preneel, Govaerts and
Vandewalle considered that “this attack is not very dangerous” [176], and according to Schneier
in 1996, this “is not really worth worrying about” [199, p.448]; the HAC is more prudent, writing
“Such attacks are of concern if it can be arranged that the chaining variable has a value for
which a fixed point is known” [156, §9.102.(iii)].

The typical example is the Davies-Meyer construction7 for block cipher-based compression
functions, which sets F (h, m) = Em(h) ⊕ h. Indeed, for any m a fixed point is (E−1

m (0), m),
since on this input the compression function computes:

F (E−1
m (0), m) = Em(E−1

m (0))⊕ E−1
m (0)

= 0⊕ E−1
m (0) = E−1

m (0) .

Hence, each message block m has a unique h that is trivial to find, and that gives F (h, m) = h.

We note that the hash functions MD4, MD5, SHA-1, and SHA-2 all implicitly follow a
Davies-Meyer scheme (where integer addition replaces XOR), and thus admit easily found fixed
points.

In the following, we shall write FPF : {0, 1}m 7→ {0, 1}n a function such that for all
m, (FPF (m), m) is a fixed point for F , i.e., F (FPF (m), m) = FPF (m). For a Davies-Meyer
compression function, for example, the cost of computing this function is identical to that of
computing F .

6Plural is used because from any N -collision we can derive other N -collisions, by appending the same arbitrary
data at the end of colliding messages.

7Similar fixed points can be found for all the constructions numbered 5 to 12 in [176].

21

h0

h0

h0

h0 m′
1

m1

m′
1

m1

h1

h1

m2

m′
2

h2

H
H

Hj

H
H

Hj

�
�

�*

�
�

�*
H

H
Hj

�
�

�*

Figure 3.1: Illustration of Joux’s technique for 2-collisions, where F (h0, m1) = F (h0, m
′
1) = h1,

etc.

3.4.2 Joux’s Method

The technique proposed by Joux [119] computes 2N -collisions for N times the cost of finding a
single collision. It works as follows: Assuming m < n, first compute a colliding pair (m1, m

′
1),

i.e., such that
F (h0, m1) = F (h0, m

′
1) = h1 ,

then compute a second colliding pair (m2, m
′
2) such that

F (h1, m2) = F (h1, m
′
2) = h2 ,

and so on until (mk, m
′
k) with hk−1 as IV. Hence, for x ∈ {m, m′}, any of the 2k messages of

the form x1 . . . xN has intermediate hash values h1, . . . , hN , thus forming a 2N -collision. Other
2N -collisions can be derived from these 2N messages by appending extra blocks with correct
padding. The cost of the operations above is that of finding N collisions for F , which requires
about N × 2n/2 evaluations of F (and negligible space, using the techniques in §3.3).

Fig. 3.1 gives an intuitive presentation of the attack; computing a 2N -collision can be seen
as the bottom-up construction of a binary tree, where each collision increases by one the tree
depth. Note that controlling IV does not help the attacker.

3.4.3 Kelsey and Schneier’s Method

As an aside in their paper on second-preimages, Kelsey and Schneier reported a method for
computing N -collisions when F admits fixed points [124, §5.1]. An advantage over Joux’s
attack is that the cost no longer depends on N . Below we detail this result, which benefited of
only a few informal lines in [124], and is seldom refered in the literature.

We first consider the simplest case, i.e., when the IV is controlled by the attacker. First,
note that without MD-strengthening, multicollisions can be found by merely repeating a fixed
point F (h, m) = h. MD-strengthening protects against this attack, for it forces the last blocks
of the colliding messages to be distinct. The idea behind the Kelsey/Schneier multicollisions
is to bypass MD-strengthening by using a second fixed point. This fixed point will be used to
adjust all messages to a same length, so as to have the same padding data in all messages. More
precisely: fix M > 2, if the first fixed point is repeated N times, then the second fixed point is
repeated M −N times to have M blocks in total. The last block imposed by MD-strengthening
will thus be the same for all messages. Fig. 3.2 illustrates this attack.

Assuming one exploits the fixed point F (h0, m0) = h0, the second fixed point is integrated
via a meet-in-the-middle technique (MITM) that goes as follows:

1. Search for a collision F (h0, mi) = FP(mj).

22

h0 - h0 . . . h0
- hj - hj hj - hn

h0 - h0 h0
- hj - hj . . . hj - hn

Figure 3.2: Schematic view of the Kelsey/Schneier multicollision attack on Merkle-Damg̊ard
functions.

2. Construct colliding messages of the form m0 . . .m0mim
′
j . . .m′

j , such that the length of
the whole message is kept constant.

The attack requires about 2n/2 computations of F , and as many computations of FP. These
values are independent of the size of the multicollision. The length of messages is addressed in
a subsequent paragraph.

When the IV is restricted to a specific value, the first fixed point has to be introduced
with another MITM.

Multiple Fixed Points and Message Length

In the above attack, a N -collision contains messages of about N blocks. In comparison, Joux’s
method produces messages of ⌈log N⌉ blocks. This gap can be reduced by using more than two
fixed points: Assume that K > 2 fixed points are integrated in the message. The attack now
requires the finding of (K − 1) collisions F (h, mi) = FP(mj), for a chosen IV. Also suppose a
limit of ℓ blocks per message (e.g., a maximum number of blocks allowed by a design, typically
264), with ℓ > 2K.

Given the limit ℓ, how large can be a multicollision in terms of N? The number of
constructible colliding messages is equal to the number of compositions of ℓ having at most N
non-null summands8. The number we are looking for is Cℓ,K =

∑K−1
i=0

(

ℓ
i

)

(summing over the
number of separators), so we will get a Cℓ,K-collision.

For example, consider SHA-256, which admits easily found fixed points: with K = 8
one finds 257-collisions in time about 14×2128, with 1024-block messages; in comparison Joux’s
method computes 257-collisions in time about 57×2128, with messages of 57 blocks, and if we fix
the message length to 1024 it finds 21024-collisions, in time about 1024× 2128. This shows that
a small number of fixed points leads to much longer messages. Performance becomes similar for
the two attacks (in terms of time cost, message length, and N) when K = ⌊ℓ/2⌋.

3.4.4 Faster Multicollisions

When an iterated hash admits fixed points, and when the IV is chosen by the attacker, this
technique [8] finds a N -collision in time 2n/2 and negligible memory, with colliding messages of
size ⌈log N⌉ (see Fig. 3.3).

The key idea of the attack is that of fixed point collision, i.e., a pair (m, m′) such that
FPF (m) = FPF (m′) = h0, and thus F (h0, m) = F (h0, m

′) = h0. Finding a fixed point collision
requires about 2n/2 evaluations of FPF . The distribution of h0 (as a random variable) depends
on F and FPF ; e.g., for Davies-Meyer schemes based on a pseudorandom permutation (PRP),
this will be uniform.

Once found a fixed point collision (m, m′), a 2N -collision can be constructed by considering
all the N -block sequences in the set {m, m′}N followed by an arbitrary sequence of blocks m⋆

8A composition (or ordered partition) of a number is a way of writing it as an ordered sum of positive integers.
For example, 3 admits four compositions: 3, 2 + 1, 1 + 2, 1 + 1 + 1.

23

h0

h0

h0

h0 m′
1

m1

m′
1

m1

h0

h0

m1

m′
1

h0

H
H

Hj

H
H

Hj

�
�

�*

�
�

�*
H

H
Hj

�
�

�*

Figure 3.3: Illustration of the faster multicollision, for 2-collisions on Merkle-Damg̊ard hash
functions.

with convenient padding. For example, a 4-collision will be

h0
m→ h0

m→ h0
m⋆

→ h

h0
m→ h0

m′

→ h0
m⋆

→ h

h0
m′

→ h0
m→ h0

m⋆

→ h

h0
m′

→ h0
m′

→ h0
m⋆

→ h

Observe that the attack requires no call to the compression function itself, but just to FPF .
When computing fixed points is nontrivial but easier than expected, this attack becomes more
efficient than Joux’s as soon as the cost of finding a fixed point is less than N times the cost of
evaluating F .

Note that for a Davies-Meyer compression function based on a good PRP, the cost of
finding a fixed point collision equals the cost of finding a collision. Indeed, the goal is now to
find (M, M ′) such that E−1

M (0) = E−1
M ′(0), while classical collisions need EM (H) = EM ′(H).

For hash functions that don’t have obvious fixed points, finding a fixed point collision is
at least as hard as finding a collision. Contrary to Davies-Meyer schemes, the ability to find
fixed-IV collisions does not directly allow to find fixed point collisions.

Distinct-Length Multicollisions

The attacks presented in §§3.4.2 and §§3.4.3 find colliding messages of same length. A variant
of our technique allows to find sets of messages that collide and do not all have the same block
length. The idea is to find a fixed point collision F (h, m) = F (h, m′) = h such that m and m′

contain valid padding bits, that is, are of the form . . . 10 . . . 0‖ℓ. The chosen message bitlength
ℓ should be different for m and m′, and be consistent with the number of zeros added. Finding
a fixed point collision with these restrictions is not more expensive than in the general case as
soon as at least n/2 bits in the message blocks are not padding bits.

Once a pair (m, m′) with the above conditions is found, we can directly describe multi-
collisions. Suppose for example that m = . . . 10 . . . 0‖ℓ and m′ = . . . 10 . . . 0‖ℓ′, where ℓ encodes
the length of a two-block message, and ℓ′ encodes the length of a three-block message. Then
the messages m‖m, m′‖m, m‖m‖m′,. . . , m′‖m′‖m′ all hash the same value and have suitable
message length encoding.

3.5 Quantum Attacks

Although they do not exist (yet), and are sometimes believed to be physically impossible to
construct (see for example [138]), quantum computers do represent a potential threat for cryp-
tography. Indeed, efficient quantum algorithms exist for factoring integers and solving discrete

24

logarithms, two problems whose alleged hardness guarantees the security of RSA, DSA, Diffie-
Hellman, elliptic-curve cryptography, etc. Solutions in a world with efficient quantum computers
are proposed in [36].

Symmetric cryptography is also concerned, to a lesser extent, by quantum attacks: using
quantum Fourier transform and Grover’s algorithm [105], a quantum search algorithm can
recover an n-bit key in time about 2n/2, and negligible memory. This would require to double
the key length for a same level of security, and to double the length of hash values for a same
preimage resistance.

Finding a (black-box) collision with a quantum algorithm takes Ω(2n/3) queries [2, 134].
The quantum search algorithm was adapted by Brassard, Høyer, and Tapp [69] to find collisions
in time O(2n/3), but it requires space O(2n/3) of read-only quantum memory. This makes
quantum collision search significantly less efficient than classical parallel search, which needs
space only O(2n/6) for finding collisions in time O(2n/3).

25

26

Part I

Cryptanalysis

27

Chapter 4

Preimage Attacks on the Hash

Functions MD5 and HAVAL

MD5 is a perfectly fine hashing function; just don’t count on it for security.

—Anonymous [165]

MD5 was designed by Rivest in 1991 to replace MD4. It has since been the most used
cryptographic hash function, and probably also the most analyzed. After some worrisome results
in the nineties, MD5 was eventually broken in 2004 when Wang et al. [218] announced collisions.
Then followed various improvements of their attack, culminating (so far) with the forgery of a
MD5-signed certificate [205].

HAVAL is a hash function less known than MD5. It was presented at ASIACRYPT 1992
by Zheng, Pieprzyk, and Seberry, and has message blocks and chaining values twice as large as
MD5, but is otherwise similar to Rivest’s design.

In more than 15 years no result was published about the preimage resistance of MD5 (and
of HAVAL). We presented the first preimage attacks on these hash functions at SAC 2008 [15],
while another team (Yu Sasaki and Kazumaro Aoki) was working on the same problem and
announced their results almost simultaneously [194, 195]. This chapter describes our attacks,
and finally summarizes their subsequent improvements.

4.1 Description of MD5 and HAVAL

Both MD5 and HAVAL follow a classical Merkle-Damg̊ard construction: the input message is
padded so that its length is a multiple of the block size, then the padded message is processed
block by block by the compression function, and the last chaining value is returned.

In both MD5 and HAVAL, the padding rule guarantees that the construction preserves
the resistance to collisions and to (second) preimages—that is, if there exists an attack on the
hash function then there also exists an attack on the compression, with respect to any of the
above notions. However, their padding rules differ slightly; for MD5, quoting RFC-1321 [183]:

Padding is performed as follows: a single ”1” bit is appended to the message, and
then ”0” bits are appended so that the length in bits of the padded message becomes
congruent to 448, modulo 512. In all, at least one bit and at most 512 bits are
appended.

A 64-bit representation of b (the length of the message before the padding bits were
added) is appended to the result of the previous step.

29

For comparison, HAVAL operates as follows [227]:

HAVAL pads a message by appending a single bit 1 next to the most significant
bit of the message, followed by zero or more bit 0s until the length of the (new)
message is 944 modulo 1024. Then, HAVAL appends to the mes- sage the 3-bit field
VERSION, followed by the 3-bit field PASS, the 10-bit field DGSTLENG and the
64-bit field MSGLENG.

MD5 thus appends at least 65 bits to the message, whereas HAVAL appends at least 83 bits.
As we will see in the following, the compression functions of MD5 and HAVAL are also similar.

4.1.1 The Compression Function of MD5

The compression function of MD5 takes as input a 512-bit message block and a 128-bit chain
value and outputs a new 128-bit chain value.

The input chain value H0 . . .H3 is first copied into 32-bit registers A0 . . . D0:

(A0, B0, C0, D0)← (H0, H1, H2, H3).

These registers are then transformed by a series of 64 steps according to the following recursion:

Ai = Di−1

Bi = Bi−1 + (Ai−1 + fi(Bi−1, Ci−1, Di−1) + Mσ(i) + Ki) ≪ ri

Ci = Bi−1

Di = Ci−1

Eventually, the function returns the new chain value

(H⋆
0 , H⋆

1 , H⋆
2 , H⋆

3) = (A64 + A0, B64 + B0, C64 + C0, D64 + D0) . (4.1)

The values Ki, ri, and σ(i), i = 1, . . . , 64, are predefined constants (see Table 4.1 for a description
the permutation σ). The function fi depends on the step index i, and is defined as follows:

fi(B, C, D) = (B ∧ C) ∨ (¬B ∧D) if 0 < i ≤ 16
fi(B, C, D) = (D ∧B) ∨ (¬D ∧ C) if 16 < i ≤ 32
fi(B, C, D) = B ⊕ C ⊕D if 32 < i ≤ 48
fi(B, C, D) = C ⊕ (B ∨ ¬D) if 48 < i ≤ 64

For a complete specification of MD5, we refer to [183].

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Table 4.1: Values of σ(i) in MD5 for i = 1, . . . , 64 (we boldface the M2 inputs used in the
attacks on 32 and 47 steps, and the M6 and M9 inputs used in the attack on 45 steps).

Two important observations for our attacks are:

30

1. At step i only Bi is a freshly computed value, the others are just shifted as in a feedback
shift register. Hence for i = 0, . . . , 60 we have Bi = Ci+1 = Di+2 = Ai+3.

2. The step function is invertible, i.e., from Ai . . . Di and Mσ(i) one can always compute
Ai−1 . . . Di−1. Removing the feedforward by A0 . . . D0 in Eq. (4.1) would thus make the
compression function trivially invertible.

4.1.2 The Compression Function of HAVAL

The compression function of HAVAL is similar to that of MD5. It has message blocks and
hash values twice as large as MD5, i.e., long of 1024 bits (32 words) and 256 bits (eight words)
respectively. HAVAL was proposed with either three, four, or five rounds (called “passes”
in [227]). Our preimage attacks target the 3-round version.

The compression function works as follows: registers A0, B0, . . . , G0, H0 are initialized to
the input chain values and finally the function returns

(H⋆
0 , . . . , H⋆

7) = (A96 + A0, B96 + B0, . . . , G96 + G0, H96 + H0)

after 96 steps that set, for i = 1, . . . , 96:

Ai = Bi−1 Bi = Ci−1 Ci = Di−1 Di = Ei−1 Ei = Fi−1 Fi = Gi−1 Gi = Hi−1

Hi = Ai−1 ≫ 11 + fi(Bi−1, Ci−1, Di−1, Ei−1, Fi−1, Gi−1, Hi−1) ≫ 7 + Ki + Mσ(i)

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

Step index i 65 66 67 68 69 70 77 72 73 74 75 76 77 78 79 80
Message word σ(i) 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

Step index i 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
Message word σ(i) 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

Table 4.2: Values of σ(i) in 3-pass HAVAL for i = 1, . . . , 96 (we boldface the critical inputs of
M5 and M6).

Similarly to MD5, we observe that Hi = Gi+1 = Fi+2 = Ei+3 = Di+4 = Ci+5 = Bi+6 = Ai+7

for i = 0 . . . 89, and that the step function fi is invertible, and depends on the step index. We
have (denoting BC = (B ∧ C)):

fi(B, C, . . . , H) = FE ⊕BH ⊕ CG⊕DF ⊕D if 0 < i ≤ 32
fi(B, C, . . . , H) = ECH ⊕ CGH ⊕ CE ⊕ EG⊕ CD ⊕ FH

⊕GF ⊕BC ⊕B if 32 < i ≤ 64
fi(B, C, . . . , H) = CDE ⊕ CF ⊕DG⊕ EB ⊕ EH ⊕H if 64 < i ≤ 96

Table 4.2 describes the permutation σ used in HAVAL. We refer to [227] or [224] for a complete
specification of HAVAL.

31

4.2 Preimage Attacks on the Compression Function of MD5

This section describes three different preimage attacks on reduced versions of MD5’s compression
function. The first is a simple one that aims to introduce our strategy; the second, on 45 steps,
combines that strategy with linear approximations of the step function; the third one, on 47
steps, is simpler than the second but requires more memory.

4.2.1 Preimage Attack on 32 Steps

This attack computes a preimage for the compression function of MD5 reduced to 32 steps,
within about 296 trials (instead of 2128). It introduces two tricks used in the subsequent attacks:
the exploit of absorption of changes in C0, and the exploit of the ordering of the message words.

First, observe in Table 4.1 that M2 is only input at the very beginning and the very
end of MD5 reduced to 32 steps, namely at steps three and thirty. Hence, if we could pick a
message and freely modify M2 such that B3 stays unchanged, we would be able to “choose”
B30 = C31 = D32. An important observation is that the function fi can either preserve or
absorb an input difference: indeed for 0 < i ≤ 16 and any C and D we have

fi(00000000, C, D) = (0 ∧ C) ∨ (FFFFFFFF ∧D) = D

fi(FFFFFFFF, 0, D) = (FFFFFFFF ∧ 0) ∨ (0 ∧D) = 0

These properties will be used to “absorb” a change in C0 = D1 = A2 at steps one and two.
More precisely, we need that B0 = 0 to absorb the changes of C0 at step one. And to absorb
the change in D1 = C0 we need that B1 = FFFFFFFF. We can now sketch the attack:

1. Pick a chain value H0 . . .H3 = A0 . . . D0 (with certain constraints).

2. Pick a message M0 . . .M15 (with certain constraints).

3. Modify M2 to choose B30 = C31 = D32.

4. Modify H2 = C0 such that the change in M2 doesn’t alter subsequent Ai . . . Di.

Our strategy is inspired from Leurent’s MD4 inversion [93]; the main difference is that [93]
exploits absorption in the second round, whereas we use it in the early steps.

We now describe the attack in more details. Suppose we seek a preimage of H̃ = H̃0 . . . H̃3.
The algorithm below first sets B0 = 0 and B1 = FFFFFFFF, to guarantee that a change in C0

will only affect A2. Then, from an arbitrarily chosen message, Algorithm 1 modifies M2 in order
to “meet in the middle”. Finally, C0 corrects the change in M2, and this new value of C0 does
not affect the initial steps of the function.

Algorithm 1 makes about 296 trials by choosing 32 bits in the 128-bit image and brute-
forcing the 96 remaining bits. (We denote H⋆ = H⋆

0 . . . H⋆
3 a final hash value, so our goal is to

eventually obtain H⋆ = H̃.)
We now explain why the attack works. First, the operation at line 3 of our algorithm is

feasible because it corresponds to setting

M0 = FFFFFFFF−A0 −D0 −K0 .

Then, right after line 4 we have for any choice of C0:

1. f1(B0, C0, D0) = f1(0, C0, D0) = D0

2. f2(B1, C1, D1) = f2(FFFFFFFF, C1 = B0, D1) = 0

32

Algorithm 1 Preimage attack on 32-step MD5.

1. set B0 = 0 and A0, C0, D0 to arbitrary values

2. repeat

3. pick M0 that gives B1 = FFFFFFFF

4. pick arbitrary values for M1 . . .M15

5. compute A30 . . . D30

6. modify M2 to get B30 = D32 = H̃3 −D0

7. correct C0 to keep B3 unchanged

8. compute the final hash value H⋆ = H⋆
0 . . . H⋆

3

9. if H⋆ = H̃ then

10. return A0 . . . D0 and M0 . . .M15

That is, the first two steps are independent of C0. This allows us to modify C0 = D1 = A2, to
correct a change in M2, without altering Ai . . . Di between steps 4 and 30.

Then, at line 6 we set

M2 = (H̃3 −D0 −B29) ≫ 9−G(B29, C29, D29)−A29 −K30 .

With this new value of M2 we obtain H⋆
3 = H̃3. Finally we “correct” this change by setting

C0 = (B3 −B2) ≫ r3 − f3(B2, C2, D2)−M2 −K2 .

With this new value of C0 = A2 we keep the same B3 as with the original choice of M2.

We can thus choose the output value H⋆
3 by modifying M2 and “correcting” C0 accordingly.

However, H⋆
0 , H⋆

1 and H⋆
2 are unknown to the attacker. Hence, 96 bits have to be bruteforced

to invert the 32-step function. This yields a total cost of 296 trials.

We experimentally verified the correctness of our algorithm by searching for inputs that
give H⋆

2 = H⋆
3 = 0: with the IV

H0 = 67452301 H2 = 382CA539 H1 = 00000000 H3 = 10325476

and the message

M0 = B11DE410 M4 = 792A351E M8 = 6D32A030 M12 = 1DD5EC6D

M1 = 5C0CD1EC M5 = 420582B7 M9 = 16B2E752 M13 = 4794F768

M2 = D7D35AC7 M6 = 77V8DE3D M10 = 3B70C422 M14 = 04FEF18F

M3 = 5704C13B M7 = 2476B43B M11 = 685CB2AA M15 = 00000000

we obtain the image

H⋆
0 = B4DF93C9 H⋆

2 = 00000000 H⋆
1 = 3348E3F2 H⋆

3 = 00000000 .

This preimage was found in fewer than five minutes on our 2.4 GHz Core 2 Duo, whereas brute
force would take about 264 trials (i.e., thousands of years on the same computer).

33

4.2.2 Preimage Attack on 45 Steps

We present an attack that computes a preimage of the MD5 compression function reduced to 45
steps, within 2100 trials and negligible memory. It combines a MITM with a conditional linear
approximation of the step function. The attack is based on the fact that M2 appears at the
very beginning and that M6 and M9 appear at the very end. Another important observation
is that M2 is used only once in the first twenty-five steps, and M6 and M9 are used only once
after step twenty-five. To find a preimage of H̃0 . . . H̃3, Algorithm 2 describes a basic version
of the attack, which uses a large memory. Low-memory collision search techniques can be used
to eliminate this memory requirement (see §3.3).

Algorithm 2 Preimage attack on 45-step MD5.

1. set A0 = H̃0, B0 = 0, D0 = H̃3

(We thus need A45 = 0, B45 = H⋆
1 , D45 = 0. Note that we’ll have f45(B44, C44, D44) =

f45(C45, D45, A45) = C45.)

2. repeat

3. pick M0 such that B1 = FFFFFFFF

4. set arbitrary values to the remaining Mi’s except M6 and M9

5. for all 264 choices of C0 and (M6, M9) such that

M9 = −((M6 ≪ 19) + (M6 ≪ 23))

(Here 23 coincides with r44 and 19 = r44 − r45)

6. compute A25 . . . D25, store it in a list L

7. for M6 = M9 = 0 and all 264 choices of C45 and M2

8. compute A25 . . . D25

9. if this A25 . . . D25 matches an entry in L then

10. correct C0 to keep B3 unchanged

11. return A0 . . . D0 and M0 . . .M15

(Here the message contains the M2, M6, M9 corresponding to the matching entries)

Why does Algorithm 2 work? First, we use again (at line 1) the trick to absorb the
modification of C0, necessary to keep the forward stage unchanged with the new value of M2.
Then, observe that

• Between steps twenty-five and 45, M6 and M9 are input at steps fourty-four and 45 (cf.
Table 4.1).

• At line 7 we use values of M6 and M9 distinct from the ones used in the forward stage
(line 5).

Hence, by setting M6 and M9 to the values chosen the matching L entry, we would expect
different values of B44 = C45 and B45 than the (zero) ones used for the backward computation.

34

Recall (cf. line 1) that we need A45 = 0, B45 = H̃1, D45 = 0, hence the values of C45 will not
matter; we would however expect a random B45 from the new values of M6 and M9.

The trick used here is that the condition imposed on M6 and M9 at line 5 implies that the
new B45 equals the original H⋆

1 = H̃1 with probability 2−4 instead of 2−32 for random values
(see below). The attack thus succeeds to find a partial preimage (of 96 bits) when the MITM
succeeds and B45 = H̃1, that is, with probability 2−64×2−4 = 2−68. For full (128-bit preimage)
we bruteforce the 32 remaining bits, thus the complexity grows to 2100 trials.

We now explain why the condition

M9 = −(M6 ≪ 19 + M6 ≪ 23)

gives B45 = H̃1 with high probability.
Consider the last two steps: because A45 = D45 = 0 we have C44 = D44 = 0 and

B43 = C43 = 0. Hence in these two steps we have

fi(B, C, D) = B ⊕ C ⊕D = B + C + D .

Then, observe that A43 and D43 depend on the C45 used for the backward computation.
Now we can compute B44 and B45 (note r44 = 23, r45 = 9)

B44 = (A43 + D43 + K43 + M6) ≪ 23

B45 = ((A44 + B44 + K44 + M9) ≪ 4) + B44 .

For simplicity we rewrite

B44 = (X + M6) ≪ 23

B45 = ((Y + B44 + M9) ≪ 4) + B44 .

Now we can express B45:

B45 = ((Y + ((X + M6) ≪ 23) + M9) ≪ 4) + ((X + M6) ≪ 23) . (4.2)

Since (cf. line 7 of the algorithm) we chose (M6, M9) = (0, 0) this simplifies to

B45 = ((Y + (X ≪ 23)) ≪ 4) + (X ≪ 23) . (4.3)

Consider now the case M9 = −(M6 ≪ 19 + M6 ≪ 23); Eq. (4.2) becomes

B45 = ((Y + ((X + M6) ≪ 23)− ((M6 ≪ 19) + (M6 ≪ 23))) ≪ 4) (4.4)

+((X + M6) ≪ 23) .

We will simplify this equation by using the generic approximation:

(A + B) ≪ k = A ≪ k + B ≪ k . (4.5)

Daum showed [85, §4.1.3] that Eq. (4.5) holds with probability about 2−2 for random A and B.
We first use this approximation to replace (X + M6) ≪ 23 by

(X ≪ 23) + (M6 ≪ 23) .

Thus Eq. (4.4) yields

B45 = ((Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4) + (X ≪ 23) (4.6)

+(M6 ≪ 23) .

35

Finally we approximate (Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4 by

((Y + (X ≪ 23)) ≪ 4)− ((M6 ≪ 19) ≪ 4)

and Eq. (4.6) becomes

B45 = ((Y + X ≪ 23) ≪ 4) + (X ≪ 23) .

Note that this is the same equation as for (M6, M9) = (0, 0) in Eq. (4.3). Hence, we get the
correct value in B45 with a probability of 2−4, since we used two approximations1.

4.2.3 Preimage Attack on 47 Steps

This section shows how to construct a preimage for the compression function of 47-step MD5
with a complexity of about 296. This attack combines the attack of §§4.2.1 with a MITM
strategy, which is made possible by the invertibility of the step function. The attack on 47 steps
can be summarized as follows:

1. Set initial state variable to absorb a change in C0, as in the 32-step attack.

2. Compute A29 . . . D29 for all 232 choices of C0 and save the result in a list L.

3. Compute A30 . . . D30 for all 232 choices of C47 and “meet in the middle” by finding a
matching entry in L.

Algorithm 3 describes the attack more formally.
This attack essentially exploits the absorption of 32 bits during the early steps to save

a 232 complexity factor. When the MITM succeeds, i.e., when the line 10 predicate holds, we
only obtain a 96-bit preimage because H⋆

2 = C47 + C0 is random. This is because both C0 and
C47 are random for the attacker.

Each repeat loop hence succeeds in finding a preimage of 96 bits with probability 2−32,
and costs 232 trials. This is respectively because

• We have 232 × 232 = 264 candidate pairs that each match with probability 2−96;

• The cost of the two for loops amounts to 232 computations of the compression function.

The cost for finding a 128-bit preimage is thus about 232 × 232 × 232 = 296 evaluations of the
compression function, plus additional costs associated with the MITM (a basic implementation
of the attack stores 236 bytes). More efficient methods may be used to perform the MITM, and
reduce the memory requirements.

Note that this attack does not directly give a preimage attack for the hash function
because the initial value is here partially random.

4.3 Preimage Attacks on the Compression Function of HAVAL

HAVAL was proposed with either three, four, or five passes (rounds), i.e., 96, 128, or 160 steps.
In the following, we present two methods to invert the compression function of 3-pass HAVAL.
Both attacks evaluate the compression function about 2224 times. Like in the attacks on step-
reduced MD5, we combine a MITM strategy with absorption properties of the algorithm, and
special properties of the message input ordering.

1The exact probability is 2−3.9097 according to Daum’s formulas.

36

Algorithm 3 Preimage attack on MD5 reduced to 47 steps.

1. set B0 = 0 and A0, C0, D0 to arbitrary values

2. repeat

3. pick M0 such that B1 = FFFFFFFF

4. pick arbitrary values for M1 . . .M15

5. for all 232 choices of C0

6. compute A29 . . . D29, store it in a list L

7. set A47 = H0 −A0, B47 = H1 −B0, D47 = H3 −D0

8. for all 232 choices of C47

9. compute (backwards) A30 . . . D30

10. if L contains an entry A30 = D29, C30 = B29, D30 = C29 then

11. modify M2 to have

B30 = ((A29 + f(B29, C29, D29) + M2 + K29) ≪ 9) + B29

12. correct C0 to keep B3 unchanged

13. compute the final hash value H⋆
0 . . .H⋆

3

14. return A0 . . . D0 and M1 . . .M15

4.3.1 Preimage Attack A

Suppose we seek a preimage of H̃0 . . . H̃7 with an arbitrary value for H̃6; that is, we only want
a 224-bit preimage. In the attack below we exploit the properties of the Boolean function fi to
absorb a difference in the input, and combine it with a MITM to improve on bruteforce search.
Algorithm 4 describes the attack in detail.

Eventually, the computed image H⋆ is the same as the image sought H̃ except (with
probability 1 − 2−32) for H⋆

6 = G96 + G0. Here M5 and M6 are used as “neutral words”,
respectively in the second and the first part of the attack; the change in G0 will correct the
change in M6, while being absorbed during the first six steps. Furthermore, if the MITM
condition at line 8 is satisfied then we directly get a 224-bit preimage, because at line 6 we
choose A96 . . . F96H96.

Indeed we have 264 candidates for A48, . . . , H48 resulting from the forward computation
and 264 candidates resulting from the backward computation, so we’ll find a match and thus a
partial preimage with probability 2−128. Hence, by repeating the attack 2128 times we’ll find a
224-bit preimage with about 2128 × 264 = 2192 compression function evaluations. We need to
store for 269 bytes to perform a basic MITM. Note that a full (256-bit) preimage is obtained by
bruteforcing the 32 remaining bits, increasing the cost to 2224 trials.

37

Algorithm 4 Preimage attack A on 3-pass HAVAL.

1. set C0 = 0, D0 = H̃3 − FFFFFFFF, E0 = F0, H0 = 0, and arbitrary A0B0G0

(We need to assume D96 = FFFFFFFF for our attack to work)

2. repeat

3. choose an arbitrary message for which H1 = FFFFFFFF and H3 = H5 = 0
(This guarantees that differences in G0 will be absorbed in the first 6 rounds)

4. for all 264 choices of G0 and M5

(A difference in M5 only changes G96 after step 48)

5. compute A48 . . .H48 and store it in a list L.

6. set A96 = H̃0 −A0, . . . , H96 = H̃7 −H0

7. for all 264 choices of G96 and M6

8. compute A48 . . .H48 by going backwards

9. if this A48 . . .H48 matches an entry in L then

10. correct G0 such that A7 . . .H7 remains unchanged

11. return A0 . . .H0 and M0 . . .M31

4.3.2 Preimage Attack B

This attack exploits the fact that M2 appears at the very beginning in the first pass and at the
very end in the third pass. By combining this with absorption of the Boolean function in the
early steps (similarly to our attack on 47-step MD5), we can construct a 192-bit preimage within
about 2160 trials. By repeating the attack about 264 times we can construct a preimage for the
compression function with complexity of about 2224 instead of the expected 2256 compression
function evaluations. Algorithm 5 computes a preimage of H̃0 . . . H̃7 where all H̃i’s are fixed
but H̃2 and H̃6 (i.e., a 192-bit preimage):

The MITM (line 8 of Algorithm 5) succeeds with probability 2−96 = 264×264/2224, hence
296 × 264 = 2160 trials are required to get a 192-bit preimage (and storage 269 bytes). A full
(256-bit) preimage is obtained by bruteforcing the 64 remaining bits, which increases the cost
to 2224 trials.

4.4 Extension to the Hash Functions

This section briefly explains how to extend the preimage attacks on the compression of step-
reduced MD5 and 3-pass HAVAL to the corresponding hash functions. The extension is con-
strained by the padding rule and the the predefined IV . The padding rule of MD5 and HAVAL
forces the last bits of the message to encode its length. Thus a preimage attack should find
messages that match this constraint. In our attacks we have no restrictions on the last message
words and hence the padding rule is no problem; in each of the attacks proposed, we shall
simply choose the end of the message to be of the form 100 · · · 0〈ℓ〉, where 〈ℓ〉 represents the
bitlength of the original message (without the padding bits).

38

Algorithm 5 Preimage attack B on 3-pass HAVAL.

1. set A0 = H̃0, B0 = H̃1, D0 = H̃3, E0 = H̃4, F0 = H̃5, G0 = 0.
(To get a 192-bit preimage we thus need A96 = B96 = 0, D96 = E96 = F96 = 0, G96 = H̃7)

2. repeat

3. pick an arbitrary message for which the state variable H1 = 0.
(This guarantees that a change in C0 will only affect A2)

4. for all 264 choices of C0 and H0

5. compute A60 . . .H60 and store it in a list L.

6. for all 264 choices of C96 and H96

7. compute A61 . . .H61

8. if L contains a tuple such that A61 = B60, . . . , G61 = H60 then

9. modify M2 to have

H61 = (A60 ≫ 11) + (f61(. . .) ≫ 7) + M2 + K61

10. correct C0 and H96 accordingly

11. return A0 . . .H0 and M0 . . .M15

However, the IV of our preimages for the compression function is different from the fixed
one; e.g., in the attack on MD5 reduced to 47-steps we require B0 = 0, and get a random value
for C0. Two approaches are proposed to obtain shortcut preimage attacks on the full hash from
our preimage attacks on the compression function.

First, a basic meet-in-the-middle strategy can be used: suppose we want a n-bit preimage
of H. This attack sets a parameter 0 < x < n, and first computes 2x preimages (H̃i, M̃i),
i = 0, . . . , 2x − 1, that is, such that f(H̃i, M̃) = H; the M̃i’s are chosen to have convenient
padding bits. The preimages computed should have distinct IV’s. Then, the attack computes
2n−x random images Hj = f(IV, Mj), j = 0, . . . , 2n−x−1, for random Mi’s and the IV specified
for the function. If finding a single preimage has complexity 2c, then one chooses the x that
minimizes max(x, c(n− x)). Typically, one will compute a small number of preimages, sort the
IV’s obtained, and then search for a message block mapping the predefined IV’s to one of the
elements of the list.

For reduced-step MD5 with the optimal x we compute forward 2112 random chain values
and compute backward 216 preimages within 296×216 = 2112 trials. The total cost of the 47-step
preimage attack is thus about 2113 trials, plus memory for a preimage attack. For 3-pass HAVAL
we compute forward 2240 chain values and backward 216 preimages within 2224×216 = 2240 trials.
The total cost is 2241 trials plus memory for one preimage attack.

A more efficient, but not as generic, method was used by Leurent [93] on MD4 (a similar
approach was published before by Mendel and Rijmen in [155]): it consists in building a tree
(top-down) of preimages of the target image. Compared to a basic meet-in-the-middle, this
technique provides a speed-up due to the multi-target preimage search, rather than single-target
search. This method proceeds in two stages:

39

1. Backward stage: construct a tree T whose root is the target image, and such that each
node is a chaining value that maps to its parent

2. Forward stage: compute images of random message blocks with the predefined IV until
one lies in the leaves of T

Here, an obstacle is that our preimage attacks don’t find a one-in-k preimage k times faster
than for a single target image. However, when the list of targets have a special form, we can
obtain this linear speed-up. For example, for the attack on 47-step MD5, that strategy works
as follows:

1. Pick arbitrary values for A0 and D0.

2. Run the preimage attack twice on the target image, to obtain two preimages with IV
where A0, B0, D0 are identical, and C0 are distinct (with high probability).

3. Now that only the third word of the targets differs in the two target images, Algorithm 3
will run twice as fast when searching a one-in-2 preimage, for it runs by fixing A47, B47, D47

and obtaining a random C47. Since we have two choices for C47, a random value is twice
as likely to be satisfactory. At each level of the tree, Algorithm 3 will need to use the
same values of A0 and D0 (B0 is always set to zero in the attack).

All our preimage attacks can be adapted to Leurent’s method. For an optimal attack on 47-step
MD5, the forward stage costs 296 trials and the backward stages costs 32× 297 = 2102 trials to
compute 32-block preimages, plus storage for 233 message blocks (i.e., 239 bytes). Applied to
3-pass HAVAL we get a preimage attack that makes 2230 trials and needs 271 bytes of storage.

4.5 Conclusion

We have presented the first preimage attacks on (reduced versions of) MD5, tackling a problem
that had remained open for 15 years. Our principal target was MD5, and then we observed
that the techniques used also applied to HAVAL, allowing us to target even more rounds than
on MD5. Note that some of our attacks, because of their memory requirements, may not be
considered as actual attacks under certain metrics (cf. §2.4).

Independently of our work, Yu Sasaki and Kazumaro Aoki found a method to invert
44 steps of the compression function of MD5 in 296 trials, starting at step 3 and ending at
step 46 [194]. Note that with such a “delayed-start”, our attack on 45 steps can be adapted
to invert 47 steps, from step 16 to step 62. At SAC 2008, they presented an attack on the
last 63 steps of MD5 running in approximately 2121 trials [196]. Then, at the rump session of
CRYPTO 2008, they announced improved preimage attacks on MD5 and on all three versions of
HAVAL [193], reusing some of our techniques (the attacks on HAVAL have then been presented
at ASIACRYPT 2008 [195], and the one on MD5 at EUROCRYPT 2009 [197]).

Interestingly, that same year (2008) many other preimage attacks were discovered, notably
on MD4 [93], GOST [152, 153], SHA-0 and SHA-1 [76], and SNEFRU [44]. The techniques
discovered through all those attacks will certainly facilitate the evaluation of the candidates to
the SHA-3 Competition.

40

Chapter 5

Key-Recovery Attacks on the

Stream Ciphers Salsa20 and ChaCha

The stream cipher Salsa20 [35] was submitted by Bernstein in 2005 as a candidate in the
eSTREAM project. Salsa20 was then chosen as one of the four stream ciphers recommended
for software applications. Salsa20 is also one of the two ciphers (with AES) used in the NaCl
networking and cryptography library [159].

ChaCha [32] is a variant of Salsa20 that aims at faster diffusion at the same speed. We
reused the core function of ChaCha in the compression function of our hash function BLAKE
(see Chapter 9).

Three third-party cryptanalyses of Salsa20 were published [79, 97, 213] before our work,
reporting key-recovery attacks for reduced versions of Salsa20 with up to seven rounds, out of
20 in total. These attacks exploit a truncated differential over three or four rounds. In 2005,
Crowley [79] reported a three-round differential, and built upon this an attack on Salsa20/5
making 2165 trials. In 2006, Fischer et al. [97] exploited a 4-round differential to attack Salsa20/6
with 2177 trials. In 2007, Tsunoo et al. [213] attacked Salsa20/7 within about 2190 trials, still
exploiting a 4-round differential, and also claimed a break of Salsa20/8. However, the latter
attack seems to be effectively slower than brute force.

To improve on the previous cryptanalyses of Salsa20, we introduced a novel method
inspired from correlation attacks, and from the notion of neutral bit [47]. To the best of our
knowledge, this is the first application of neutral bits to the analysis of stream ciphers. We
present the first key-recovery attack for the 256-bit version of Salsa20/8, improve the previous
attack on 7-round Salsa20 by a factor 239, and present attacks on ChaCha with up to seven
rounds. The 128-bit versions are also investigated.

Our results were presented at FSE 2008 [12], and the paper was awarded the prize for the
most interesting cryptanalysis of the compression function Rumba [28] (not presented here).

5.1 Salsa20 and ChaCha

5.1.1 Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as input a 256-bit key k = (k0, k1, . . . , k7)
and a 64-bit nonce v = (v0, v1) and produces a sequence of 512-bit keystream blocks. The i-th
block is the output of the Salsa20 function, which takes as input the key, the nonce, and a
64-bit counter t = (t0, t1) encoding the integer i. This function acts on the 4×4 matrix of 32-bit

41

words written as

X =









x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15









=









c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3









.

The ci’s are predefined constants.
A keystream block Z is then defined as

Z = X + X20 ,

where “+” denotes wordwise integer addition, and where Xr = Roundr(X) with the round
function Round of Salsa20. The round function is based on a nonlinear operation (called the
quarterround function in [35]), which transforms a vector (x0, x1, x2, x3) to (z0, z1, z2, z3) by
sequentially computing

z1 = x1 ⊕
[

(x3 + x0) ≪ 7
]

z2 = x2 ⊕
[

(x0 + z1) ≪ 9
]

z3 = x3 ⊕
[

(z1 + z2) ≪ 13
]

z0 = x0 ⊕
[

(z2 + z3) ≪ 18
]

.

At rounds number 0, 2, 4, etc., this operation is applied to the columns (x0, x4, x8, x12),
(x5, x9, x13, x1), (x10, x14, x2, x6), (x15, x3, x7, x11). At rounds number 1, 3, 5, etc., it is ap-
plied to the rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9), (x15, x12, x13, x14). We write
Salsa20/R for R-round variants, i.e., with Z = X + XR. Note that the r-round inverse
X−r = Round−r(X) is defined differently whether it inverts after an odd or and even num-
ber of rounds.

5.1.2 ChaCha

ChaCha is identical to Salsa20 except that:

1. The input words are placed differently in the 4×4 state, as

X =









x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15









=









c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1









.

2. The quarterround of Round transforms (x0, x1, x2, x3) to (z0, z1, z2, z3) by computing

b0 = x0 + x1, b3 = (x3 ⊕ b0) ≪ 16
b2 = x2 + b3, b1 = (x1 ⊕ b2) ≪ 12
z0 = b0 + b1, z3 = (b3 ⊕ z0) ≪ 8
z2 = b2 + z3, z1 = (b1 ⊕ z2) ≪ 7 .

3. The round function is defined differently: at rounds 0, 2, etc., the quarterround is ap-
plied to columns, and at rounds 1, 3, etc., it is applied to diagonals (x0, x5, x10, x15),
(x1, x6, x11, x12), (x2, x7, x8, x13), (x3, x4, x9, x14).

The variant of ChaCha with R rounds is denoted ChaChaR. The fact that ChaCha’s quarter-
round updates each round twice rather than once suggests that “the big advantage of ChaCha
over Salsa20 is the diffusion, which at least at first glance looks considerably faster” [32]. Our
results do not contradict this thought.

42

5.2 The PNB Technique

This section describes a new technique called probabilistic neutral bits (shortcut PNB’s). To
apply it to Salsa20 and ChaCha, we first search for truncated differentials, then we describe a
general framework for probabilistic backwards computation, and introduce the notion of PNB’s
along with a method for finding them.

The first step of the attack is to look for a one-bit difference in the nonce, such that after
r rounds we observe a bias on at least one bit of the state. In the following we let εd be the
value of this bias (over all keys, nonces, and counters), and we write ε⋆

d for the median bias with
respect to the set of all keys.

Suppose we detected a bias over r rounds, and that we try to attack Salsa20/R, r < R.
Recall that given a keystream block one cannot directly invert the function to observe the
bias after r rounds because of the final addition of the initial state (feedforward) that we only
partially know. Following the notations of §5.1: given Z = X + XR, we want to observe one
bit of Xr. This is not directly possible because we don’t know X, but only part of it.

The idea of the PNB technique is to approximate X with an X̃ and then invert R − r
rounds of the state Z − X̃ to (hopefully) observe a bias over r rounds. One seeks an X̃ that
minimizes the noise over the biased bit. To do this, we will partition the key bits into two
subsets:

• Significant key bits: The bits that cause the greatest noise over the observed bit when
erroneously set. For each valuation of these bits the attacker will try to observe the bias;
when a bias is observed it means that the guess is (almost correct).

• Non-significant key bits: The bits that cause the lowest noise over the observed bit
when erroneously set. These bits are assumed random in the first stage of the attack, and
they are bruteforced when the significant bits have been found.

This partition will be made by measuring the neutrality of each key bit, and defining the
separating threshold as the value that minimizes the complexity of the attack. The complexity
will depend on the number of bits guessed, and on the value of the bias observed when the
guessed bits are correct and the others are unknown (random). Note that the cost of the attack
cannot be less than 2129, since the attacker has to try at least 2128 valuations for one of the
above subsets.

We define the neutrality γi of the key bit ki with respect to a bias on r rounds as the
observed bias when inverting R− r rounds of Z − X̃, where X̃ equals X but with an erroneous
value of ki.

In practice, we set a threshold γ and put all key bits with γi ≤ γ in the set of significant
key bits. The less significant key bits we get, the faster the attack will be, provided that the bias
observed remains non negligible. Note that, contrary to the mutual interaction between neutral
bits in [47], here we have directly combined several PNB’s without altering their probabilistic
quality. This can be justified as the bias εa smoothly decreases while we increase γ.

Also, note that Tsunoo et al. [213] used nonlinear approximations of integer addition to
identify the dependency of key bits, whereas the independent key bits—with respect to nonlinear
approximation of some order—are fixed. This can be seen as a special case of our method.

We now describe the attack in more detail, then analyze its computational cost. The
attack is split up into a precomputation stage, and a stage of effective attack; note that pre-
computation is not specific to a key or a counter, and can thus be done only once.

Precomputation

1. Find a high-probability r-round differential with input difference in the nonce.

43

2. Empirically estimate the neutrality measure γi of each key bit, with respect to the differ-
ential found.

3. Choose a threshold γ.

4. Put all key bits with γi < γ in the significant key bits set (of size m = 256− n).

5. Estimate the median bias ε⋆ observed for a correct choice of significant key bits, and a
random choice of non-significant ones.

The cost of the precomputation phase is negligible compared to the effective attack. The r-round
differential and the threshold γ should be chosen to minimize the complexity.

Previous attacks on Salsa20 use the rough estimate of N = ε−2 samples, in order to
identify the correct subkey in a large search space. However this approximation is not precise
enough: this is the number of samples necessary to identify a single random unknown bit from
either a uniform source or from a non-uniform source with ε, which is a different problem of
hypothesis testing. In our case, we have a set of 2m sequences of random variables with 2m − 1
of them verifying the null hypothesis H0, and a single one verifying the alternative hypothesis
H1. For a realization a of the corresponding random variable A, the decision rule D(a) = i to
accept Hi can lead to two types of errors:

• Non-detection: D(a) = 0 and A ∈ H1. The probability of this event is pnd.

• False alarm: D(a) = 1 and A ∈ H0. The probability of this event is pfa.

The Neyman-Pearson decision theory gives results to estimate the number of samples N required
to get some bounds on the probabilities. It can be shown that

N ≈
(√

α ln 4 + 3
√

1− ε2

ε

)2

(5.1)

samples suffices to achieve pnd = 1.3×10−3 and pfa = 2−α. Calculus details and the construction
of the optimal distinguisher can be found in [203], see also [20, 21] for more general results on
distributions’ distinguishability. In our case the value of ε is key dependent, so we use the median
bias ε⋆ in place of ε in Eq. (5.1), resulting in a success probability of at least 1

2(1− pnd) ≈ 1
2 for

our attack. Having determined the required number of samples N and the optimal distinguisher,
we can now present the effective (or online) attack.

Effective attack

1. For an unknown key, collect N pairs of keystream blocks where each pair is produced by
states with a random nonce with the relevant input difference.

2. For each choice of the subkey (i.e., of the m significant key bits) do:

(a) Estimate the bias of the differential using the N keystream block pairs.

(b) If the observed bias corresponds to the bias expected for the correct key, perform an
additional exhaustive search over the n non-significant key bits.

(c) Stop if the right key is found, and return the recovered key.

Let us now discuss the time complexity of our attack. Step 2 is repeated for all 2m subkey
candidates. For each subkey, step (a) is always executed which has complexity1 of N . However,

1More precisely the complexity is about 2(R − r)/RN times the required time for producing one keystream
block.

44

γ n |ε⋆
a| |ε⋆| α Time Data

1.00 39 1.000 0.1310 31 2230 213

0.90 97 0.655 0.0860 88 2174 215

0.80 103 0.482 0.0634 93 2169 216

0.70 113 0.202 0.0265 101 2162 219

0.60 124 0.049 0.0064 108 2155 223

0.50 131 0.017 0.0022 112 2151 226

Table 5.1: Different parameters for our attack on 256-bit Salsa20/7.

the search part of step (b) is performed only with probability pfa = 2−α which brings an
additional cost of 2n in case a subkey passes the optimal distinguisher’s filter. Therefore the
complexity of step (b) is 2npfa, showing a total complexity of 2m(N +2npfa) = 2mN +2256−α for
the effective attack. In practice, α (and hence N) is chosen such that it minimizes 2mN +2256−α.
Note that the potential improvement from key ranking techniques is not considered here, see
for example [121]. The data complexity of our attack is N keystream block pairs.

It is reasonable to assume that a false subkey, which is close to the correct subkey, may
introduce a non-negligible bias. In general, this results in an increased value of pfa. If many
significant key bits have neutrality measure close to zero, then the increase is expected to be
small, but the precise practical impact of this observation is unknown to the authors.

5.3 Key Recovery on Salsa20

We used automatized search to identify optimal differentials for the reduced-round versions
Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7. Below we only present the differentials leading
to the best attacks. The threshold γ is also an important parameter: given a fixed differential,
time complexity of the attack is minimal for some optimal value of γ. However, this optimum
may be reached for quite small γ, such that n is large and |ε⋆

a| small. We use at most 224

random nonces and counters for each of the 210 random keys, so we can only measure a bias
of about |ε⋆

a| > c× 2−12 (where c ≈ 10 for a reasonable estimation error). In our experiments,
the optimum is not reached with these computational possibilities (see, e.g., Table 5.1), and we
note that the described complexities may be improved by choosing a smaller γ.

On Salsa20/7, we use the differential ([∆4
1]14 | [∆0

7]31) with |ε⋆
d| = 0.131. The output

difference is observed after working three rounds backward from a 7-round keystream block.
To illustrate the role of the threshold γ, we present in Table 5.1 complexity estimates along
with the number n of PNB’s, the values of |ε⋆

d| and |ε⋆|, and the optimal values of α for several
threshold values. For γ = 0.4, the attack runs in time 2151 and data 226. The previous best
attack in [213] required about 2190 trials and 212 data.

On Salsa20/8, we use again the differential ([∆4
1]14 | [∆0

7]31) with |ε⋆
d| = 0.131. The output

difference is observed after working four rounds backward from an 8-round keystream block.
For the threshold γ = 0.12 we find n = 36, |ε⋆

a| = 0.0011, and |ε⋆| = 0.00015. For α = 8, this
results in time 2251 and data 231. The list of PNB’s is {26, 27, 28, 29, 30, 31, 71, 72, 120, 121,
122, 148, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 210, 211, 212, 224,
225, 242, 243, 244, 245, 246, 247}. Note that our attack reaches the same success probability
and supports an identical degree of parallelism as brute force. The previous attack in [213]
claims 2255 trials with data 210 for success probability 44%, but exhaustive search succeeds
with probability 50% within the same number of trials, with much less data and no additional

45

computations. Therefore their attack does not constitute a break of Salsa20/8.
Our attack can be adapted to the 128-bit version of Salsa20/7. With the differential

([∆4
1]14 | [∆0

7]31) and γ = 0.4, we find n = 38, |ε⋆
a| = 0.045, and |ε⋆| = 0.0059. For α = 21, this

breaks Salsa20/7 within 2111 time and 221 data. Our attack fails to break 128-bit Salsa20/8
because of the insufficient number of PNB’s.

5.4 Key Recovery on ChaCha

On ChaCha6, we use the differential ([∆3
11]0 | [∆0

13]13) with |ε⋆
d| = 0.026. The output difference

is observed after working three rounds backward from an 6-round keystream block. For the
threshold γ = 0.6 we find n = 147, |ε⋆

a| = 0.018, and |ε⋆| = 0.00048. For α = 123, this results
in time 2139 and data 230.

On ChaCha7, we use again the differential ([∆3
11]0 | [∆0

13]13) with |ε⋆
d| = 0.026. The output

difference is observed after working four rounds backward from an 7-round keystream block.
For the threshold γ = 0.5 we find n = 35, |ε⋆

a| = 0.023, and |ε⋆| = 0.00059. For α = 11, this
results in time 2248 and data 227. The list of PNB’s is {3, 6, 15, 16, 31, 35, 67, 68, 71, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 127, 136, 191, 223, 224, 225, 248, 249, 250, 251, 252,
253, 254, 255}.

Our attack can be adapted to the 128-bit version of ChaCha6. With the differential
([∆3

11]0 | [∆0
13]13) and γ = 0.5, we find n = 51, |ε⋆

a| = 0.013, and |ε⋆| = 0.00036. For α = 26, this
breaks ChaCha6 within 2107 time and 230 data. Our attack fails to break 128-bit ChaCha7.

5.5 Conclusion

We presented a novel method for attacking reduced-round Salsa20 and ChaCha, inspired by
correlation attacks and by the notion of neutral bits. This allows to give the first attack faster
than exhaustive search on the stream cipher Salsa20/8 with a 256-bit key. As of August 2009,
this is still the best result on the Salsa20 family of stream ciphers.

Our attack on reduced-round 256-bit Salsa20 exploits differential over four rounds, to
break the 8-round cipher by working four rounds backward. For ChaCha, we use a 3-round
differential to break seven rounds. We made experiments for observing a bias after going five
rounds backwards from the guess of a subkey, in order to attack Salsa20/9 or ChaCha8, but
without success. Four seems to be the highest number of rounds one can invert from a partial
key guess, while still observing a non-negligible bias after inversion, and such that the overall
cost improves over exhaustive key search.

After the presentation of our attacks, at FSE 2008, other observations were published
on Salsa20: at FSE 2008, Hernandez-Castro, Tapiador, and Quisquater [114] showed some
structural properties of the Salsa20 core function, which have no consequence on the security;
at INDOCRYPT 2008, Priemuth-Schmid and Biryukov [177] applied the slide technique to
Salsa20 and were able to build a key-recovery attack; however, it turned out that this attack is
actually slower than bruteforce, as pointed out in [34].

It should be noted that Salsa20/12 (Salsa20 with twelve rounds) has been chosen by the
eSTREAM project as one of the four stream ciphers recommended for software applications.
The success of Salsa20 suggests that a clever combination of integer addition, XOR, and rotation
within a simplistic core function repeated many times is sufficient to build a secure (and fast)
cipher. Although no security proof is known for Salsa20 yet, one may expect in the future proofs
that Salsa20 constitutes a reasonable approximation of a pseudorandom function.

46

Chapter 6

Cryptanalysis of the ISDB

Scrambling Algorithm MULTI2

MULTI2 is a block cipher developed by Hitachi in 1988 for general-purpose applications, but
which has mainly been used for securing multimedia content. It was registered in ISO/IEC
99791 [117] in 1994, and is patented in the U.S. [209, 210] and in Japan [115]. MULTI2 is the
only cipher specified in the 2007 Japanese standard ARIB for conditional access systems [6]
(ARIB is the basic standard of the recent ISDB2).

Since 1995, MULTI2 is the cipher used by satellite and terrestrial broadcasters in Japan [222,
225] for protecting audio and video streams, including HDTV, mobile and interactive TV. In
2006, Brazil adopted ISDB as a standard for digital-TV, and several other countries are progres-
sively switching to ISDB (Chile, Ecuador, Peru, Philippines, Venezuela). But for the moment
only Japan uses the conditional access features of ISDB, thus MULTI2 is only used in Japan.

MULTI2 has a Feistel structure and encrypts 64-bit blocks using a 256-bit “system key”
and a 64-bit “data key”. The ISO register recommends at least 32 rounds, and writes “It is
reported that MULTI2 with the round number less than thirty-two may be broken easier than
DES”, without further details. A previous work by Matsui and Yamagishi [146] reports attacks
on a reduced version of MULTI2 with twelve rounds. Another work by Aoki and Kurokawa [4]
reports an analysis of the round mappings of MULTI2, with results independently rediscovered
in the present work.

This chapter presents new cryptanalytic results on MULTI2, including a related-key guess-
and-determine attack for any number of rounds, linear cryptanalysis on up to 20 rounds, and a
related-key slide attack (see Table 6.1 for complexities). Albeit no practical threat to conditional
access systems, our results raise concerns on the intrinsic security of MULTI2. Our results on
MULTI2 were presented at FSE 2009 [14].

6.1 Description of MULTI2

MULTI2 (Multi-Media Encryption Algorithm 2) is a Feistel block cipher that operates on 64-bit
blocks, parameterized by a 64-bit data key and a 256-bit system key. Encryption depends only
on a 256-bit key derived from the data and system keys. This encryption key is divided into
eight subkeys. MULTI2 uses four key-dependent round functions π1, π2, π3, and π4, repeated
in this order. The ISO register entry recommends at least 32 rounds, which is the number of

1The ISO/IEC 9979, under which cryptographic algorithms were registered, was withdrawn on Feb. 2006
because of its redundancy with the ISO/IEC 18033 standard.

2Integrated Services Digital Broadcasting (ISDB) is a Japanese standard for digital television and digital
radio. It is based on the DVB and ARIB standards. See http://www.dibeg.org/.

47

http://www.dibeg.org/

Rounds Time Data Memory Attack

4 216.4 216.4 — linear distinguisher
8 227.8 227.8 — linear distinguisher
12 239.2 239.2 — linear distinguisher
16 250.6 250.6 — linear distinguisher
20 293.4 239.2 239.2 linear key-recovery
r 2191 4 — related-key guess-and-determine key-recovery
r ≡ 0 mod 8 2136−log r 233 264 related-key slide key-recovery

Table 6.1: Summary of our attacks on MULTI2 (data is given in known plaintexts).

rounds used in the ISDB standard. We denote MULTI2’s keys as follows, parsing them into
32-bit words:

• d = (d1, d2) is the 64-bit data key

• s = (s1, s2, s3, s4, s5, s6, s7, s8) is the 256-bit system key

• k = (k1, k2, k3, k4, k5, k6, k7, k8) is the 256-bit encryption key

MULTI2 uses no S-boxes, but only a combination of XOR (⊕), modulo 232 addition and
subtraction, left rotation and logical OR. Below we denote L (resp. R) a left (resp. right) half
of the encrypted data, and ki a 32-bit encryption subkey:

• π1 is the identity mapping: π1(L) = L. It is the only surjective and key independent
round transformation.

• π2 maps 64 bits to 32 bits, and returns

π2(R, ki) = (x ≪ 4)⊕ x

where x = (((R + ki) ≪ 1) + R + ki − 1). We observe that π2(R, ki) = π2(ki, R), for
any (ki, R), and moreover, the range of π2 contains exactly 265 016 655 ≈ 228 elements
(only 6.2% of {0, 1}32, against 63% expected for a random function [156, §2.1.6]). This
follows from the observation that π2 induces loss of information and can be expressed as
a function of a single value, R + ki.

• π3 maps 96 bits to 32 bits, and returns

π3(L, ki, kj) = (x ≪ 16)⊕ (x ∨ L)

where
x =

(

(y ≪ 8)⊕ y + kj

)

≪ 1−
(

(y ≪ 8)⊕ y + kj

)

where y = ((L+ ki) ≪ 2)+L+ ki +1. The range of π3 spans approximately 230.8 values,
that is, 43% of {0, 1}32, for a fixed encryption key. The fraction of the range covered by
π3 is not the same for every (ki, kj).

• π4 maps 64 bits to 32 bits, and returns

π4(R, ki) =
(

(R + ki) ≪ 2
)

+ R + ki + 1 .

We have π4(R, ki) = π4(ki, R) for any (ki, R), and the range of π4 contains exactly
1 717 986 919 ≈ 230.7 elements (i.e., 40.0% of {0, 1}32).

48

d1 d2

π1

π2

π3

π4

π1

π2

π3

π4

π1

i

i

i

i

i

i

i

i

i

-

-

-

-

-

�

�

�

�

�k1

�k3

�k5

�k7

- k2

- k4

- k6

- k8

?

s1

?

s4

?

s5

?

s8

?

s2
?

s3

?

s6
?

s7

Figure 6.1: Key schedule of MULTI2.

49

? ?

L R

π1

π2

π3

π4

π1

π2

π3

π4

i

i

i

i

i

i

i

i

-

-

-

-

�

�

�

�

?

k1

?

k4

?

k5

?

k8

?

k2
?

k3

?

k6
?

k7

Figure 6.2: First eight rounds of MULTI2 encryption.

50

To encrypt a plaintext block (L0, R0) given subkeys k1, . . . , k8, MULTI2 computes the
first eight rounds as follows (see Fig. 6.2):

1. R1 ← R0 ⊕ π1(L0)

2. L1 ← L0; L2 ← L1 ⊕ π2(R1, k1)

3. R2 ← R1; R3 ← R2 ⊕ π3(L2, k2, k3)

4. L3 ← L2; L4 ← L3 ⊕ π4(R3, k4)

5. R4 ← R3; R5 ← R4 ⊕ π1(L4)

6. L5 ← L4; L6 ← L5 ⊕ π2(R5, k5)

7. R6 ← R5; R7 ← R6 ⊕ π3(L6, k6, k7)

8. L7 ← L6; L8 ← L7 ⊕ π4(R7, k8)

9. R8 ← R7

This sequence is repeated (with suitably incremented subscripts) until the desired number of
rounds r, and the ciphertext (Lr, Rr) is returned. The subkeys k1, . . . , k8 are reused for each
sequence π1, . . . , π4, π1, . . . , π4.

The key schedule of MULTI2 “encrypts” a data key (d1, d2) (as plaintext) through nine
rounds, using the system key s1, . . . , s8. The round subkeys k1, . . . , k8 are extracted as depicted
on Fig. 6.1.

In ISDB, MULTI2 is mainly used via the B-CAS card3 for copy control, to ensure that
only valid subscribers are using the service. MULTI2 encrypts transport stream packets in CBC
or OFB mode. A same system key is used for all conditional-access applications, and another
system key is used for other applications (DTV, satellite, etc.). The 64-bit data key is refreshed
every second, sent by the broadcaster and encrypted with another block cipher. Therefore only
the data key is really secret, since the system key can be obtained from the receivers. Details
can be found in the ARIB B25 standard [6].

6.2 Related-Key Guess-and-Determine Attack

We describe a known-plaintext attack that recovers the 256-bit encryption key, the 256-bit
system key, and the 64-bit data key in less than 2192 encryptions. The attack works for any
number of rounds, and uses only four known plaintext/ciphertext pairs.

The main observation is that the 256-bit round subkey k = (k1, . . . , k8) has entropy at
most 192 bits, for equations k4 = k3 ⊕ k2 and k8 = k7 ⊕ k6 always hold. The key schedule
thus induces a loss of at least 128 bits of entropy, from the 320-bit (s, d) key. Ideally, a direct
bruteforce should cost 2256+64 trials to recover all the 576 secret bits. Below we show that it’s
in fact doable in less than 2192.

First, we find the encryption key k in 2191 trials on average. Then for one choice of data
key, one determines a subset of candidate values for s2, . . . , s8, as follows:

1. From d1 and k1, determine the 24 possible values of s1;

2. From k1 and k2, find the 232 possible values of (s2, s3);

3See http://www.b-cas.co.jp.

51

http://www.b-cas.co.jp

3. Similarly, find the 21.3 possibles values for s4 and for s8, find the 24 possibles values for
s5, and the 232 choices of (s6, s7).

We obtain the description 274.6 candidate values for s. Note that at this point we only made
straighforward calculations, and obtain pair (d, s) producing k by the key schedule. To iden-
tify the original choice of s and d, we make two related-key known-plaintext queries for each
candidate value, and check that the ciphertext matches the one computed manually. About
264 × 274.6 = 2138.6 trials will be necessary.

6.3 Linear Cryptanalysis

The non-surjectivity of the round functions π2, π3, π4 motivates the study of linear relations [145]
for particular bitmasks. We looked for iterated linear relations, and discovered that the 32-bit
mask AAAAAAAA yields a bias 1/2 for π2 and 2−6.7 for π4. This bitmask was independently
discovered by Aoki and Kurokawa in [4].

The high-probability mask above directly leads to distinguisher on reduced-round MULTI2
(attacking the left half of the cipher): one can distinguish 4-round MULTI2 from a random per-
mutation using 8 × (p′)−2 = 216.4 known plaintexts (KP), for a high success rate attack; the
memory complexity is negligible and the attack effort is essentially 216.4 parity computations.
For eight rounds, the attack complexity is 8×(2×(p′)2)−2 = 8×(2−12.4)−2 = 227.8 KP and equiv-
alent parity computations; for twelve rounds, the data complexity becomes 8× (22× (p′)3)−2 =
8 × (2−18.1)−2 = 239.2 KP; for 16 rounds, 8 × (2−23.8)−2 = 250.6 KP. For more rounds, more
plaintexts than the codebook are required.

One can build a key-recovery attack for 20-round MULTI2 on top of the 12-round dis-
tinguisher: note that the same sequence of subkeys k1, . . . , k4 then occurs at both ends of the
encryption. One guesses consecutively k1, k2 (cost 232 for each of them), then k3 (cost 230.7),
and finally k4 (free). Time complexity is thus about 294.7 + 294.7 = 295.7 4-round decryptions,
that is, 1/5× 295.7 ≈ 293.4 20-round encryptions. Storage of 239.2 ciphertexts is necessary.

6.4 Related-Key Slide Attack

We present key-recovery known-plaintext related-key slide attacks [42, 60, 61]. These attacks
exploit the partial similarity of 4-round sequences, and works for any version of MULTI2 whose
number of rounds is a multiple of eight.

Let F1...4 stand for 4-round encryption involving π1, . . . , π4 with subkeys k1, . . . , k4. Sim-
ilarly, let F5...8 stand for 4-round encryption involving π1, . . . , π4 with subkeys k5, . . . , k8; F ′

1...4

stand for π1, . . . , π4 with subkeys k′
1, . . . , k

′
4, and F ′

5...8 stand for π1, . . . , π4 with subkeys k′
5, . . . , k

′
8.

Given an unknown key pair (s, d), we consider a related-key pair (s′, d′) that gives k′ such
that

k′
1 = k5 k′

2 = k6 k′
3 = k7 k′

4 = k8

k′
5 = k1 k′

6 = k2 k′
7 = k3 k′

8 = k4 . (6.1)

Thus, F ′
1...4 ≡ F5...8 and F ′

5...8 ≡ F1...4.
For Eq. (6.1) to hold, it is necessary that the related key (s′, d′) satisfies

d′1 = k3 d′1 ⊕ d′2 = k4

s′1 = s5 s′2 = s6 s′3 = s7 s′4 = s8

s′5 = s1 s′6 = s2 s′7 = s3 s′8 = s4 .

52

The conditions k′
1 = k5 and k′

2 = k6 require

k3 ⊕ π2(k4, s5) = d′1 ⊕ π2(d
′
1 ⊕ d′2, s

′
1)

k4 ⊕ π3(k5, s6, s7) = d′1 ⊕ d′2 ⊕ π3(k
′
1, s

′
2, s

′
3) .

The relation used is therefore valid, since constraints on the related key are only given in terms
of relations, not of actual values.

A slid pair satisfies P ′ = F1···4(P), which implies C ′ = F ′
5···8(C) = F1···4(C), as shown

below.

P
F1···4→ X

F5...8→ . . .
F5···8→ C

P ′ F ′

1...4→ . . .
F ′

1···4→ Y
F ′

5···8→ C ′ .

That is, one obtains two 64-bit conditions since both the plaintext and ciphertext slid pairs are
keyed by the same subkeys. Thus one slid pair is sufficient to identify k1, . . . , k4. The attack
goes as follows:

1. Collect 232 distinct (Pi, Ci) pairs, i = 1, . . . , 232 encrypted with k.

2. Collect 232 distinct (P ′
i , C

′
i) pairs, i = 1, . . . , 232 encrypted with k′.

3. For each (i, j) ∈ {1, . . . , 232}2:

4. Find the value of k1, . . . , k4 that satisfy P ′
j = F1···4(Pi) and C ′

j = F1···4(Ci) (this can

be done in 272 evaluations of F1···4).

5. Search exhaustively k5, . . . , k8 (there are 228+32+30.7 = 290.7 choices, exploiting the non-
surjectivity of π2 and π4).

We cannot filter the wrong slid pairs, so we try all possible 264 pairs (Pi, Pj). But each potential
slid pairs provides 128-bit condition, because both the plaintext and ciphertext pairs are keyed
by the same unknown subkeys. Thus, we can filter the wrong subkeys at once.

We briefly explain how to recover k1, . . . , k4: using the potential slid pair (P ′
j , Pi), guess

the output of π2 (228 choices), then find the left half’s value after the XOR with π2’s output.
Then, guess k2 (232 choices), and find the k3 that yields the (known) output of π3, deduce k4,
and finally, for the 24 valid values of k1, test whether the current choice of k1, . . . , k4 is consistent
with the second potential slid pair (C ′

j , Ci).

Finding k3 from k2, the input of π3, and its output, is not trivial: one has to solve an
equation of the form (x ≪ 16)⊕ (x ∨ a) = b, then an equation (y ≪ 1)− y = c, where x and
y are the unknowns. The first can be solved bit per bit, by iteratively storing the solutions for
each pair (xi, xi+16). There are 16 such pairs, and for each pair there are at most two solutions.
Hence in the worst case there will be 216 solutions (namely, when a = 0). On average, when
a has weight 16, there will be 28 solutions. For the second equation, one can precompute the
table of solutions (264 entries), then solve the equation with one memory access. This can also
be applied to the first equation. More advanced, memoryless, techniques are probably possible.

Finally, the expected cost of computing k3 is 28 trials. The attack complexity is thus about
264 × ×272/r + 290.7 ≈ 2136/r encryptions, with required storage for 233 plaintext/ciphertext
pairs and 264 solutions of the equation (y ≪ 1)− y = z.

53

6.5 Conclusion

We showed that the 256-bit key of MULTI2 can be recovered in about 2185 trials instead of
2256 ideally, for any number of rounds, and using only three plaintext/ciphertext pairs. This
weakness is due to the loss of entropy induced by the key schedule and the non-surjective round
functions. We also described a linear (key-recovery) attack on up to 20 rounds, and a related-
key slide attack in time 2136/r working for any number of rounds r that is a multiple of eight
(thus including the recommended 32 rounds).

Although our results do not represent any practical threat when the 32-round recommen-
dation is followed, they show that the security of MULTI2 is not as high as expected, and raise
concerns on its long-term reliability. A practical break of MULTI2 would have dramatic conse-
quences: millions of receivers would have to be replaced, a new technology and new standards
would have to be designed and implemented.

Finally, note that the Common Scrambling Algorithm (CSA), used in Europe through
the digital-TV standard DVB4 also underwent some (non-practical) attacks [220, 223]. For
comparison, the American standard ATSC uses Triple-DES in CBC mode5.

4See http://www.dvb.org/.
5See http://www.atsc.org/standards/a_70a_with_amend_1.pdf.

54

http://www.dvb.org/
http://www.atsc.org/standards/a_70a_with_amend_1.pdf

Chapter 7

Cube Testers

Cube attacks, introduced by Shamir at CRYPTO 2008 [89,201], are a type of algebraic attacks
that exploit implicit low-degree equations in cryptographic algorithms, to recover a secret key.
Such equations are generally due to the use of components with a low algebraic degree. For
example, the four-bit S-boxes of the block cipher Serpent [45] are an example of component
with algebraic degree at most three [204]1.

Cube attacks only require a black-box access to the target algorithm, and were successfully
applied by Dinur and Shamir to reduced versions of the stream cipher Trivium [74]. Roughly
speaking, a cryptographic function is vulnerable to cube attacks if its algebraic normal form
over GF(2) has degree at most d, such that 2d computations of the function is below 2κ, if κ is
the security parameter. Cube attacks recover a secret key through black-box queries to a keyed
algorithm with public variables (like an IV for a stream cipher, or a plaintext for a block cipher),
followed by the solving a linear system of equations. Previous works by Vielhaber [216], and by
Fischer, Khazaei, and Meier [96] proposed related methods for key recovery that also exploit,
implicitly, low-degree equations.

Shortly after the presentation of cube attacks, I developed a variant technique called cube
testers, inspired by previous works on “monomial tests” [92, 95, 166, 191]. To demonstrate the
power of cube testers, we applied them to the stream cipher Trivium, extending the previous
results of Dinur and Shamir with cube attacks. But our first target was the reduced compression
function MD6, whose sparse and low-degree round function makes it an ideal target for cube
attacks and cube testers. Independently of our work, Dinur and Shamir discovered key-recovery
cube attacks on reduced-round MD6. We presented our results in a joint paper at FSE 2009 [10].

This chapter starts with a brief introduction to cube attacks in §7.1, then presents cube
testers in §7.2, and finally describes their applications to MD6, Trivium, and Grain in §7.3 and
in §7.4. Table 7.1 summarizes our results, comparing them with the best known results at the
time of writing this thesis.

7.1 Introduction to Cube Attacks

Let Fn be the set of all functions mapping {0, 1}n to {0, 1}, n > 0, and let f ∈ Fn. The
algebraic normal form (ANF) of f is the polynomial p over GF(2) in variables x1, . . . , xn such
that evaluating p on x ∈ {0, 1}n is equivalent to computing f(x), and such that it is of the

1I used this observation to show that the compression function of the hash function Hamsi is not a PRF. [132]

55

#Rounds Time Attack Authors

MD6 (compression function)

12 hours inversion [185]
14 222 key recovery

√

18 217 nonrandomness
√

33 ? nonrandomness [125]
66⋆ 224 nonrandomness

√

Trivium

736 233 distinguisher [92]
767⋄ 236 key-recovery [89]
790 230 distinguisher

√

885 227 nonrandomness
√

Grain-v1

81 230 distinguisher
√

160 255 related-key key-recovery [73]
160 242 related-key key-recovery [137]

Grain-128

180 2124 key recovery [96]
192 230 distinguisher [92]
237 246 distinguisher

√

256 2127 key-recovery [73]
256 250 related-key key-recovery [137]
256† 283 distinguisher

√
⋆: for a modified version where Si = 0
⋄: cost excluding precomputation
†: extrapolation

Table 7.1: Summary of the best known attacks on MD6, Trivium, Grain-v1, and Grain-128 (“
√

”
designates our results). For the stream ciphers, complexity is given in terms of initializations
of the cipher.

form2

2n−1
∑

i=0

ai ·xi1
1 xi2

2 · · ·x
in−1

n−1 xin
n

for some (a0, . . . , a2n−1) ∈ {0, 1}2n

, where ij denotes the j-th digit of the binary encoding of i
(and so the sum spans all monomials in x1, . . . , xn). In the following we shall identify function
in Fn with their representative polynomial.

An important observation regarding cube attacks is that for any function f ∈ Fn, the
sum of all entries in the truth table

∑

x∈{0,1}n

f(x)

equals the coefficient of the highest degree monomial x1 · · ·xn in the ANF of f . This observation
has previously been used by Englund, Johansson, and Turan [92] for building distinguishers

2The ANF of any f ∈ Fn has degree at most n, since xd
i = xi, for xi ∈ GF(2), d > 0.

56

(which turn out to be particular cases of cube testers).
For example, let n = 4 and f be defined as

f(x1, x2, x3, x4) = x1 + x1x2x3 + x1x2x4 + x3 .

Then, summing f(x1, x2, x3, x4) over all 16 distinct inputs makes all monomials vanish and
yields zero, i.e., the coefficient of the monomial x1x2x3x4 in the ANF of f .

Unlike the above example, cube attacks work by summing f(x) over a subset of its inputs.
Continuing our example, summing over the four possible values of (x1, x2) yields

∑

(x1,x2)∈{0,1}2

f(x1, x2, x3, x4) = 4x1 + 4x3 + (x3 + x4) ,

where (x3 + x4) is the factor of x1x2 in f :

f(x1, x2, x3, x4) = x1 + x1x2(x3 + x4) + x3 .

Indeed, when x3 and x4 are fixed, then the maximum degree monomial becomes x1x2 and its
coefficient equals the evaluation of (x3 + x4).

More generally, given an index set I ({1, . . . , n}, any function in Fn can be represented
algebraically under the form

f(x1, . . . , xn) = tI · p(· · ·) + q(x1, . . . , xn) ,

where tI is the monomial containing all the xi’s with i ∈ I, p is a polynomial that has no
variable in common with tI , and such that no monomial in the polynomial q contains tI (that
is, we factored f by the monomial tI). In the example above, I = {1, 2}, tI = x1x2, and
p(x3, x4) = x3 + x4, and q(x1, x2, x3, x4) = x1 + x3.

In the context of cube attacks, we shall call the monomial tI a cube (regardless of its
dimension), and its factor a superpoly. Summing f over the tI for other variables fixed, one
obtains

∑

I

(tI · p(· · ·) + q(x1, . . . , xn)) =
∑

I

tI · p(· · ·) = p(· · ·) ,

that is, the evaluation of p for the chosen fixed variables. Following the terminology of [89], p is
the superpoly of I in f . A cube tI is called a maxterm if and only if its superpoly p has degree
one (i.e., is linear but not a constant).

When attacking a cryptographic algorithm, the variables x1, . . . , xn are partitioned into

• Secret, or key, variables k = k1, . . . , km.

• Public, or tweakable, variables v = v1, . . . , vn−m.

In a classical attack model, the attacker queries the function f(k, ·) where k is fixed and
unknown. If f models a stream cipher, for example, one can consider the function f(k, v) that
returns the first keystream bit when initialized with key k and IV v. If f models a block cipher, v
represents the plaintext, and f returns a specific bit of the ciphertext. For a MAC, v represents
the message.

The key idea of cube attacks, in order to recover k from queries to f(k, ·) with a chosen v,
is to find maxterms composed of public variables, i.e., such that

∑

I f(k, v) gives the evaluation
of a linear expression in key variables. Cube attacks thus proceed in two stages:

1. Offline (preprocessing), in which the attacker queries f(· , ·) with chosen k and v’s to find
maxterms and determine their superpoly’s.

57

2. Online, in which the attacker queries f(k, ·) with chosen v’s and recovers k.

Those two stages are detailed below.

The preprocessing stage of a cube attack consists in finding sufficiently many maxterms,
that is, subsets I of the public variables for which the sum

∑

I

f(k, v)

yields the evaluation of a linear combination of key bits. The parameter to minimize, in order
the online attack to be faster, is the size of the maxterms: if a maxterm contains n variables,
then 2n queries to the algorithm attacked are necessary to evaluate the superpolys.

The finding of a maxterm goes in two steps:

1. Identifying a maxterm, i.e., for some choice of variables, checking that the corresponding
superpoly is linear using the BLR probabilistic linearity test [67].

2. Reconstructing its superpoly, i.e., retrieving exactly which key variables it contains. This
is done by iteratively testing the linearity of each key variable, with a variant of the BLR
test.

The main challenge is to identify maxterms, rather than to reconstruct the ANF of their su-
perpoly. A simple heuristical method, proposed in [10, 89], works as follows: one randomly
chooses a subset I of public variables. Thereafter, one uses a linearity test to check whether the
corresponding superpoly p is linear. If I is too small, p is likely to be nonlinear in the secret
variables, and in this case the attacker adds a public variable to I and repeats the process. If
I is too large, the sum will be a constant function, and in this case one drops a public variable
from I and repeats the process. The correct choice of I is the borderline between these cases,
and if it does not exist the attacker retries with a different initial I.

More advanced techniques can be proposed to optimize the search of maxterms of degree
as low as possible. Indeed, for some algorithms there can be big differences between a “good”
n-bit index set I and a random one. Roughly speaking, one should choose the variables that are
the least nonlinearly combined in the first rounds of the function. The finding of such subsets
may be done analytically or empirically, depending on the function’s structure, but generally
one will combine the two approaches. Below we describe a purely empirical strategy, relevant
when attacking a black-box, i.e., an algorithm whose structure is completely unknown.

The strategy we propose is a refined version of the above heuristic: start from a small,
random, set of variables I. Reduce the number of rounds of the algorithm attacked to the
highest number for which the superpoly of I is constant. Then, add a random variable to I,
and again find out the highest number of rounds that yield a linear superpoly; repeat this for
several random choices, and eventually add to I the variable that gives the lowest number of
rounds. And that’s it. This simple strategy can be refined, for example, with the random
removal of “bad” variables. The objective is to converge towards a local minimum in the search
space. Due to the highly structured topology of this space, optimization techniques as genetic
algorithms are likely to assist the search of good maxterms (cf. §§7.4.4).

After the preprocessing, the attacker has a list (Ii, pi)i of maxterms with their correspond-
ing linear superpolys. Ideally, one should have at least as many (linear independent) equations
as key bits, in order to solve the system with certainty, and with no need to “guess” any key bit.
Note that the maxterms Ii may have different degrees. When evaluating a linear expression,
the public variables that are not in the maxterm should be set to a fixed value, and to the same
value as set in the preprocessing phase.

58

Now that the secret variables are fixed, one evaluates the pi’s by computing
∑

Ii
f(k, v)

over all the values of the corresponding maxterm, to find the value of a linear combination of
the key bits. One obtains a system of linear equations {pi(k1, . . . , kn) = vi}i, which can be
solved in polynomial time3.

Assuming that the degree of the target algorithm is d, each sum requires at most 2d−1

evaluations of the derived polynomials. If there are n maxterms I1, . . . , In or respective degrees
d1, . . . , dn, the total cost of the online attack is thus n2 +

∑n
i=1 2di . Put differently, complexity

is polynomial in the key size, and exponential in the number of differentiations.

7.2 Cube Testers

After the publication of cube attacks on Trivium, we verified the observations of Dinur and
Shamir, and studied how to build distinguishers from the ideas in [89]. Inspired by previous
algebraic distinguishers [92, 95, 166, 191], we proposed the new notion of cube tester, which
combines cube attacks with property-testing algorithms. Cube testers can be used to mount
distinguishers or to simply detect nonrandomness in cryptographic algorithms. They are poly-
morphic methods that are adaptable to the primitive attacked: a cube tester can be tuned to
exploit a particular weakness of an algorithm, like low-degree or unbalanced implicit polynomi-
als. Some cube testers do not require the function attacked to have a low degree, but just to
satisfy a testable property with significantly different probability than a random function. To
the best of our knowledge, this is one of the first applications of property-testing to cryptanaly-
sis. Cube testers were first presented at a seminar in Schloss Dagstuhl, before the presentation
at FSE 2009 [10]. The results on Grain-128 were presented at SHARCS 2009 [9].

7.2.1 Preliminaries

Recall that Fn denotes the set of all functions mapping {0, 1}n to {0, 1}, n > 0. For a given
n, a random function is a random element of Fn (note |Fn| = 22n

). In the ANF of a random
function, each monomial (and in particular, the highest degree monomial x1 · · ·xn) appears
with probability 1/2, hence a random function has maximal degree of n with probability 1/2.
Similarly, it has degree (n−2) or less with probability 2−n−1. Note that the explicit description
of a random function can be directly expressed as a circuit with, on average, 2n−1 gates (AND
and XOR), or as a string of 2n bits where each bit is the coefficient of a monomial (encoding
the truth table also requires 2n bits, but hides the algebraic structure).

Informally, a distinguisher for a family F (Fn is a procedure that, given a function f
randomly sampled from F⋆ ∈ {F ,Fn}, efficiently determines which of these two families was
chosen as F⋆. A family F is pseudorandom if and only if there exists no efficient distinguisher
for it. In practice, e.g., for hash functions or ciphers, a family of functions is defined by a κ-bit
parameter of the function, randomly chosen and unknown to the adversary, and the function is
considered broken (or, at least, “nonrandom”) if there exists a distinguisher making significantly
less than 2κ queries to the function.

We would like to stress the terminology difference made here between a distinguisher and
the more general detection of pseudorandomness; the former denotes a distinguisher (as defined
above) where the parameter of the family of functions is the cipher’s key, and thus cannot be
modified by the adversary; the latter considers part of the key as a public input, and assumes
as secret an arbitrary subset of the input (including the input bits that are normally public,

3To slightly speed-up the attack, one may precompute the row-echelon form of the system, since the equations
are already known: the cost of solving the system in the online phase thus becomes quadratic instead of cubic.

59

like IV bits). The mere detection of nonrandomness may not give a realistic attack, but shows
that the algorithm does not behave ideally.

To distinguish a family F (Fn from Fn, cube testers partition the set of public variables
{x1, . . . , xn} into two subsets:

• Cube variables (CV).

• Superpoly variables (SV).

We illustrate these definitions with the example from §7.1: recall that, given f(x1, x2, x3, x4) =
x1 + x1x2x3 + x1x2x4 + x3, we considered the cube x1x2 and called (x3 + x4) its superpoly,
because

f(x1, x2, x3, x4) = x1 + x1x2(x3 + x4) + x3 .

Here the cube variables (CV) are x1 and x2, and the superpoly variables (SV) are x3 and x4.
Therefore, by setting a value to x3 and x4, e.g., x3 = 0, x4 = 1, one can compute (x3 + x4) = 1
by summing f(x1, x2, x3, x4) for all possibles choices of (x1, x2). Note that it is not required for
a SV to actually appear in the superpoly of the maxterm. For example, if f(x1, x2, x3, x4) =
x1 + x1x2x3, then the superpoly of x1x2 with respect to the SV x3 and x4 is just x3.

To build efficient cube testers, most of the input bits should be fixed and only a few of
them viewed as variables (CV or SV). When f is, for example, a hash function, not all inputs
should be considered as variables, and not all Boolean components should be considered as
outputs. For example, if f maps 1024 bits to 256 bits, one may choose 20 CV and ten SV
and set a fixed value to the other inputs. These fixed inputs determine the coefficient of each
monomial in the ANF with CV and SV as variables. This is similar to the preprocessing phase
of key-recovery cube attacks, where one has access to all the input variables. Finally, for the
sake of efficiency, one may only evaluate the superpolys for 32 of the 256 Boolean components
of the output.

Examples Cube Testers

Cube testers distinguish a family of functions from random functions by detecting an “unex-
pected” property of the superpoly for a specific choice of CV and SV. This section introduces
this idea with simple examples.

Consider the polynomial function

f(x1, x2, x3, x4) = x1 + x1x2x3 + x1x2x4 + x3 ,

and suppose we choose CV x3 and x4 and SV x1 and x2, and we evaluate the superpoly of x3x4:

f(x1, x2, 0, 0) + f(x1, x2, 0, 1) + f(x1, x2, 1, 0) + f(x1, x2, 1, 1) = 0 .

This yields zero for any (x1, x2) ∈ {0, 1}2, i.e., the superpoly of x3x4 is zero. In comparison, for
a random function the superpoly of x3x4 is null with probability only 1/16, which suggests that
f was not chosen at random (indeed, we chose it particularly sparse, for clarity). Generalizing
the idea, one can deterministically test whether the superpoly of a given maxterm is constant,
and return “random function” if and only if the superpoly is not constant. This is similar to
the test used in [92].

Let f ∈ Fn, n > 4. We describe a probabilistic test that detects the presence of monomials
of the form x1x2x3xi . . . xj (e.g., x1x2x3, x1x2x3xn, etc.):

1. Choose a random value of (x4, . . . , xn) ∈ {0, 1}n−4.

60

2. Sum f(x1, . . . , xn) over all values of (x1, x2, x3), to obtain

∑

(x1,x2,x3)∈{0,1}3

f(x1, . . . , xn) = p(x4, . . . , xn)

where p is a polynomial such that

f(x1, . . . , xn) = x1x2x3 · p(x4, . . . , xn) + q(x1, . . . , xn) .

where the polynomial q contains no monomial with x1x2x3 as a factor in its ANF

3. Repeat the two previous steps N times, recording the values of p(x4, . . . , xn).

If f were a random function, it would contain at least one monomial of the form x1x2x3xi . . . xj

with high probability; hence, for a large enough number of repetitions N , one would record
at least one nonzero p(x4, . . . , xn) with high probability. However, if no monomial of the form
x1x2x3xi . . . xj appears in the ANF, p(x4, . . . , xn) always evaluates to zero.

7.2.2 Building on Algebraic Property Testing

Cube testers combine an efficient property tester on the superpoly, which is viewed either as
a polynomial or as a mapping, with a statistical decision rule. This section gives a general
definition of cube testers, starting with basic definitions.

A family tester for a family of functions F takes as input a function f of same domain D
and same codomain, and tests if f is close to F , with respect to a bound ǫ on the distance

δ(f,F) = min
g∈F

|{x ∈ D, f(x) 6= g(x)}|
|D| .

The tester accepts if δ(f,F) = 0, rejects with high probability if f and F are not ǫ-close,
and behaves arbitrarily otherwise. Such a test captures the notion of property-testing, when a
property is defined by a family of functions P. A property tester is thus a family tester for a
property P on the function defined by a superpoly.

Suppose one wishes to distinguish a family F (Fn from Fn, i.e., given a random f ∈ F⋆,
to determine whether F⋆ is F or Fn (for example, in Trivium, F may be a superpoly with
respect to CV and SV in the IV bits, such that each f ∈ F is computed with a distinct key).
Then if F is efficiently testable (see [122, 190]), then one can use directly a family tester for F
on f to distinguish it from a random function.

Cube testers detect nonrandomness by applying property testers to superpolys: infor-
mally, as soon as a superpoly has some “unexpected” property (that is, is abnormally struc-
tured) it is identified as nonrandom. Given a testable property P (Fn, cube testers run a tester
for P on the superpoly function f , and use a statistical decision rule to return either “random”
or “nonrandom”. The decision rule depends on the probabilities |P|/|Fn| and |P ∩ F|/|F| and
on a margin of error chosen by the attacker. In other words, a family F will be distinguishable
from Fn using the property P if

∣

∣

∣

∣

|P|
|Fn|

− |P ∩ F||F|

∣

∣

∣

∣

is non-negligible. That is, the tester will determine whether f is significantly closer to P than
a random function.

Below, we give examples of efficiently testable properties of the superpoly, which can
be used to build cube testers (see [122] for a general characterization of efficiently testable

61

properties). We let C be the number of CV, and S be the number of SV; the complexity is
given as the number of evaluations of the tested function f . Note that each query of the tester
to the superpoly requires 2C queries to the target cryptographic function. The complexity of
any property tester is thus, even in the best case, exponential in the number of CV.

Except low degree and constantness, the above properties do not require the superpoly to
have a low degree to be tested. For example, if the maxterm x1x2 has the following superpoly
of degree five:

x3x5x6 + x3x5x6x7x8 + x5x8 + x9 ,

then one can distinguish this superpoly from a random one either by detecting the linearity
of x9 or the neutrality of x4, with a cost independent on the degree. In comparison, the cube
tester suggested in [89] required the degree to be bounded by d such that 2d is feasible.

Note that the cost of detecting the property during the preprocessing is larger than the
cost of the online phase of the attack, given the knowledge of the property. For example,
testing that x1 is a neutral variable requires about N × 2C queries to the function, but once
this property is known, 2C queries are sufficient to distinguish the function from a random one
with high probability.

Finally, note that tests based on the nonrandom distribution of the monomials [95,166,191]
are not captured by our definition of cube testers, which focus on high-degree terms. Although,
in principle, there exist cases where the former tests would succeed while cube testers would fail,
in practice a weak distribution of lower-degree monomials rarely comes with a good distribution
of high-degree ones, as results in [92] and of ourselves suggest.

Balance

A random function is expected to contain as many zeroes as ones in its truth table. Superpolys
that have a strongly unbalanced truth table can thus be distinguished from random polynomials,
by testing whether it evaluates as often to one as to zero, either deterministically (by evaluating
the superpoly for each possible input), or probabilistically (over some random subset of the
SV). The deterministic version is presented in Algorithm 6, where the CV are x1, . . . , xC and
the SV are xC+1, . . . , xn, and D is some decision rule . A probabilistic version of the test makes
N < 2S iterations, for random distinct values of (xC+1, . . . , xn). Complexity is respectively 2n

and N × 2C .

Algorithm 6 Deterministic balance test.

1. c← 0

2. for all values of (xC+1, . . . , xn)

3. compute

p(xC+1, . . . , xn) =
∑

(x1,...,xC)

f(x1, . . . , xn) ∈ {0, 1}

4. c← c + p(xC+1, . . . , xn)

5. return D(c) ∈ {0, 1}

62

Constantness

A particular case of balance tester tests the “constantness” property, i.e., whether the superpoly
defines a constant function. It detects either that f has maximal degree strictly less than C
(null superpoly), or that f has maximal degree exactly C (superpoly equals the constant 1),
or that f has degree strictly greater than C (non-constant superpoly). This is equivalent to
the maximal degree monomial test used in [92], used to detect nonrandomness in 736-round
Trivium.

Low Degree

A random superpoly with S variables has degree at least (S−1) with high probability. Crypto-
graphic functions that rely on a low-degree function, however, are likely to have superpolys of
low degree. Because it closely relates to probabilistically checkable proofs and to error-correcting
codes, low-degree testing has been well studied; the most relevant results to our concerns are
the tests for Boolean functions in [1, 192]. The test by Alon et al. [1], for a given degree d,
queries the function at about d× 4d points and always accepts if the ANF of the function has
degree at most k, otherwise it rejects with some bounded error probability. Note that, contrary
to the method of ANF reconstruction (exponential in S), the complexity of this algorithm is
independent of the number of variables. Hence, cube testers based on this low-degree test have
complexity which is independent of the number of SV.

Presence of Linear Variables

This is a particular case of the low-degree test, for degree d = 1 and a single variable. Indeed,
the ANF of a random function contains a given variable in at least one monomial of degree at
least two with probability close to one. One can thus test whether a given superpoly variable
appears only linearly in the superpoly, e.g., for x1 using a test similar to that introduced in [67],
as described in Algorithm 7. This test answers correctly with probability about 1 − 2−N , and
computes N×C+1 times the function f . If, say, a stream cipher is shown to have an IV bit linear
with respect to a set of CV in the IV, independently of the choice of the key, then it directly
gives a distinguisher.

Algorithm 7 Probabilistic test for the presence of linear variable.

1. pick random (x2, . . . , xS)

2. if p(0, x2, . . . , xS) = p(1, x2, . . . , xS)

3. return nonlinear

4. repeat steps 1 to 3 N times

5. return linear

Presence of Neutral Variables

Dually to the above linearity test, one can test whether a SV is neutral in the superpoly, that is,
whether it appears in at least one monomial. For example, the Algorithm 8 tests the neutrality
of x1, for N ≤ 2S−1. This test answers correctly with probability about 1 − 2−N and runs in
time N × 2C . For example, if x1, x2, x3 are the CV and x4, x5, x6 the SV, then x6 is neutral

63

with respect to x1x2x3 if the superpoly p(x4, x5, x6) satisfies p(x4, x5, 0) = p(x4, x5, 1) for all
values of (x4, x5). A similar test was implicitly used in [96], via the computation of a neutrality
measure.

Algorithm 8 Probabilistic test for the presence of neutral variables.

1. pick random (x2, . . . , xS)

2. if p(0, x2, . . . , xS) 6= p(1, x2, . . . , xS)

3. return not neutral

4. repeat steps 1 to 3 N times

5. return neutral

7.3 Application to MD6 and Trivium

7.3.1 MD6

We used cube testers to detect nonrandomness in reduced versions of the MD6 compression
function, which maps the 64-bit words A0, . . . , A88 to A16r+73, . . . , A16r+88, with r the number
of rounds. From the compression function f : {0, 1}64×89 7→ {0, 1}64×16, our testers consider
families of functions {fm} where a random fi : {0, 1}64×89−k 7→ {0, 1}64×16 has k input bits
set to a random k-bit string. The attacker can thus query fi, for a randomly chosen key i, on
(64× 89− k)-bit inputs.

Brief Description of MD6

Rivest presented the hash function MD6 [184, 185] as a candidate for NIST’s hash competi-
tion. MD6 shows originality in both its operation mode—a parametrized quadtree [81]—and
its compression function, which repeats hundreds of times a simple combination of XOR’s,
AND’s and shift operations: the r-round compression function of MD6 takes as input an array
A0, . . . , A88 of 64-bit words, recursively computes A89, . . . , A16r+88, and outputs the 16 words
A16r+73, . . . , A16r+88, as depicted on Algorithm 9.

Algorithm 9 The compression function of MD6.

1. for i = 89, . . . , 16r + 88

2. x← Si ⊕Ai−17 ⊕Ai−89 ⊕ (Ai−18 ∧Ai−21)⊕ (Ai−31 ∧Ai−67)

3. x← x⊕ (x≫ ri)

4. Ai ← x⊕ (x≪ ℓi)

5. return A16r+73,...,16r+88

A step is one iteration of the above loop, a round is a sequence of 16 steps. The values
Si, ri, and ℓi are step-dependent constants (see Table 7.2). MD6 generates the input words
A0, . . . , A88 as follows:

64

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 10 5 13 10 11 12 2 7 14 15 7 13 11 7 6 12
ℓi 11 24 9 16 15 9 27 15 6 2 29 8 15 5 31 9

Table 7.2: Distances of the shift operators used in MD6, as function of the step index within a
round.

1. A0, . . . , A14 contain constants (fractional part of
√

6; 960 bits).

2. A15, . . . , A22 contain a key (512 bits).

3. A23, A24 contain parameters (key length, root bit, digest size, etc.; 128 bits).

4. A25, . . . , A88 contain the data to be compressed (message block or chain value; 4096 bits).

The proposed instances of MD6 perform at least 80 rounds (1280 steps) and at most 168 (2688
steps). Resistance to “standard” differential attacks for collision finding is proved for up to
12 rounds. The designers of MD6 could break at most 12 rounds with high complexity using
SAT-solvers.

The compression function of MD6 can be seen as a device composed of 64 nonlinear
feedback shift registers (NFSR’s) and a linear combiner: during a step the 64 NFSR’s are
clocked in parallel, then linearly combined. The AND operators (∧) progressively increase
nonlinearity, and the shift operators provide wordwise diffusion. This representation will make
our attacks easier to understand.

The word Si is a round-dependent constant: during the first round (i.e., the first 16 steps)
Si = 0123456789ABCDEF, then at each new round it is updated as

Si ← (S0 ≪ 1)⊕ (S0 ≫ 63)⊕ (Si−1 ∧ 7311C2812425CFA) .

The shift distances ri and ℓi are step-dependent constants, see Table 7.2.
The number of rounds r depends on the digest size: for a d-bit digest, MD6 makes 40+d/4

rounds.
The key observations leading to our improved attacks on MD6 are that:

1. Input words appear either linearly (as Ai−89 or Ai−17) or nonlinearly (as A18, A21, A31,
or A67) within a step.

2. Words A0, . . . , A21 are input once, A22, . . . , A57 are input twice, A58, . . . , A67 are input
three times, A68, A69, A70 four times, A71 five times, and A72, . . . , A88 six times.

3. All input words appear linearly at least once (A0, . . . , A71), and at most twice (A72, . . . , A88)

4. A57 is the last word input (at step 124, i.e., after 2 rounds plus 3 steps).

5. A71 is the last word input linearly (at step 160, i.e., after 4 rounds plus 7 steps).

6. Differences in a word input nonlinearly are “absorbed” if the second operand is zero (e.g.,
Ai−18 ∧Ai−21 = 0 if Ai−18 is zero, for any value of Ai−21).

Based on the above observations, the first attack (A) makes only black-box queries to the
function. The second attack (B) can be seen as a kind of related-key attack, and is more
complex and more powerful. Our best attacks, in terms of efficiency and number of rounds
broken, were obtained by testing the balance of superpolys.

65

Attack A

This attack considers CV, SV, and secret bits in A71: the MSB’s of A71 contain the CV, the
LSB’s contain the 30 secret bits, and the 4 bits “in the middle” are the SV. The other bits in
A71 are set to zero. To minimize the density and the degree of the ANF, we set Ai = Si for
i = 0, . . . , 57 in order to eliminate the constants Si from the expressions, and set Ai = 0 for
i = 58, . . . , 88 in order to eliminate the quadratic terms by “absorbing” the nonzero A22, . . . , A57

through AND’s with zero values.
The attack exploits the fact that A71 is the last word input linearly. We set initial

conditions on the message such that modifications in A71 are only effective at step 160, and so
CV and SV are only introduced (linearly) at step 160: in order to absorb A71 before step 160,
one needs A68 = A74 = A35 = A107 = 0, respectively for steps 89, 92, 102, and 138.

Given the setup above, the attack evaluates the balance of the superpoly for each of the
1024 output components, in order to identify superpolys that are constant for most of the SV
values. These superpolys may be either constants, or unbalanced nonlinear functions. Results
for reduced and modified MD6 are given in subsequent sections.

We observed strong imbalance after 15 rounds, using 19 CV. More precisely, the Boolean
components corresponding to the output bits in A317 and A325 all have (almost) constant
superpoly. When the Si constants are set to zero, we observed that all the outputs in A1039

and A1047 have (almost) constant superpoly, i.e., we can break 60 rounds of this modified MD6
version using only 14 CV.

The difference of results between the original MD6 and the modified case in which Si = 0
comes from the fact that a zero Si makes it possible to keep a sparse state during many rounds,
whereas a nonzero Si forces the introduction of nonzero bits in the early steps, thereby quickly
increasing the density of the implicit polynomials, which indirectly facilitates the creation of
high degree monomials.

Attack B

This attack considers CV, SV, and secret bits in A54, at the same positions as in Attack A.
Other input words are set by default to Si for A0, . . . , A47, and to zero otherwise.

The attack exploits the fact that A54 and A71 are input linearly only once, and that both
directly interact with A143. We set the following initial conditions on the message, so that CV
and SV only appear at step 232:

• Step 143: input variables are transfered linearly to A143.

• Step 160: A143 is input linearly; to cancel it, and thus to avoid the introduction of the
CV and SV in the ANF, one needs A71 = S160 ⊕A143.

• Step 92: A71 is input nonlinearly; to cancel it, in order to make. A138 independent of
A143, we need A74 = 0

• Step 138: A71 is input nonlinearly; to cancel it, one needs A107 = 0.

• Step 161: A143 is input nonlinearly; to cancel it, one needs A140 = 0.

• Step 164: A143 is input nonlinearly; to cancel it, one needs A146 = 0.

• Step 174: A143 is input nonlinearly; to cancel it, one needs A107 = 0 (as for step 138).

• Step 210: A143 is input nonlinearly; to cancel it, one needs A179 = 0.

• Step 232: A143 is input linearly, and introduces the CV and SV linearly into the ANF.

66

To satisfy the above conditions, one has to choose suitable values of A1, A18, A51, A57, A74.
These values are constants that do not depend on the input in A54.

Given the setup above, the attack evaluates the balance of the superpoly for each of the
1024 output components, in order to identify superpolys that are constant for most of the SV
values.

We observed strong imbalance after 18 rounds, using 17 CV. The Boolean components
corresponding to the output bits in A368 and A376 all have (almost) constant superpoly. When
Si = 0, using 10 CV, one finds that all outputs in A1114 and A1122 have (almost) constant
superpoly, i.e., one breaks 65 rounds. Pushing the attack further, one can detect nonrandomness
after 66 rounds, using 24 CV.

7.3.2 Trivium

The stream cipher Trivium was designed by De Cannière and Preneel [74] and submitted as a
candidate to the eSTREAM project in 2005. Trivium was eventually chosen as one of the four
hardware ciphers in the eSTREAM portofolio. Reduced variants of Trivium underwent several
attacks [92,96,149,151,167,182,214,216], including cube attacks [88].

Trivium takes as input a 80-bit key and a 80-bit IV, and produces a keystream after 1152
rounds of initialization. Each round corresponds to clocking three feedback shift registers, each
one having a quadratic feedback polynomial. The best result on Trivium is a cube attack [88]
on a reduced version with 771 initialization rounds instead of 1152.

Observations in [88, Tables 1,2,3] suggest nonrandomness properties detectable in time
about 212 after 685 rounds, in time 224 after 748 rounds, and in time 230 after 771 rounds.
However, a distinguisher cannot be directly derived because the SV used are in the key, and
thus cannot be chosen by the attacker in an attack where the key is fixed.

Brief Description of Trivium

Trivium works with a 288-bit internal state s1, . . . , s288, initialized with 80 key bits in s1, . . . , s80,
80 IV bits in s94, . . . , s173, bits 1 in s286, s286, s288, and bits 0 elsewhere. This state works as
three interacting NFSR’s, and the initialization procedure clocks this mechanism 4×288 = 1152
times, where one clock is:

t1 ← s66 + s93 + s91s92 + s171

t2 ← s162 + s177 + s175s176 + s264

t3 ← s243 + s288 + s286s287 + s69

(s1, s2 . . . , s93)← (t1, s1, . . . , s93)

(s94, s95 . . . , s177)← (t2, s94, . . . , s176)

(s178, s179 . . . , s288)← (t3, s178, . . . , s287)

Once initialized, Trivium produces keystream bits as follows: it returns the bit s66 +s93 +s162 +
s177 + s243 + s288, then clock the state, then returns the new s66 + s93 + s162 + s177 + s243 + s288,
clocks the state, etc. Note that an alternative, simpler, description was given in [27].

67

Cube Testers on Trivium

First we assume a fixed secret key, and public variables corresponding to the IV bits.

In addition to the cubes identified in [88, Table 2], we were able to further improve the
results by applying cube testers on carefully chosen cubes, where the indices are uniformly spread
(the distance between neighbors is at least two). These cubes exploit the internal structure of
Trivium, where non linear operations are only performed on consecutive cells.

With the 27-bit cube formed of the IV bits with indices

{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 79}

we observe that the resultant superpoly after 785 initialization rounds is constant, hence we
found a distinguisher on up to 785 rounds. IV bits that are not in the cube are set to zero to min-
imize the degree and the density of the polynomials generated during the first few initialization
steps.

In the artificial setting where the key is fixed to zero except its first six bits, we could
detect nonrandomness over up to 885 rounds (bits zero, three, and four of the key are neutral
in the superpoly). This observation does not lead to an attack, but suggests that Trivium does
not behave as a pseudorandom generator with only 885 rounds.

With the 30-bit cube

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 79}

we could build a distinguisher on 790 rounds, by testing the balance of the superpoly.

Better results are obtained when the SV are in the key, not the IV; this is because
the initialization algorithm of Trivium puts the key and the IV into two different registers,
which make dependency between bits in a same register stronger than between bits in different
registers.

For comparison, [92], testing the constantness of the superpoly, reached 736 rounds with
33 CV. The observations in [88], obtained by testing the linearity of SV in the key, lead to
detectable nonrandomness on 767 rounds with 30 CV.

7.4 Application to Grain-128 and Grain-v1

The stream cipher Grain-128 was proposed by Hell, Johansson, Maximov, and Meier [110] as a
variant of Grain-v1 [111,112], to accept keys of up to 128 bits, instead of up to 80 bits. Grain-v1
has been selected in the eSTREAM portfolio4 of promising stream ciphers for hardware, and
Grain-128 was expected to retain the merits of Grain-v1.

Grain-128 takes as input a 128-bit key and a 96-bit IV, and it produces a keystream after
256 rounds of initialization. Each round corresponds to clocking two feedback registers (a linear
one, and a nonlinear one). Several attacks on Grain-128 were reported: [166] claims to detect
nonrandomness on up to 313 rounds, but these results were not confirmed by [92], which used
similar methods to find a distinguisher on 192 rounds. Shortcut key-recovery attacks on 180
rounds were presented in [96], while [73] exploited a sliding property to speed up exhaustive
search by a factor two. More recently, [137] presented related-key attacks on the full Grain-128.
However, the relevance of related-key attacks is disputed, and no attack significantly faster than
bruteforce is known for Grain-128 in the standard attack model.

4See http://www.ecrypt.eu.org/stream.

68

NFSR LFSR

h

g f

i

?

?
- �

- �

- -

?i� � �

7 2 7 1

19 1 6 1

Figure 7.1: Schematic view of Grain-128’s keystream generation mechanism (numbers designate
arities). During initialization, the output bit is fed back into both registers, i.e., added to the
output of f and g.

7.4.1 Brief Description of Grain-128

The mechanism of Grain-128 consists of a 128-bit LFSR, a 128-bit NFSR (both over GF(2)),
and a Boolean function h. The feedback polynomial of the NFSR has algebraic degree two, and
h has degree three (see Figure 7.1).

Given a 128-bit key and a 96-bit IV, one initializes Grain-128 by filling the NFSR with
the key, and the LFSR with the IV padded with 1 bits. The mechanism is then clocked 256
times without producing output, and feeding the output of h back into both registers. Details
can be found in [110].

7.4.2 Software Bitsliced Implementation

Since we need to run many independent instances of Grain-128 that operate on bits (rather than
bytes or words), a bitsliced implementation in software is a natural choice. This technique was
originally presented by Biham [43], and can speed up the preprocessing phase of cube attacks
(and cube testers) as suggested by Crowley in [80].

To test small cubes, and to perform the search described in §7.4.4, we used a bitsliced
implementation of Grain-128 that runs 64 instances of Grain-128 in parallel, each with (poten-
tially) different keys and different IV’s. We stored the internal states of the 64 instances in two
arrays of 128 words of 64 bits, where each bit slice corresponds to an instance of Grain-128, and
the i-th word of each array contains the i-th bit in the LFSR (or NFSR) of each instance.

Our bitsliced implementation provides a considerable speedup, compared to the reference
implementation of Grain-128. For example, on a PC with an Intel Core 2 Duo processor,
evaluating the superpoly of a cube of dimension 30 for 64 distinct instances of Grain-128 with
a bitsliced implementation takes approximately 45 minutes, against more than a day with the
designers’ C implementation.

Below we give the C code of a function that, given 64 keys and 64 IV’s (already bitsliced),
returns the first keystream bit produced by Grain-128 with rounds initialization rounds:

typedef unsigned long long u64;

u64 grain128 bitsliced64(u64 * key, u64 * iv, int rounds) {

u64 l[128+rounds], n[128+rounds], z=0;

int i,j;

69

for(i=0; i<96; i++){
n[i]= key[i];

l[i]= iv[i];

}
for(i=96; i<128; i++){

n[i]= key[i];

l[i]= 0xFFFFFFFFFFFFFFFFULL;

}

for(i=0; i<rounds; i++){
l[i+128] = l[i] ˆ l[i+7] ˆ l[i+38] ˆ l[i+70] ˆ l[i+81] ˆ l[i+96];

n[i+128] = l[i] ˆ n[i] ˆ n[i+26] ˆ n[i+56] ˆ n[i+91] ˆ n[i+96] ˆ
(n[i+ 3] & n[i+67]) ˆ (n[i+11] & n[i+13]) ˆ (n[i+17] & n[i+18]) ˆ
(n[i+27] & n[i+59]) ˆ (n[i+40] & n[i+48]) ˆ (n[i+61] & n[i+65]) ˆ
(n[i+68] & n[i+84]);

z = (n[i+12] & l[i+8]) ˆ (l[i+13] & l[i+20]) ˆ
(n[i+95] & l[i+42]) ˆ (l[i+60] & l[i+79]) ˆ
(n[i+12] & n[i+95] & l[i+95]);

z = n[i + 2] ˆ n[i + 15] ˆ n[i + 36] ˆ n[i + 45] ˆ n[i + 64] ˆ
n[i + 73] ˆ n[i + 89] ˆ z ˆ l[i + 93];

l[i+128] =̂ z;

n[i+128] =̂ z;

}

z = (n[i+12] & l[i+8]) ˆ (l[i+13] & l[i+20]) ˆ
(n[i+95] & l[i+42]) ˆ (l[i+60] & l[i+79]) ˆ
(n[i+12] & n[i+95] & l[i+95]);

z = n[i + 2] ˆ n[i + 15] ˆ n[i + 36] ˆ n[i + 45] ˆ n[i + 64] ˆ
n[i + 73] ˆ n[i + 89] ˆ z ˆ l[i + 93];

return z;

}

7.4.3 Hardware Parallel Implementation

Field-programmable gate arrays (FPGA’s) are reconfigurable hardware devices widely used in
the implementation of cryptographic systems for high-speed or area-constrained applications.
The possibility to reprogram the designed core makes FPGA’s an attractive benchmark plat-
form: for instance, many eSTREAM candidates were implemented on various FPGA’s [70,101,
104]. To attack Grain-128, we used a Xilinx Virtex-5 LX330 FPGA to run the first reported
implementation of cube testers in hardware. This FPGA offers a large number of embedded
programmable logic blocks, memories and clock managers, and is an excellent platform for large
scale parallel computations. Note that FPGA’s have already been used for cryptanalytic pur-
poses, most remarkably with COPACOBANA [106, 133]. Below we describe our architecture,
first for Grain-128, and then for cube testers.

70

NFSR LFSR

32-63

0-31

96-127

64-95

Output

g’ h’ f

32-63

0-31

96-127

64-95

k0,...,31

k32,...,63

k64,...,95

k95,...,127

IV0,...,31

IV32,...,63

IV64,...,95

1,1,...,1

Figure 7.2: Overview of our Grain-128 architecture. At the beginning of the simulation, the
key and the IV are directly stored in the NFSR and LFSR register blocks. All connections are
32-bit wide.

Frequency Throughput Size Available area
[MHz] [Mbps] [Slices] [Slices]

Grain-128 module 200 6,400 180 51,840

Table 7.3: Performance results of our Grain-128 implementation.

Implementation of Grain-128

The Grain ciphers (Grain-128 and Grain-v1) are particularly suitable for resource-limited hard-
ware environments. Low-area implementations of Grain-v1 are indeed able to fill just a few
slices in various types of FPGA’s [104]. Using only shift registers combined with XOR and
AND gates, the simplicity of the Grain’s construction could also be easily translated into high-
speed architectures. Throughput and circuit’s efficiency (area/speed ratio) are indeed the two
main characteristics that have been used as guidelines to design our Grain-128 module for the
Virtex-5 chip. The relatively small degree of optimization for Grain allows the choice of different
datapath widths, resulting in the possibility of a speedup by a factor 32 (see [110]).

We selected a 32-bit datapath to get the fastest and most efficient design in terms of area
and speed. Figure 7.2 depicts our module, where both sides of the diagram contain four 32-bit
register blocks. During the setup cycle, the key and the IV are stored inside these memory
blocks. In normal functioning, they behave like shift register units, i.e., at each clock cycle
the 32-bit vector stored in the bigger blocks is sent to the smaller blocks. For the biggest
register blocks, the input vectors are generated by specific functions, according to the algorithm
definition. The g′ module executes the same computations of the function g plus the addition
of the smallest index coming from the LFSR, while the output bits are entirely computed inside
the h′ module. Table 7.3 summarizes the overall structure of our 32×Grain-128 architecture.

71

Cube dimension 30 35 37 40 44 46 50

Nb. of queries 222 227 229 232 236 238 242

Time 0.17 sec 5.4 sec 21 sec 3 min 45 min 3 h 2 days

Table 7.4: FPGA evaluation time for cubes of different dimension with 2m = 28 parallel Grain-
128 modules. Note that detecting nonrandomness requires the calculation of statistics on several
trials, e.g., our experiments involved 64 trials with a 40-bit cube.

Implementation of Cube Testers

Besides the intrinsic speed improvement from software to hardware implementations of Grain-
128, the main of implementing cube testers in hardware resides in the possibility to parallelize
the computations of the IV queries (since cube tester make a suum of outputs of independent
instances). Specifically, with 2m instances of Grain-128 in parallel, running a cube tester with
a (n + m)-dimentional cube will be as fast as with an n-dimentional cube on a single instance.

Our architecture (see Figure 7.3) contains three main components:: the first provides the
pseudorandom key and the 2m IV’s for each instance, the second collects and sums the outputs,
and the last component is a controller unit. To produce pseudorandom keys at a reduced cost,
we use a 128-bit LFSR with (primitive) feedback polynomial x128 + x29 + x27 + x2 + 1. This
guarantees a period of 2128 − 1, thus ensuring that no key is repeated.

The evaluation of the superpoly for all 256 instances with different pseudorandom keys
is performed inside the output collection module. After the 2n−m queries, the intermediate
vector contains the final evaluation of the superpoly for a single instance. The implementation
of a modified Grain-128 architecture with ×32 speedup allows us to evaluate the same cube
for 32 subsequent rounds. That is, after the exhaustive simulation of all possible values of
the superpoly, we get the results for the same simulation done with an increasing number of
initialization rounds r, 32i ≤ r < 32(i + 1) and i ∈ [1, 7]. This is particularly useful to test
the maximal number of rounds attackable with a specific cube (we don’t have to run the same
initialization rounds 32 times to test 32 distinct round numbers)

Finally, 32 dedicated counters are incremented if the values of the according bit inside
the intermediate result vector is zero or one, respectively. At the end of the repetitions, the
counters indicate the proportion between zeros and ones for 32 different values of increasing
rounds.

Since the required size of a single Grain-128 core is 180 slices, up to 256 parallel ciphers
can be implemented inside a Virtex-5 LX330 chip (cf. Table 7.3). This gives m = 8, hence
decreasing the number of queries to 2n−8. Table 7.4 presents the evaluation time for cubes up
to dimension 50.

7.4.4 Evolutionary Search for Good Cubes

To search for cubes that maximize the number of rounds after which the superpoly is still
not balanced, we programmed a simple evolutionary algorithm (EA). Metaheuristic optimiza-
tion methods like EA’s seem relevant for searching good cubes, since they are generic, highly
parametrizable, and are often the best choice when the topology of the search space is unknown.
In short, EA’s aim to maximize a fitness function, by updating a set of points in the search
space according to some evolutionary operators, the goal being to converge towards a (local)
optimum in the search space.

We implemented in C a simple EA that adapts the evolutionary notions of selection,
reproduction, and mutation to cubes, which are then seen as individuals of a population. Our

72

Grain_1 Grain_2 Grain_3 Grain_2m

s_inst

Output collection
u_inst

96 96 96 96

32 32 32 32

Out2m−1Out0 Out1 Out2

IV2m−1IV0

eq=
\LARGE
\[
 \textnormal{IV}_0
\]

IV1

eq=
\LARGE
\[
 \textnormal{IV}_1
\]

IV2

eq=
\LARGE
\[
 \textnormal{IV}_2
\]

e_inst

Key and IV generation
LFSR incrementer

partial IV
n-m128

CV
router

CV
router

CV
router

CV
router

m m m m

offset2m−1offset0 offset1 offset2

S
im

ul
at

io
n

co
nt

ro
lle

r

A
R

R
A

Y

Key

Figure 7.3: Architecture of the FPGA cube module. The width of all signals is written out,
except for the control signals in grey.

EA returns a set of cubes, and is parametrized by

• σ, the cube dimension, in bits.

• µ, the maximal number of mutations.

• π, the (constant) population size.

• χ, the number of individuals in the offspring.

• γ, the number of generations.

Algorithm 10 gives the pseudocode of our EA, where lines 3 to 5 correspond to the reproduction,
lines 6 and 7 correspond to the mutation, while lines 8 and 9 correspond to the selection.

Algorithm 10 uses as fitness function a procedure that returns the highest number of
rounds for which it yields a constant superpoly. We chose to evaluate the constantness rather
than the balance because it reduces the number of parameters, thus simplifying the configuration
of the search.

In practice, we optimized Algorithm 10 with ad hoc tweaks, like initializing cubes with
particular “weak” indices (e.g., 33, 66, and 68). Note that EA’s can be significantly more
complex, notably by using more complicated selection and mutation rules (see [103] for an
overview of the topic).

The choice of parameters depends on the cube dimension considered. In our algorithm,
the quality of the final result is determined by the population size, the offspring size, the number

73

Algorithm 10 Evolutionary algorithm for searching good cubes.

1. initialize a population of π random σ-bit cubes

2. repeat γ times

3. repeat χ times

4. pick two random cubes ⋄1 and ⋄2 in the population of π cubes

5. create a new cube with each index chosen randomly from ⋄1 or ⋄2

6. choose a random number i in {1, . . . , µ}

7. choose i random indices in the new cube, replace them by random ones

8. evaluate the fitness of the population and of the offspring

9. replace population by the π best-ranking individuals

10. return the π cubes in the population

Cube dimension 6 10 14 18 22 26 30 37 40

Rounds 180 195 203 208 215 222 227 233 237

Table 7.5: Best results for various cube dimensions on Grain-128.

of generations, and the type of mutation. In particular, increasing the number of mutations
favors the exploration of the search space, but too much mutation slows down the convergence
to a local optimum. The population size, offspring size, and number of generations are always
better when higher, but too large values make the search too slow.

For example, we could find our best 6-dimensional cubes (σ = 6) by setting µ = 3,
π = 40, χ = 80, and γ = 100. The search then takes a few minutes. Slower searches did not
give significantly better results.

7.4.5 Experimental Results and Extrapolation

Table 7.5 summarizes the maximum number of initialization rounds after which we could detect
imbalance in the superpoly corresponding to the first keystream bit. It follows that one can
mount a distinguisher for 195-round Grain-128 in time 210, and for 237-round Grain-128 in time
240. The cubes used are given in Table 7.6.

We extrapolated our results using standard methods, namely the generalized linear model
fitting of the Matlab tool. Our extrapolation, depicted on Figure 7.4, suggests that cubes of
dimension 77 may be sufficient to construct successful cube testers on the full Grain-128, i.e.,
with 256 initialization rounds.

If this extrapolation is correct, then a cube tester making 64×277 = 283 chosen-IV queries
can distinguish the full Grain-128 from an ideal stream cipher, against 2128 ideally. We add the
factor 64 because our extrapolation is done with respect to results obtained with statistic over 64
random keys. That complexity excludes the precomputation required for finding a good cube;
based on our experiments with 40-dimensional cubes, less than 25 trials would be sufficient
to find a good cube (based on the finding of good small cubes, e.g., using our evolutionary
algorithm). That is, precomputation would be less than 288 initializations of Grain-128.

74

Cube dimension Indices

6 33, 36, 61, 64, 67, 69
10 5, 28, 34, 36, 37, 66, 68, 71, 74, 79
14 5, 28, 34, 36, 37, 51, 53, 54, 56, 63, 66, 68, 71, 74
18 5, 28, 30, 32, 34, 36, 37, 62, 63, 64, 65, 66, 67, 68, 69, 71,

73, 74
22 4, 5, 28, 30, 32, 34, 36, 37, 51, 62, 63, 64, 65, 66, 67, 68,

69, 71, 73, 74, 79, 89
26 4, 7, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51, 53, 54,

56, 57, 61, 62, 63, 64, 65, 66, 67, 68
30 4, 7, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51, 53, 54,

56, 57, 59, 62, 65, 66, 69, 72, 75, 78, 79, 80, 83, 86
37 4, 7, 12, 14, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51,

53, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 74, 75, 76, 77,
78, 79, 89, 90, 91

40 4, 7, 12, 14, 20, 22, 25, 28, 30, 31, 33, 36, 39, 40, 41, 51,
53, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 74, 75, 76, 77,
78, 79, 86, 87, 88, 89, 90, 91

Table 7.6: Cubes used for Grain-128.

In
it

ia
liz

at
io

n
 r

o
u

n
d

s

Cube size
0 20 40 60 80 100

160

180

200

220

240

260

280

In
it

ia
liz

at
io

n
 r

o
u

n
d

s

Cube size
70 72 74 76 78 80

250

251

252

253

254

255

256

257

258

259

260

Figure 7.4: Extrapolation of our cube testers on Grain-128, obtained by general linear regression
using the Matlab software, in the “poisson-log” model. The required dimension for the full
Grain-128 version is 77 (see zoom on the right).

7.4.6 Observations on Grain-v1

Grain-v1 is the predecessor of Grain-128. Its structure is similar to that of Grain-128, but
the registers are 80-bit instead of 128-bit, the keys are 80-bit, the IV’s are 64-bit, and the
initialization clocks the mechanism 160 times (see Figure 7.5).

The feedback polynomial of Grain-v1’s NFSR has degree six, instead of two for Grain-128,
and is also less sparse. The filter function h has degree three for both versions of Grain, but
that of Grain-v1 is denser than that of Grain-128. These observations suggest that Grain-v1
may have a better resistance than Grain-128 to cube testers, because its algebraic degree and
density are likely to converge much faster towards ideal ones.

To support the above hypothesis, we used a bitsliced implementation of Grain-v1 to search
for good cubes with the EA presented in §7.4.4, and we ran cube testers (still in software)

75

NFSR LFSR

h

g f

i

?

?
-

- �

- -

?i� � �

7 1 4

19 1 6 1

Figure 7.5: Schematic view of Grain-v1’s keystream generation mechanism (numbers designate
arities). During initialization, the output bit is fed back into both registers, i.e., added to the
output of f and g.

Cube dimension 6 10 14 20 24

Rounds 64 70 73 79 81

Table 7.7: Best results for various cube dimensions on Grain-v1.

similar to those on Grain-128. Table 7.7 summarizes our results, showing that one can mount
a distinguisher on Grain-v1 with 81 rounds of initialization in 224. However, even an optimistic
(for the attacker) extrapolation of these observations suggests that the full version of Grain-v1
resists cube testers, and the basic cube attack techniques.

7.5 Conclusion

We presented a novel generic framework for detecting nonrandomness in cryptographic algo-
rithms, called cube testers, based on cube attacks and algebraic property testers. To the best
of our knowledge, this is the first direct application of research in property testing to crypt-
analysis. Cube testers have several advantages over classical cube attacks: they require less
precomputation, they are simpler to implement, and they can attack at least as many rounds
as cube attacks.

We applied cube testers to the hash function MD6, and to the stream ciphers Trivium
and Grain-128, giving the best results so far on the two latter. Furthermore, we realized the
first hardware implementation of cube testers on Grain-128: we were able to run our tests on
256 instances of Grain-128 in parallel, each instance being itself parallelized by a factor 32.
The heaviest experiment run involved about 254 clockings of the Grain-128 mechanism. An
extrapolation of our results suggests that the full Grain-128 can be attacked in time 283 instead
of 2128 ideally. Therefore, Grain-128 may not provide full protection when 128-bit security is
required.

Finally, an open problem concerns the choice of properties tested. Although cube testers
can in theory use broad classes of properties, we only considered simple properties in the above
applications: balance, and presence of neutral variables. It would be interesting to study
whether less straightforward properties, yet still efficiently testable, can lead to better results.

76

Part II

Design of the Hash Function BLAKE

77

Chapter 8

Preliminaries

Great things are done when men and mountains meet.

—William Blake, Notebook

We started the design of a new hash function in summer 2007, a project materialized by
the presentation of LAKE at FSE 2008 [16]. We considered recent research advances in the field
to design the first hash function that

• Incorporates a salt, for randomized hashing;

• Is built on the HAIFA iteration mode, making it resistant to long-message second preimage
attacks.

In addition, we put significant effort so that LAKE be simple to implement, and faster than
SHA-2.

New hash designs were also presented at FSE in 2005, 2006, and 2007, and all of those
were broken within less than a year. We thus expected some cryptanalysis results on LAKE;
the first attack was by Mendel, Rechberger, and Schläffer [154], who found a collision for
LAKE’s compression function reduced to four rounds (instead of eight). Improved attacks
were discovered by Nikolić et al. [57] and presented at FSE 2009, with a pseudo-collision attack
for any number of rounds of LAKE. Although we admit that they may undermine confidence,
these results do not contradict the original security conjectures for LAKE.

After the publication of LAKE, we started working on a new design for submission to
the SHA-3 competition. We studied a large fraction of the previous designs and attacks, both
among hash functions and block ciphers candidate to AES, in order to establish a list of criteria
that would make BLAKE suitable for selection as SHA-3. After several preliminary designs, we
decided to build on a well-known and trusted algorithm, rather than on a completely original
one, as we did for LAKE. We also chose to propose a relatively conservative design, for it takes
time to gain confidence in too original features. We tried not to “overdesign” BLAKE—by not
adding a plethora of unneeded features—and not to focus on a particular aspect of the design.
Instead, our goal with BLAKE was to to perform well with respect to all the evaluation criteria,
for we believe that the selected SHA-3 will not be the “most secure”, nor the “simplest” or the
“fastest”.

Our choice of borrowing from the stream cipher ChaCha (after agreement of its author)
comes after our experience in cryptanalysis of Salsa20 and ChaCha [12], which convinced us of
their remarkable combination of simplicity and security. ChaCha is arguably stronger than, and

79

as fast as, Salsa20. ChaCha has been intensively analyzed and shows excellent performance,
and is easily parallelizable.

Finally, for designing BLAKE we extended our team with an expert in hardware imple-
mentations, Luca Henzen, to better understand the issues related to hardware efficiency.

The first deadline for submissions to the SHA-3 competition was August 31, 2008. NIST
checked the completeness of the submission packages sent by this date, and when deficiencies
were detected, it informed the authors so that they could revise their package. The final deadline
was October 31.

We completed our submission package by mid August, sent it to NIST, and made mi-
nor revisions before the final deadline. BLAKE was accepted as a first round candidate, and
presented at the First SHA-3 Conference in Leuven (Belgium), in February 2009. In the mean-
time, many attacks had been discovered on (reduced version of) other candidates, but none on
BLAKE.

As of August 2009, BLAKE compares well with the other submissions (notably in terms
of performance, cf. eBASH [37]), and is one of the 14 submissions selected for the second round
of the NIST Hash Competition.

8.1 Design Principles

BLAKE was designed to meet all NIST criteria for SHA-3, including:

• Message digests of 224, 256, 384, and 512 bits.

• Same parameter sizes as SHA-2.

• One-pass streaming mode.

• Maximum message length of at least 264 − 1 bits.

In addition, we imposed BLAKE to:

• Explicitly handle hashing with a salt.

• Be locally parallelizable .

• Allow performance tradeoffs.

• Be suitable for lightweight environments.

We briefly justify these choices. First, a built-in salt seems to help a lot, for it provides an
interface for an extra input, avoids insecure homemade modes, and encourages the practice
of randomized hashing. Parallelism is a big advantage for hardware implementations, which
can also be exploited by processors with SIMD instructions. Finally, BLAKE allows tradeoffs
throughput/area to adapt the implementation to the hardware area available.

To summarize, we made BLAKE as simple as possible, and combined well-known and
trustable building blocks to already look familiar to cryptanalysts. We tried to avoid superfluous
features, and to just provide what users really need or will need in a close future (like hashing
with a salt). It was essential for us to build on previous knowledge—be it about security or
implementation—in order to adapt our proposal to the scarce resources available for analyzing
the SHA-3 candidates.

80

8.2 Expected Strength

For all versions of BLAKE, we conjecture that it is computationally difficult to find attacks
significantly more efficient than standard bruteforce methods for

• Finding collisions, with same or distinct salt;

• Finding (second) preimages, with arbitrary salt.

BLAKE should also be secure for randomized hashing, with respect to the experiment described
by NIST in [162, 4.A.ii]. It should be impossible to distinguish a BLAKE instance with an
unknown salt (that is, uniformly chosen at random) from a random function, given blackbox
access to the function; more precisely, it shouldn’t cost significantly less than 2|s| queries to the
box, where |s| is the bit length of the salt. BLAKE should have no property that makes its use
significantly less secure than an ideal function for any concrete application.

Those claims concern the proposed functions with the recommended number of rounds,
not reduced or modified versions.

8.3 On Hashing with a Salt

An dedicated input for a salt has many advantages. First, it allows theoretically sound security
definitions by defining a family of functions. In practice, a salt can be used to define application-
specific or product-specific instances, in order to avoid same-message collisions with different
applications or products (for example, in a local network one may set a salt specific to this
network). But a salt seems to find its most interesting application with randomized hashing.

Randomized hashing is mainly used for digital signatures (cf. [107,163]): instead of sending
the signature Sign(H(m)), the signer picks a random r and sends (Sign(Hr(m)), r) to the verifier.
The advantage of randomized hashing is that it relaxes the security requirements of the hash
function [107]. A random salt makes all attacks with precomputation ineffective (or transforms
them into attacks with only an online phase), since the attacker ignores which salt will be
picked, that is, which hash function will be used.

In practice, random data is either appended/prepended to the message or combined with
the message. For instance, the RMX transform [107], given a random r, hashes m to the value

H
(

r‖(m1 ⊕ r)‖ . . . ‖(mN−1 ⊕ r)
)

.

BLAKE offers a dedicated interface for randomized hashing, not a modification of a non-
randomized mode: the input s, 128 or 256 bits long, should be dedicated for the salt of random-
ized hashing. This avoids the potential computation overhead of other methods, and allows the
use of the function as a blackbox, rather than a special mode of operation of a classical hash
function. BLAKE remains compatible with previous generic constructions, including RMX.

81

82

Chapter 9

Specification

This chapter gives a complete specification of the hash functions BLAKE-32, BLAKE-64,
BLAKE-28, and BLAKE-48.

We use the same conventions of endianness as NIST does in the SHA-2 specification [161,
§3]. In particular, we use (unsigned) big-endian representation for expressing integers.

If p is a bit string, we view it as a sequence of words and pi denotes its i-th word component;
thus p = p0‖p1‖ . . . For a message m, mi denotes its i-th 16-word block, thus mi

j is the j-th word
of the i-th block of m. Indices start from zero, for example a N -block message m is decomposed
as m = m0m1 . . .mN−1, and the block m0 is composed of words m0

0, m0
1, m

0
2, . . . , m

0
15,

9.1 BLAKE-32

The hash function BLAKE-32 operates on 32-bit words and returns a 32-byte hash value. This
section defines BLAKE-32, going from its constant parameters to its compression function, then
to its iteration mode.

9.1.1 Constants

BLAKE-32 starts hashing from the same initial value as SHA-256:

IV0 = 6A09E667 IV1 = BB67AE85 IV2 = 3C6EF372 IV3 = A54FF53A

IV4 = 510E527F IV5 = 9B05688C IV6 = 1F83D9AB IV7 = 5BE0CD19

BLAKE-32 uses 16 word constants1

c0 = 243F6A88 c1 = 85A308D3 c2 = 13198A2E c3 = 03707344

c4 = A4093822 c5 = 299F31D0 c6 = 082EFA98 c7 = EC4E6C89

c8 = 452821E6 c9 = 38D01377 c10 = BE5466CF c11 = 34E90C6C

c12 = C0AC29B7 c13 = C97C50DD c14 = 3F84D5B5 c15 = B5470917

Ten permutations of {0, . . . , 15} are used by all BLAKE functions, defined in Table 9.1. The
choice of these permutations is motivated in Chapter 11.

9.1.2 Compression Function

The compression function of BLAKE-32 takes as input four values:

1First digits of π.

83

Round G0 G1 G2 G3 G4 G5 G6 G7

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Table 9.1: Permutations of {0, . . . , 15} used by BLAKE.

• Chaining value h = h0, . . . , h7.

• Message block m = m0, . . . , m15.

• Salt s = s0, . . . , s3.

• Counter t = t0, t1.

These inputs represent 30 words in total (i.e., 120 bytes = 960 bits). The output of the function
is a new chaining value h′ = h′

0, . . . , h
′
7 of eight words (i.e., 32 bytes = 256 bits). We write the

compression of h, m, s, t to h′ as

h′ = compress(h, m, s, t) .

Initialization

A 16-word state v0, . . . , v15 is initialized such that different inputs produce different initial states.
The state is represented as a 4×4 matrix, and filled as follows:









v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15









←









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









.

Round Function

Once the state v is initialized, the compression function iterates a series of ten rounds. A round
is a transformation of the state v, which computes

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

84

a

b

c

d

a

b

c

d

mσr(2i)

cσr(2i+1)

mσr(2i+1)

cσr(2i)

>>> 8

>>> 7

>>> 16

>>> 12

Figure 9.1: The Gi function.

G0

G1

G2

G3

v0

v4

v8

v12

v1

v5

v9

v13

v2

v6

v10

v14

v3

v7

v11

v15

G5

G6

G7

G4 v0

v5

v10

v15

v1

v6

v11

v12

v2

v7

v8

v13

v4

v9

v14

v3

Figure 9.2: Column step and diagonal step.

where, at round r, Gi(a, b, c, d) sets2

a ← a + b + (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) ≫ 16

c ← c + d

b ← (b⊕ c) ≫ 12

a ← a + b + (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) ≫ 8

c ← c + d

b ← (b⊕ c) ≫ 7

The first four calls G0, . . . ,G3 can be computed in parallel, because each updates a distinct
column of the matrix. We call the procedure of computing G0, . . . ,G3 a column step. Similarly,
the last four calls G4, . . . ,G7 update distinct diagonals thus can be parallelized as well, which
we call a diagonal step.

Fig. 9.1 and 9.2 illustrate Gi, the column step, and the diagonal step.

2In the following, for statements that don’t depend on the index i we shall omit the subscript and write
simply G.

85

Finalization

After the sequence of rounds, the new chaining value h′
0, . . . , h

′
7 is extracted from the state

v0, . . . , v15 with input of the initial chaining value h0, . . . , h7 and the salt s0, . . . , s3:

h′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′
4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h′
5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h′
6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h′
7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

Alternative descriptions of the compression function can be found in [§2.5] [13].

9.1.3 Hashing a Message

We now describe the procedure for hashing a message m of bit length ℓ < 264. As it is usual for
iterated hash functions, the message is first padded (BLAKE uses a padding rule very similar
to that of HAIFA), then it is processed block per block by the compression function.

Padding

First the message is extended so that its length is congruent to 447 modulo 512. Length
extension is performed by appending a bit 1 followed by a sufficient number of 0 bits. At least
one bit and at most 512 are appended. Then a bit 1 is added, followed by a 64-bit unsigned
big-endian representation of ℓ. Padding can be represented as

m← m‖1000 . . . 0001〈ℓ〉64 .

This procedure guarantees that the bit length of the padded message is a multiple of 512.

Iterated Hash

To proceed to the iterated hash, the padded message is split into 16-word blocks m0, . . . , mN−1.
We let ℓi be the number of message bits in m0, . . . , mi, that is, excluding the bits added by the
padding. For example, if the original (non-padded) message is 600-bit long, then the padded
message has two blocks, and ℓ0 = 512, ℓ1 = 600. A particular case occurs when the last block
contains no original message bit; for example a 1020-bit message leads to a padded message
with three blocks (which contain respectively 512, 508, and zero message bits), and we set
ℓ0 = 512, ℓ1 = 1020, ℓ2 = 0. The general rule is: if the last block contains no bit from the
original message, then the counter is set to zero; this guarantees that if i 6= j, then ℓi 6= ℓj .

The salt s is chosen by the user, and set to the null value when no salt is required (i.e.,
s0 = s1 = s2 = s3 = 0). The hash of the padded message m is then computed as follows:

h0 ← IV
for i = 0, . . . , N − 1

hi+1 ← compress(hi, mi, s, ℓi)
return hN

86

The procedure of hashing m with BLAKE-32 is aliased BLAKE-32(m, s) = hN , where m is the
(non-padded) message, and s is the salt. The notation BLAKE-32(m) denotes the hash of m
when no salt is used (i.e., s = 0).

9.2 BLAKE-64

BLAKE-64 operates on 64-bit words and returns a 64-byte hash value. All lengths of variables
are doubled compared to BLAKE-32: chaining values are 512-bit, message blocks are 1024-bit,
salt is 256-bit, counter is 128-bit.

9.2.1 Constants

The initial value of BLAKE-64 is the same as for SHA-512:

IV0 = 6A09E667F3BCC908 IV1 = BB67AE8584CAA73B

IV2 = 3C6EF372FE94F82B IV3 = A54FF53A5F1D36F1

IV4 = 510E527FADE682D1 IV5 = 9B05688C2B3E6C1F

IV6 = 1F83D9ABFB41BD6B IV7 = 5BE0CD19137E2179

BLAKE-64 uses the constants3

c0 = 243F6A8885A308D3 c1 = 13198A2E03707344

c2 = A4093822299F31D0 c3 = 082EFA98EC4E6C89

c4 = 452821E638D01377 c5 = BE5466CF34E90C6C

c6 = C0AC29B7C97C50DD c7 = 3F84D5B5B5470917

c8 = 9216D5D98979FB1B c9 = D1310BA698DFB5AC

c10 = 2FFD72DBD01ADFB7 c11 = B8E1AFED6A267E96

c12 = BA7C9045F12C7F99 c13 = 24A19947B3916CF7

c14 = 0801F2E2858EFC16 c15 = 636920D871574E69

Permutations are the same as for BLAKE-32 (see Table 9.1).

9.2.2 Compression Function

The compression function of BLAKE-64 is similar to that of BLAKE-32 except that it makes
14 rounds instead of ten, and that Gi(a, b, c, d) computes

a ← a + b + (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) ≫ 32

c ← c + d

b ← (b⊕ c) ≫ 25

a ← a + b + (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) ≫ 16

c ← c + d

b ← (b⊕ c) ≫ 11

The only differences with BLAKE-32’s Gi are the word length (64 bits instead of 32) and the
rotation distances. At round r > 9, the permutation used is σr mod 10 (for example, in the last
round r = 13 and the permutation σ13 mod 10 = σ3 is used).

3First digits of π.

87

9.2.3 Hashing a Message

For BLAKE-64, message padding goes as follows: append a bit 1 and as many 0 bits until
the message bit length is congruent to 895 modulo 1024. Then append a bit 1, and a 128-bit
unsigned big-endian representation of the message bit length:

m← m‖1000 . . . 0001〈ℓ〉128 .

This procedure guarantees that the length of the padded message is a multiple of 1024.

The algorithm for iterated hash is identical to that of BLAKE-32.

9.3 BLAKE-28

BLAKE-28 is identical to BLAKE-32 except that

• It uses the initial value of SHA-224:

IV0 = C1059ED8 IV1 = 367CD507 IV2 = 3070DD17 IV3 = F70E5939

IV4 = FFC00B31 IV5 = 68581511 IV6 = 64F98FA7 IV7 = BEFA4FA4

• In the padded data, the 1 bit preceding the message length is replaced by a 0 bit:

m← m‖1000 . . . 0000〈ℓ〉64 .

• The output is truncated to its first 224 bits, that is, the iterated hash returns hN
0 , . . . , hN

6

instead of hN = hN
0 , . . . , hN

7 .

9.4 BLAKE-48

BLAKE-48 is identical to BLAKE-64 except that

• It uses the initial value of SHA-384:

IV0 = CBBB9D5DC1059ED8 IV1 = 629A292A367CD507

IV2 = 9159015A3070DD17 IV3 = 152FECD8F70E5939

IV4 = 67332667FFC00B31 IV5 = 8EB44A8768581511

IV6 = DB0C2E0D64F98FA7 IV7 = 47B5481DBEFA4FA4

• In the padded data, the 1 bit preceding the message length is replaced by a 0 bit:

m← m‖1000 . . . 0000〈ℓ〉128 .

• The output is truncated to its first 384 bits, that is, the iterated hash returns hN
0 , . . . , hN

5

instead of hN = hN
0 , . . . , hN

7 .

88

9.5 Conclusion

The BLAKE hash functions allow a simple and unambiguous specification, since they build on
a single component (the ChaCha function) and on an operation mode that are both simple
to describe and to understand. Yet BLAKE includes some additional parameters compared
to a classical Merkle-Damg̊ard design, namely the salt and the counter, to provide built-in
randomized hashing and to foil some generic attacks. The operation mode was carefully chosen
to benefit of all the desirable properties of HAIFA, but was simplified in order to avoid the
precomputation of the effective IV and to minimize the length of the padded data.

It is to note that the compression function of BLAKE allows an alternative description
that simplifies implementations with vectorized instructions: instead of viewing a round as a
column step followed by a diagonal step, one can see it as a column step, a shift of the i-th row
of i positions left, i = 0, . . . , 3, a second column step, and finally a shift of the i-th row of i
positions right. We shall use this description in our implementations with the SSE2 instruction
set (see §10.4).

89

90

Chapter 10

Implementations

We implemented BLAKE in several environments (software and hardware), and this chapter
briefly reports on our benchmarks. The implementations in ASIC and FPGA was realized
by Luca Henzen (ETHZ), the implementation on a 8-bit microcontroller by Peter Steigmeier
(FHNW), and the software C implementations by myself.

10.1 General Considerations

This section gives general facts related to any implementation of BLAKE, regarding algorithmic
complexity, memory requirements, and memory/speed tradeoffs, and parallelism.

A single G makes six XOR’s, six additions and four rotations, so 16 arithmetic operations
in total. Hence a round makes 48 XOR’s, 48 additions and 32 rotations, so 128 operations.
BLAKE-32’s compression function thus counts 480 XOR’s, 480 additions, 320 rotations, plus
four XOR’s for the initialization and 24 XOR’s for the finalization, thus a total of 1312 opera-
tions. BLAKE-64’s compression function counts 672 XOR’s, 672 additions, 448 rotations, plus
four XOR’s and 24 XOR’s, thus a total of 1824 operations. We omit the overhead for initializing
the hash structure, padding the message, etc., whose cost is negligible compared to that of a
compression function.

BLAKE-32 needs to store in ROM 64 bytes for the constants, and 80 bytes to describe
the permutations (144 bytes in total). In RAM, the storage m, h, s, t and v requires 184 bytes.
In practice, however, more space might be required. For example, our implementation on the
PIC18F2525 microcontroller (see §10.3) stores the 8-bit addresses of the permutation elements,
not the 4-bit elements directly, thus using 160 bytes for storing the 80 bytes of information of
the message permutations.

A memory/speed tradeoff for a hash function implementation consists in storing a larger
amount of data, in order to reduce the number of computation steps. This is relevant, for
example, for hash functions that use a a large set of constants generated from a smaller set
of constants. BLAKE, however, requires a fixed and small set of constants, which is not triv-
ially compressible. Therefore, the algorithm of BLAKE admits no memory/speed tradeoff; the
implementations reported in §10.2, 10.3, and 10.4 thus do not consider memory/speed trade-
offs. The tradeoffs made in the hardware implementations (§10.2) are rather space/speed than
memory/speed.

When hashing a message, most of the time spent by the computing unit will be devoted
to computing rounds of the compression function. Each round is composed of eight calls to the
G function: G0, G1, . . . ,G7. Simplifying:

• On a serial machine, the speed of a round is about eight times the speed of a G.

91

• On a parallel machine, G0, G1, G2 and G3 can be computed in four parallel branches, and
then G4, G5, G6 and G7 can be computed in four branches again. The speed of a round is
thus about twice the speed of a G.

Since parallelism is generally a tradeoff, the gain in speed may increase the consumption of other
resources (area, etc.). An example of tradeoff is to split a round into two branches, resulting
in a speed of four times that of a G. We shall exploit the parallelizability of BLAKE in our
hardware architectures and in our software implementations with SIMD instructions sets.

10.2 ASIC and FPGA

Four hardware architectures of the BLAKE compression function have been studied. These
architectures correspond to different space/throughput tradeoffs (every implemented circuit
reports to the basic block diagram of Fig. 10.1), and implement a circuit for either eight, four,
one, or a half G function:

• [8G]-BLAKE: This design corresponds to the isomorphic implementation of the round
function. Eight G function units are instantiated; the first four units work in parallel to
compute the column step, while the last four compute the diagonal step.

• [4G]-BLAKE: The round module consists of four parallel G units, which, at a given cycle,
compute either the column step or the diagonal step.

• [1G]-BLAKE: The iterative decomposition of the compression function leads to the im-
plementation of a single G function. Thus, one G unit processes the full round in eight
cycles.

• [12G]-BLAKE: This lightweight implementation consists of a single half G unit. During
one cycle, only a single update of the inputs a, b, c, d is processed (i.e., half a G).

In the last three architectures, additional multiplexers and demultiplexers driven by the control
unit preserve the functionality of the algorithm, selecting the correct v elements inside and
outside the round unit.

Based on functional VHDL coding, the four designs have been synthesized using a 0.18µm
CMOS technology with the aid of the Synopsys Design Compiler Tool. Table 10.1 summarizes
the final values of area, frequency, and throughput1. The [8G] and [4G]-BLAKE architectures
maximize the throughput, so they were synthesized with speed optimization options at the max-
imal clock frequency. The target applications of [1G] and [12G]-BLAKE are resource-restricted
environments, where a compact chip size is the main constraint. Hence, these designs have been
synthesized at low frequencies to achieve minimum-area requirements.

Three architectures have been implemented on FPGA silicon devices: the Xilinx Virtex-5,
Virtex-4, and Virtex-II Pro2. We used SynplifyPro and Xilinx ISE for synthesis and place &
route. Table 10.2 reports resulting circuit performances.

1The unit Gbps means Gigabits per second, where a Gigabit is 10003 bits, and not 10243. Similar rule applies
to Mbps and Kbps in Tables 10.1 and 10.2.

2Data sheets available at http://www.xilinx.com/support/documentation/

92

http://www.xilinx.com/support/documentation/

h’

C
on

tr
ol

 u
ni

t

Initialization

Finalization

Memory m

512/1024 bits

1 bit (control)

I/O

v

inEN

outEN

ht s

Round unit

Figure 10.1: Block diagram of the BLAKE compression function. The signals inEn and outEN

define the input and output enables.

Arch. Function Area Freq. Latency Throughput Efficiency
[kGE] [MHz] [cycles] [Mbps] [Kbps/GE]

[8G]
BLAKE-32 58.30 114 11 5295 90.8
BLAKE-64 132.47 87 15 5910 44.6

[4G]
BLAKE-32 41.31 170 21 4153 100.5
BLAKE-64 82.73 136 29 4810 58.1

[1G]
BLAKE-32 10.54 40 81 253 24.0
BLAKE-64 20.61 20 113 181 8.8

[12G]
BLAKE-32 9.89 40 161 127 12.9
BLAKE-64 19.46 20 225 91 4.7

Table 10.1: ASIC synthesis results. One gate equivalent (GE) corresponds to the area of a
two-input drive-one NAND gate of size 9.7µm2.

For the ASIC and the FPGA implementations, the memory of the internal state consists
of 16 32/64-bit registers, which are updated every round with the output words of the round
unit. No RAM or ROM macro cells are used to store the 16 constants c0, . . . , c15. In the same
way, the ten permutations σ0, . . . , σ9 have been hard-coded in VHDL. In ASIC, this choice has
been motivated by the insufficient memory requirement of these variables. In FPGA, constants
and permutations can be stored in dedicated block RAMs. This solution decreases slightly the
number of slices needed, but does not speed-up the circuits.

A complete implementation of BLAKE (to include memory storing intermediate values,
counter, and circuits to finalize the message, etc.) leads to an increase of about 1.8 kGE or 197
slices for ASIC and FPGA, respectively.

93

XC2VP50 XC4VLX100 XC5VLX110

Function Area Freq. Thr. Area Freq. Thr. Area Freq. Thr.
[slices] [MHz] [Mbps] [slices] [MHz] [Mbps] [slices] [MHz] [Mbps]

[8G]-BLAKE architecture

BLAKE-32 3091 37 1724 3087 48 2235 1694 67 3103
BLAKE-64 11122 17 1177 11483 25 1707 4329 35 2389

[4G]-BLAKE architecture

BLAKE-32 2805 53 1292 2754 70 1705 1217 100 2438
BLAKE-64 6812 31 1104 6054 40 1413 2389 50 1766

[1G]-BLAKE architecture

BLAKE-32 958 59 371 960 68 430 390 91 575
BLAKE-64 1802 36 326 1856 42 381 939 59 533

Table 10.2: FPGA post place & route results [overall effort level: standard]. A single Virtex-5
slice contains twice the number of LUTs and FFs.

10.3 8-bit Microcontroller

The compression function of BLAKE-32 was implemented in a PIC18F2525 microcontroller.
About 1800 assembly lines were written, using Microchip’s MPLAB Integrated Development
Environment v7.6. This section reports results of this implementation, starting with a brief
presentation of the device used. More details can be found in the BLAKE submission docu-
ment [13].

The PIC18F2525 is a member of the PIC family of microcontrollers made by Microchip
Technology. PIC’s are very popular for embedded systems (more than 6 billions sold). The
PIC18F2525 works with 8-bit words, but has an instruction width of 16 bits; it makes up to
ten millions of instructions per second (MIPS).

Following the Harvard architecture, the PIC18F2525 separates program memory and data
memory. Program memory will contain the code of our BLAKE implementation, including the
permutations’ look-up tables, while variables will be stored in the data memory. BLAKE-32
only uses 5% of the program memory, and 7% of the RAM.

Features of the PIC18F2525 are summarized in Table 10.3. All details can be found on
Wikpedia3 and in Microchip’s datasheet4.

In the PIC18F2525 the basic unit is a byte, not a 32-bit word, hence 32-bit operations
have to be simulated with 8-bit instructions:

• 32-bit XOR is simulated by four independent 8-bit XOR’s

• 32-bit addition is simulated by four 8-bit additions with manual transfer of the carry
between each addition

• 32-bit rotation is simulated using byte swaps and 1-bit rotate instructions

Rotations are the most complicated operations to implement, because a different code has to be
written for each rotation distance; rotation of 8 or 16 positions requires no rotate instruction,
while one is needed for 7-bit rotation, and four for 12-bit rotation.

3http://en.wikipedia.org/wiki/PIC_micro
4http://ww1.microchip.com/downloads/en/DeviceDoc/39626b.pdf

94

http://en.wikipedia.org/wiki/PIC_micro
http://ww1.microchip.com/downloads/en/DeviceDoc/39626b.pdf

Operating frequency DC – 40 MHz
Program memory (bytes) 49152
Program memory (instructions) 24576
Data memory (bytes) 3968
Data EEPROM (bytes) 1024
Interrupt sources 19
I/O ports Ports A, B, C, (E)
Timers 4
Serial communication MSSP, enhanced USART
Parallel communications no
Instruction set 75 instructions (83 with extended IS)

Table 10.3: Main features of the PIC18F2525

Below we detail the maximum cost of each line of the Gi function:

(76 cycles) a ← a + b + (mσr(2i) ⊕ cσr(2i+1))

(24 cycles) d ← (d⊕ a) ≪ 16

(24 cycles) c ← c + d

(34 cycles) b ← (b⊕ c) ≪ 12

(67 cycles) a ← a + b + (mσr(2i+1) ⊕ cσr(2i))

(22 cycles) d ← (d⊕ a) ≪ 8

(24 cycles) c ← c + d

(29 cycles) b ← (b⊕ c) ≪ 7

The cycle count is different for (b⊕ c) ≪ 12 and (b⊕ c) ≪ 7 because of the different rotation
distances. The fifth line needs fewer cycles than the first because of the proximity of the indices
(though not of the addresses).

In addition, preparing Gi’s inputs costs 18 cycles, and calling it four cycles, thus in total
322 cycles are needed for computing a Gi. Counting the initialization of v (at most 161 cycles)
and the overhead of 8 cycles per round, the compression function needs 26001 cycles (that is,
406 cycles per byte). With a 32 MHz processor (8 MIPS), it takes about 3.250 ms to hash a
single message block (a single instruction is 125 ns long); with a 40 MHz processor (10 MIPS),
it takes about 2.6ms.

For sufficiently large messages (say, a few blocks), generating one message digest with
BLAKE-28 or BLAKE-32 on a PIC18F2525 requires about 406 cycles per byte.

10.4 Large Processors

BLAKE is easy to implement on 32- and 64-bit processors, because it works on words of 32 or
64 bits, and only makes wordwise operations (XOR, rotation, addition) that are implemented
in most of the processors. It is based on ChaCha, one of the fastest stream ciphers. The
speed-critical code portion is short, which facilitates optimizations. Since the core of BLAKE
is just the G function (16 operations), implementations are simple and compact; for example,
our portable light implementation of BLAKE-32 fits in less than 200 lines of C code.

Furthermore, the parallelizable structure of BLAKE’s compression function makes it suit-
able for implementations with SIMD instructions sets. We used Intel’s Streaming SIMD Ex-
tensions 2 (SSE2) instruction set to vectorize the computation of a column (or a diagonal)

95

step. These instructions allow us to compute four independent 32-bit identical operations with
a single instruction (or two 64-bit operations). These implementation are presented in §§10.4.2.

All the speed measurements reported in this section come from eBASH. The eBASH
(ECRYPT Benchmarking of All Submitted Hashes) project, part of eBACS [37], measures the
software speed of hash functions on a variety of computers. eBASH tries several compilers
with several options and reports results for the parameters that give the best speed results.
eBASH reports the median and quartiles cycles/byte measurements for various message lengths.
BLAKE was one of the first SHA-3 candidates submitted to eBASH.

10.4.1 Portable Implementations

As requested by NIST, we wrote a reference implementation and optimized implementations in
ANSI C. These implementations are very similar; the optimized code just contains a few simple
tricks to speed up the function. Besides tasks common to almost all functions—like padding
the message with its bit length, or initializing the chaining value to a predefined IV—the only
thing that has to be implemented is the function G, and its application to the internal state.
For BLAKE-24 and BLAKE-32, we implemented G as follows:

#define G(a,b,c,d,e)\
v[a] += (m[sigma[i][e]] ˆ cst[sigma[i][e+1]]) + v[b];\
v[d] = ROT(v[d] ˆ v[a], 16);\
v[c] += v[d];\
v[b] = ROT(v[b] ˆ v[c], 12);\
v[a] += (m[sigma[i][e+1]] ˆ cst[sigma[i][e]]) + v[b];\
v[d] = ROT(v[d] ˆ v[a], 8);\
v[c] += v[d];\
v[b] = ROT(v[b] ˆ v[c], 7);

Then, the ten rounds in the compression function are coded as:

for(i=0; i<10; ++i) {
G(0, 4, 8,12, 0)

G(1, 5, 9,13, 2)

G(2, 6,10,14, 4)

G(3, 7,11,15, 6)

G(3, 4, 9,14,14)

G(2, 7, 8,13,12)

G(0, 5,10,15, 8)

G(1, 6,11,12,10)

}

The code for BLAKE-64 is quite similar, with different rotation distances, and 14 rounds
instead of ten.

Although our portable C implementations are not explicitly parallelized, the processor
is able to run several independent instructions during a single cycle, as long as they are inde-
pendent of each other. For example, Intel Core 2 processors can run up to four instructions
in a cycle, which is relevant for the four independent computations of G. Benchmark results
suggest that our implementations indeed exploit such features, when comparing our portable
implementations with the SSE2 implementations that are explicitly vectorized.

96

10.4.2 SSE2 Implementations

Intel’s SSE2 instructions operate on 128-bit XMM registers (processors’ architectures include
either eight or 16 XMM registers), unlike standard instructions that operate on 32- or 64-bit
registers. SSE2 instructions are now supported by all the popular high-end processors, like
Intel’s Core 2 family. To use SSE2 instructions, programmers either manually write inline
assembly code that includes SSE2 instructions, or use intrinsic functions in C; we chose the
latter approach for BLAKE. Below we briefly describe how to work with SSE2 instructions, and
then how we implemented BLAKE with them.

The SSE2 Instructions

A C program should include the header emmintrin.h to use SSE2 intrinsics. Specific 128-bit
data types are available with SSE2 intrinsics, to operate on the 128-bit XMM registers. In
particular, the m128i data type is used to represent the content of an XMM register. The
m128i type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values. To

declare two new m128i variable x and y and initialize them with four 32-bit integers, one
writes for example

m128i x = mm set epi32(0x00000000, 0x00000001, 0x00000002, 0x00000003);

m128i y = mm set epi32(0x00000004, 0x00000005, 0x00000006, 0x00000007);

Then to add the four 32-bit integers of x to the four 32-bit integers of y, and to affect to result
to a new variable z, one writes:

m128i z = mm add epi32(x, y);

Now z contains the four 32-bit integers 4, 6, 8, and 10; a single instruction is needed to perform
four arithmetic operations. Similar instructions exist for all common arithmetic operation:
subtraction, multiplication, XOR, OR, AND, etc. There also exists instructions to shuffle the
content of an XMM register5.

Implementing BLAKE

We started working on new implementations of BLAKE with SSE2 instructions at FSE 2009,
and we received assistance from Dan Bernstein and Peter Schwabe for optimizing the code.

To implement BLAKE-32 (and BLAKE-28) with SSE2 instructions, we use one XMM
register for each row, and vectorize all the operations in G. Hence, one call to mm add epi32,
for example, will perform the four additions of the four G instances at the same time. The
only non-symmetric operation is for the input of message words and constants, which is done
as follows at the beginning of G:

buf1 = mm set epi32(m[sig[r][6]], m[sig[r][4]], m[sig[r][2]], m[sig[r][0]]);

buf2 = mm set epi32(z[sig[r][7]], z[sig[r][5]], z[sig[r][3]], z[sig[r][1]]);

buf1 = mm xor si128(buf1, buf2);

row1 = mm add epi32(mm add epi32(row1, buf1), row2);

Right after these operations, we prepare the buffer registers for the next message input (now it
is faster to first load constants):

buf1 = mm set epi32(z[sig[r][6]], z[sig[r][4]], z[sig[r][2]], z[sig[r][0]]);

buf2 = mm set epi32(m[sig[r][7]], m[sig[r][5]], m[sig[r][3]], m[sig[r][1]]);

5See ftp://download.intel.com/support/performancetools/c/linux/v9/intref_cls.pdf for a detailed
documentation of the SSE2 intrinsics.

97

ftp://download.intel.com/support/performancetools/c/linux/v9/intref_cls.pdf

Then, all operations are vectorized (note that we have to simulate the rotation with two shifts):

row4 = mm xor si128(row4, row1);

row4 = mm xor si128(mm srli epi32(row4, 16), mm slli epi32(row4, 16));

row3 = mm add epi32(row3, row4);

row2 = mm xor si128(row2, row3);

buf1 = mm xor si128(buf1, buf2);

row2 = mm xor si128(mm srli epi32(row2, 12), mm slli epi32(row2, 20));

row1 = mm add epi32(mm add epi32(row1, buf1), row2);

row4 = mm xor si128(row4, row1);

row4 = mm xor si128(mm srli epi32(row4, 8), mm slli epi32(row4, 24));

row3 = mm add epi32(row3, row4);

row2 = mm xor si128(row2, row3);

row2 = mm xor si128(mm srli epi32(row2, 7), mm slli epi32(row2, 25));

Finally, at the end of a column step, we shuffle the content of each register in order to perform
the diagonal step using operations on the XMM registers (the first row is let unchanged):

row2 = mm shuffle epi32(row2, MM SHUFFLE(0,3,2,1));

row3 = mm shuffle epi32(row3, MM SHUFFLE(1,0,3,2));

row4 = mm shuffle epi32(row4, MM SHUFFLE(2,1,0,3));

To implement BLAKE-64 (and BLAKE-48), we need to use two XMM registers to rep-
resent a row, so we need two arithmetic instructions to perform four operations at the same
time.

When compared to the portable implementations, the best speedup is expected with the
SSE2 implementations of BLAKE-64 on 32-bit architectures, because the processor then doesn’t
have to simulate 64-bit arithmetic with 32-bit instruction set.

10.4.3 Benchmark Results

Table 10.4 reports examples of speed measurements collected by eBASH, for various message
lengths. The values reported are the median cycles counts. Note that the instruction set used
is specified for each machine: amd64 operates on 64-bit words, and x86 on 32-bit words. Speeds
in Table 10.4 are given for the fastest implementation (either ref or sse2).

For BLAKE-32, the sse2 implementation is always the fastest. In 64-bit mode, it is 1.19
times faster than the ref implementation on katana, only 1.03 times faster on colossus, but
1.80 on berlekamp. In 32-bit mode, it is up to 2.17 times faster on the machines considered.
The speedup factors show that, although BLAKE-32 benefits of SSE2 instructions, it is also
fast without.

In 64-bit mode, BLAKE-64 is slightly faster with direct 64-bit arithmetic than with SSE2
instructions. In 32-bit mode, however, the sse2 implementation is much faster (up to 3.50
times on our machines), since it doesn’t need simulation of 64-bit arithmetic, unlike the ref

implementation.

It thus appears that BLAKE-32 and BLAKE-64 have comparable speeds, and this both in
32-bit and 64-bit modes. This contrasts with other designs with a 32-bit and a 64-bit mode (like
SHA-2). Moreover, SSE2 instructions are not mandatory to achieve high speeds with BLAKE,
since our simple portable implementation is in general not much slower, and outperforms many
optimized non-portable implementations of other SHA-3 candidates.

98

Impl. Rel. time ∞ 4096 1536 576 64 8

amd64, 2137MHz, Intel Core 2 Duo (6f6), katana, 20090321

BLAKE-32 sse2 1.19 9.78 9.99 10.34 11.25 23.12 107.00
BLAKE-64 ref 1.13 10.19 10.56 11.20 11.85 25.00 198.00

amd64, 2210MHz, AMD Opteron 875 (20f10), colossus, 20090321

BLAKE-32 sse2 1.03 17.28 17.57 18.14 19.60 38.47 173.00
BLAKE-64 ref 1.79 11.93 12.35 13.07 13.71 27.88 223.88

amd64, 2668MHz, Intel Core i7 920 (106a4), dragon, 20090321

BLAKE-32 sse2 1.76 8.19 8.37 9.06 12.00 19.14 89.62
BLAKE-64 ref 1.07 9.29 9.63 10.20 19.14 22.64 176.25

amd64, 2833MHz, Intel Core 2 Quad Q9550 (10677), berlekamp, 20090321

BLAKE-32 sse2 1.80 9.06 9.27 9.61 10.49 21.39 101.00
BLAKE-64 ref 1.17 10.34 10.74 11.36 11.92 24.58 196.62

x86, 2137MHz, Intel Core 2 Duo (6f6), katana, 20090321

BLAKE-32 sse2 1.26 9.92 10.10 10.44 11.42 24.12 116.00
BLAKE-64 sse2 2.44 12.97 13.51 14.44 15.54 36.12 289.00

x86, 2833MHz, Intel Core 2 Quad Q9550 (10677), berlekamp, 20090321

BLAKE-32 sse2 2.17 9.21 9.41 9.72 10.80 24.31 131.75
BLAKE-64 sse2 3.50 12.53 13.03 13.87 14.80 32.67 262.50

Table 10.4: eBASH benchmark results (median cycles/byte), for long messages (∞), 576-byte,
64-byte, and 8-byte messages. For each machine, we report the results for the fastest implemen-
tation (ref of sse2), for both amd64 (64-bit) and x86 (32-bit) instruction sets, when available.
The column “Rel. time” gives the speedup factor, compared to the slower implementation.

10.5 Conclusion

This chapter showed that BLAKE is

1. Simple to implement, be it in hardware or software;

2. Implementable on small hardware: the full BLAKE-32 fits in 13.5 kGE;

3. Fast on all platforms, in particular BLAKE is generally faster than SHA-2 in eBASH,
and both BLAKE-32 and BLAKE-64 are fast on both 32-bit and 64-bit processors, due to
their parallelizable structure.

Compared to other SHA-3 submissions, BLAKE is the candidate with the most extensive per-
formance evaluation, in terms of platform, architecture, or device used: we reported implemen-
tations of four hardware architectures for BLAKE-32, and as many for BLAKE-64, and each was
implemented in VHDL and evaluated on ASIC and on three different FPGA’s; we also reported
an assembly implementation on an 8-bit microcontroller, and two C software implementations.

Be it in hardware or software, BLAKE is one of the most efficient candidates to SHA-
3, and also one of the most flexible, with its four levels of time-space tradeoffs. It may thus
be considered for implementation in a wide variety of applications, from embedded devices to
high-end servers.

99

100

Chapter 11

Rationale and Analysis

This chapter reports elements of analysis of BLAKE, with a focus on BLAKE-32. We study
properties of the function’s components, resistance to generic attacks, and dedicated attack
strategies. A more extensive analysis can be found in the submission document sent to NIST [13,
§5].

11.1 Choosing Permutations

The permutations σ0, . . . , σ9 were chosen to match several security criteria:

1. No message word should be input twice at the same point.

2. No message word should be XOR’d twice with the same constant.

3. Each message word should appear exactly five times in a column step and exactly five
times in a diagonal step.

4. Each message word should appear exactly five times in first position in G and exactly five
times in second position.

This is equivalent to say that, respectively:

1. For all i = 0, . . . , 15, there should exist no distinct permutations σ, σ′ such that σ(i) =
σ′(i).

2. No pair (i, j) should appear twice at a position of the form (2k, 2k+1), for all k = 0, . . . , 7.

3. For all i = 0, . . . , 15, there should be exactly five distinct permutations σ such that
σ(i) < 8, and exactly five such that σ(i) > 8.

4. For all i = 0, . . . , 15, there should be exactly five distinct permutations σ such that σ(i)
is even, and exactly five such that σ(i) is odd.

These criteria imply that a difference in some given word will produce distinct differential
trails at each round, and ensure a balanced distribution of the message bits within the implicit
algebraic normal form.

In BLAKE-64, four of the permutations are repeated because it makes fourteen rounds
instead of ten. The above criteria thus just apply to the first ten rounds. The slight loss of
balance in the four last rounds seems unlikely to affect security.

101

11.2 Compression Function

This section gives a bottom-up analysis of BLAKE’s compression function, starting with the
low-level algorithm, and finishing with the structure of the compression function.

11.2.1 The G Function

The G function is inspired from the “quarter-round” function of the stream cipher ChaCha,
which transforms (a, b, c, d) as follows:

a ← a + b

d ← (d⊕ a) ≫ 16

c ← c + d

b ← (b⊕ c) ≫ 12

a ← a + b

d ← (d⊕ a) ≫ 8

c ← c + d

b ← (b⊕ c) ≫ 7

To build BLAKE’s compression function on ChaCha, we add input of two message words and
constants, and let the function be otherwise unchanged. We keep the rotation distances of
ChaCha, which provide a good tradeoff security/efficiency: 16- and 8-bit rotations preserve
byte alignment, so are fast on 8-bit processors (no rotate instruction is needed), while 12- and
7-bit rotations break up the byte structure, and are reasonably fast.

ChaCha’s function is itself a modified version of the “quarter round” of the stream cipher
Salsa20 (see Chapter 5). The idea of a 4×4 state with four parallel mappings for rows and
columns goes back to the cipher Square [82], and was then successfully used in Rijndael [83],
Salsa20 and ChaCha. Detailed design rationale and preliminary analysis of ChaCha and Salsa20
can be found in [32,35], and its cryptanalysis can be found in [12,79,114,213].

G can be easily inverted: given a message m, and a round index r, the inverse function of
Gi is defined as follows:

b ← c⊕ (b ≪ 7)

c ← c− d

d ← a⊕ (d ≪ 8)

a ← a− b− (mσr(2i+1) ⊕ cσr(2i))

b ← c⊕ (b ≪ 12)

c ← c− d

d ← a⊕ (d ≪ 16)

a ← a− b− (mσr(2i) ⊕ cσr(2i+1))

Hence for any (a′, b′, c′, d′), one can efficiently compute the unique (a, b, c, d) such that Gi(a, b, c, d) =
(a′, b′, c′, d′), given i and m. In other words, Gi is a permutation of {0, 1}128.

We found several linear approximations of differentials; the notation

(∆0, ∆1, ∆2, ∆3) 7→ (∆′
0, ∆

′
1, ∆

′
2, ∆

′
3)

102

means that the two inputs with the leftmost difference lead to outputs with the rightmost
difference, when (mσr(2i+1)⊕ cσr(2i)) = (mσr(2i)⊕ cσr(2i+1)) = 0. For random inputs we have for
example

(80000000, 00000000, 80000000, 80008000) 7→ (80000000, 0, 0, 0)

(00000800, 80000800, 80000000, 80000000) 7→ (0, 0, 80000000, 0)

(80000000, 80000000, 80000080, 00800000) 7→ (0, 0, 0, 80000000)

with respective probabilities 1, 1/2, and 1/2. Many such probability differentials can be iden-
tified for G, and one can use standard message modification techniques (linearization, neutral
bits) to identify a subset of inputs over which the probability is much higher than over the
whole domain. Similar linear differentials exist in the Salsa20 function, and were exploited [12]
to attack the compression function Rumba [28], breaking 3 rounds out of 20.

Other noteworthy properties of G are that the only fixed point in G is the zero input,
and that no preservation of differences can be obtained by linearization. The first observation
is straightforward when writing the corresponding equations. The second one means that there
exist no pair of inputs whose difference (with respect to XOR) is preserved in the corresponding
pair of outputs, in the linearized model. This follows from the fact that, if an input difference
gives the same difference in the output, then this difference must be a fixed point for G, since
the only fixed point is the null value, there exists no such difference.

11.2.2 Round Function

Recall that the round function of BLAKE computes

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

Because G is a permutation, a round is a permutation of the inner state v for any fixed
message. In other words, given a message and the value of v after r rounds, one can determine
the value of v at rounds r− 1, r− 2, etc., and thus the initial value of v. Therefore, for a same
initial state a sequence of rounds is a permutation of the message. That is, one cannot find two
messages that produce the same internal state, after any number of rounds.

After one round, all 16 words are affected by a modification of one bit in the input (be it
the message, the salt, or the chaining value). Here we illustrate diffusion through rounds with
a concrete example, for the zero message and the zero initial state. The matrices displayed
below represent the differences in the state after each step of the first two rounds (column step,

103

diagonal step, column step, diagonal step), for a difference in the least significant bit of v0:

column step









00000037 00000000 00000000 00000000

E06E0216 00000000 00000000 00000000

37010B00 00000000 00000000 00000000

37000700 00000000 00000000 00000000









(weight 34)

diagonal step









0000027F 10039015 5002B070 C418A7D4

66918CC7 1CBEEE25 F1A8535F C111AD29

F8D104F0 6F08C6F9 5F77131E E4291FE7

151703A7 705002B0 F2C22207 7F001702









(weight 219)

column step









944F85FD A044CCB3 9476A6BC 24B6ADAC

A729BBE9 6549BC3D 3A330361 7318B20D

7BF5F768 7831614B CF44C968 53D886E2

5A1642B3 41B00EA0 A7115A95 7AC791D1









(weight 249)

diagonal step









DFC2D878 F9FAAE7A 2D804D9A 3EF58B7F

FC91AF81 D78E2315 55048021 0811CC46

FB98AF71 DC27330E 47A19B59 EDDE442E

F042BB72 1C7A59AB AC2EFFA4 2E76390B









(weight 264)

In comparison, in the linearized model (i.e., where all additions are replaced by XOR’s), we
have:

column step









00000011 00000000 00000000 00000000

20220202 00000000 00000000 00000000

11010100 00000000 00000000 00000000

11000100 00000000 00000000 00000000









(weight 14)

diagonal step









00000101 10001001 10011010 02202000

40040040 22022220 00202202 00222020

01110010 20020222 01111101 00111101

01110001 10100110 22002200 01001101









(weight 65)

column step









54500415 13012131 02002022 20331103

2828A0A8 46222006 04006046 64646022

00045140 30131033 12113132 10010011

00551045 23203003 03121212 01311212









(weight 125)

diagonal step









35040733 67351240 24050637 B1300980

27472654 8AE6CA08 EE4A6286 E08264A8

03531247 1AB89238 54132765 55051040

14360705 73540643 89128902 70030514









(weight 186)

The higher weight in the original model is due to the addition carries induced by the constants
c0, . . . , c15. A technique to avoid carries at the first round and get a low-weight output difference
is to choose a message such that m0 = c0, . . . , m15 = c15. At the subsequent rounds, however,
nonzero words are introduced because of the different permutations.

Diffusion can be delayed a few steps by combining high-probability and low-weight dif-
ferentials of G, using initial conditions, neutral bits, etc. For example, applying directly the
differential

(80000000, 00000000, 80000000, 80008000) 7→ (80000000, 0, 0, 0)

104

the diffusion is delayed one step, as illustrated below:

column step









80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000









(weight 1)

diagonal step









800003E8 00000000 00000000 00000000

00000000 0B573F03 00000000 00000000

00000000 00000000 AB9F819D 00000000

00000000 00000000 00000000 E8800083









(weight 49)

column step









8007E4A0 2075B261 18E78828 9800099E

5944FE53 F178A22F 86B0A65B 936C73CB

A27F0D24 98D6929A 4088A5FB 2E39EDA3

A08FFF64 2AD374B7 2818E788 1E9883E1









(weight 236)

diagonal step









4B3CBDD2 0290847F B4FF78F9 F1E71BA3

3A023C96 49908E86 F13BC1D7 ADC2020A

9DCA344A 827BF1E5 B20A8825 FE575BE3

FC81FE81 D676FFC9 80740480 52570CB2









(weight 252)

In comparison, for a same input difference in the linearized model we have

column step









80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000









(weight 1)

diagonal step









80000018 00000000 00000000 00000000

00000000 10310101 00000000 00000000

00000000 00000000 18808080 00000000

00000000 00000000 00000000 18800080









(weight 18)

column step









80000690 E1101206 0801B818 B8000803

1D217176 600FC064 60111212 22167121

90B8B886 16E12133 00888138 83389890

90803886 17E01122 180801B8 83B88010









(weight 155)

diagonal step









44E4E456 133468BD DBBDA164 0F649833

4E20F629 563A9099 A62F3969 7773C0BE

FEB6F508 AABDCBF9 3262E291 87A10D6A

3C2B867B B603B05C DA695123 F88E8007









(weight 251)

These examples show that even in the linearized model, after two rounds about half
of the state bits have changed when different initial states are used (similar figures can be
given for a difference in the message). Combinations of low-weight differentials and of message
modifications may help to attack reduced-round versions of BLAKE. However, differences after
more than four rounds seem difficult to control.

11.2.3 Structure of the Compression Function

BLAKE’s compression function is the combination of an initialization, a sequence of rounds, and
a finalization. Contrary to ChaCha, BLAKE breaks self-similarity by using a round-dependent
permutation of the message and the constants. This prevents attacks that exploit the similarity

105

among round functions (cf. slide attacks in §§11.7.3). Particular properties of the compression
function are summarized below.

At the initialization stage, constants and redundancy of t impose a nonzero initial state
(and a non “all-one” state). The disposition of inputs implies that after the first column step
the initial value h is directly mixed with the salt s and the counter t. The double input of t0
and t1 in the initial state suggests the notion of valid initial state: we shall call an initial state
v0, . . . , v15 valid if and only there exists t0, t1 such that v12 = t0 ⊕ c4 and v13 = t0 ⊕ c5, and
v14 = t1 ⊕ c6 and v15 = t1 ⊕ c7.

In its call for a new hash function [162], NIST encourages the description of a parameter
that allows speed/confidence tradeoffs. For BLAKE this parameter is the number of rounds. We
estimate that five rounds are a minimum for BLAKE-32 (and BLAKE-28), and we recommend
14 rounds. For BLAKE-64 (and BLAKE-48), seven rounds are a minimum and we recommend
14 rounds. The choice of ten rounds for BLAKE-32 was determined by:

1. The known cryptanalytic results on Salsa20, ChaCha, and Rumba (one BLAKE-32 round
is essentially two ChaCha rounds, so the initial conservative choice of 20 rounds for
ChaCha corresponds to ten rounds for BLAKE-32): truncated differentials were observed
for up to four Salsa20 rounds and three ChaCha rounds, and the Rumba compression
function has shortcut attacks for up to three rounds; the eSTREAM project chose a ver-
sion of Salsa20 with twelve rounds in its portfolio, and 12-round ChaCha is arguably at
least as strong as 12-round Salsa20.

2. Our results on early versions of BLAKE, which had similar high-level structure, but a
round function different from the present one: for the worst version, we could find shortcut
collision attacks on up to five rounds.

3. Our results and observations on the final versions of BLAKE: full diffusion is achieved
after two rounds, and the best differentials found can be used to attack two rounds only.

BLAKE-64 has 14 rounds, i.e., four more than BLAKE-32; this is because the larger state
requires more rounds for achieving similar security (in comparison, SHA-512 has 1.25 times
more rounds than SHA-256).

At the finalization stage of the compression function, the state is compressed to half its
length. The feedforward of h and s makes each word of the hash value dependent on two words
of the inner state, one word of the initial value, and one word of the salt. The goal is to make
the function non-invertible when the initial value and/or the salt are unknown.

Our approach of “permutation plus feedforward” is similar to that of SHA-2, and can
be seen as a particular case of Davies-Meyer-like constructions: denoting E the block cipher
defined by the round sequence, BLAKE’s compression function computes

Em‖s(h)⊕ h⊕ (s‖s) .

When the salt is zero, this is the Davies-Meyer construction Em(h)⊕h. We use XOR’s and not
additions (as in SHA-2), because here additions don’t increase security, and are more expensive
in circuits and 8-bit processors.

If the salt s was unknown and not fedforward, then one would be able to recover it given
a one-block message, its hash value, and the IV. This would be a critical property. The counter
t is not input in the finalization, because its value is always known and never chosen by the
users.

A local collision happens when, for two distinct messages, the internal states after a same
number of rounds are identical. For BLAKE hash functions, there exists no local collisions for a

106

same initial state (i.e., same IV, salt, and counter). This result directly follows from the fact that
the round function is a permutation of the message, for fixed initial state v (and so different
inputs lead to different outputs). This property generalizes to any number of rounds. The
requirement of a same initial state does not limit much the result: for most of the applications,
no salt is used, and a collision on the hash function implies a collision on the compression
function with same initial state [49].

11.3 Iteration Mode

HAIFA [49, 90] is a general iteration mode for hash functions, which can be seen as “Merkle-
Damg̊ard with a salt and a counter”. HAIFA offers an interface for input of the salt and
the counter, and provides resistance to several generic attacks (herding, long-message second
preimages, length extension). HAIFA was previously used for the LAKE hash functions [16],
and studied in [3, 68].

Below we comment on BLAKE’s use of HAIFA:

• HAIFA has originally a single IV for a family of functions, and computes the effective
IV of a specific instance with k-bit hashes by setting IV ← compress(IV, k, 0, 0). This
allows variable-length hashing, but complicates the function and requires an additional
compression. BLAKE has only two different instances for each function, so we directly
specify their proper IV to simplify the definition. Each instance has a distinct effective
IV, but no extra compression is needed.

• HAIFA defines a padding data that includes the encoding of the hash value length; again,
because we only have two different lengths, one bit suffices to encode the identity of the
instance (i.e., 1 encodes 256, and 0 encodes 224). We preserve the instance-dependent
padding, but reduce the data overhead, and in the best case save one call to the com-
pression function. Padding the binary encoding of the hash bit length wouldn’t increase
security.

11.4 Indifferentiability

The counter input to each compression function simulates distinct functions for each message
block hashed. In particular, the value of the counter input at the last compression is never input
for an intermediate compression. It follows that the inputs of the BLAKE’s iteration mode are
prefix-free, which guarantees [77] that BLAKE is indifferentiable from a random oracle when its
compression function is assumed ideal.

This result guarantees that if “something goes wrong” in BLAKE, then its compression
function should be blamed. In other words, the iterated hash mode induces no loss of security.

11.5 Pseudorandomness

Pseudorandomness is particularly critical for stream ciphers, and no distinguishing attack—nor
any other non-randomness property—has been identified on Salsa20 or ChaCha. These ciphers
construct a complicated function by making a long chain of simple operations. Non-randomness
was observed for reduced versions with up to three ChaCha rounds (which correspond to one
and a half BLAKE round). BLAKE inherits ChaCha’s pseudorandomness, and in addition
avoids the self-similarity of the function by having round-dependent constants. Although there
is no formal reduction of BLAKE’s security to ChaCha’s, we can reasonably conjecture that
BLAKE’s compression function is “complicated enough” with respect to pseudorandomness.

107

11.6 Applicability of Generic Attacks

This section reports on the resistance of BLAKE to the most important generic attacks, that
is, attacks that exploit to broad class of functions.

11.6.1 Length Extension

Length extension is a forgery attack against MAC’s of the form Hk(m) or H(k‖m), i.e., where
the key k is respectively used as the IV or prepended to the message. The attack can be applied
when H is an iterated hash with MD-strengthening: given h = Hk(m) and m, determine the
padding data p, and compute v′ = Hh(m′), for an arbitrary m′. It follows from the iterated
construction that v′ = Hk(m‖p‖m′). That is, the adversary forged a MAC of the message
m‖p‖m′.

The length extension attack does not apply to BLAKE, because of the input of the
number of bits hashed so far to the compression function, which simulates a specific output
function for the last message block (cf. §11.3). For example, let m be a 1020-bit message;
after padding, the message is composed of three blocks m0, m1, m2; the final chaining value
will be h3 = compress(h2, m2, s, 0), because counter values are respectively 512, 1020, and zero
(see §§9.1.3). If we extend the message with a block m3, with convenient padding bits, and hash
m0‖m1‖m2‖m3, then the chaining value between m2 and m3 will be compress(h2, m2, s, 1024),
and thus be different from compress(h2, m2, s, 0). The knowledge of BLAKE-32(m0‖m1‖m2)
cannot be used to compute the hash of m0‖m1‖m2‖m3.

11.6.2 Multicollisions

A multicollision is a set of messages that map to the same hash value. We speak of a k-collision
when k distinct colliding messages are known (see §3.4).

We briefly review the applicability to BLAKE of known nontrivial techniques for com-
puting multicollisions on iterated hashes:

• Joux’s technique [119] applies to BLAKE as well as to all hash functions based on HAIFA
(and more generally, to iterated hashes with a chaining value as large as the digest). For
example, a 32-collision for BLAKE-32 can be found within 2133 compressions with this
technique.

• The technique of Kelsey and Schneier [124] works only when the compression function
admits easily found fixed points and when all compression functions are identical. This
does not apply to BLAKE, because fixed points cannot be found efficiently, and because
the counter t makes fixed point repetition impossible.

• In [8] an attack based on fixed points is presented. Like the Kelsey/Schneier technique, it
does not apply to BLAKE.

BLAKE is only “vulnerable” to Joux’s attack, which does not constitute a security issue as
soon as BLAKE is collision resistant.

A related notion is that of collision multiplication. We coin this term to define the ability,
given a collision (m, m′), to derive an arbitrary number of other collisions. For example, Merkle-
Damg̊ard hash functions allow to derive collisions of the form (m‖p‖u, m′‖p′‖u), where p and p′

are the padding data, and u an arbitrary string; this can be seen as a kind of length extension
attack. For the same reasons that BLAKE resists length extension, it also resists this type of
collision multiplication, when given a collision of minimal size (that is, when the collision is only
for the hash value, not for intermediate chaining values).

108

11.6.3 Long-Message Second Preimages

Dean [86, §5.6.3] and subsequently Kelsey and Schneier [124] showed generic attacks on n-bit
iterated hashes that find second preimages in significantly less than 2n compressions. HAIFA
was proved to be resistant to these attacks [90]. This result applies to BLAKE as well, as a
HAIFA-based design. Therefore, no attack on n-bit BLAKE can find second-preimages in less
than 2n trials, unless exploiting the structure of the compression function.

11.6.4 Side-Channel Attacks

All operations in the BLAKE functions are independent of the input and can be implemented
to run in constant time on all platforms (and still be fast). The ChaCha core function was
designed to be immune to all kind of side-channel attacks (cache timing, power analysis, etc.),
and BLAKE inherits this property. Side-channel analysis of the eSTREAM finalists also suggests
that Salsa20 and ChaCha are immune to side-channel attacks [226].

11.7 Dedicated Attack Strategies

This section describes several strategies for attacking BLAKE, and justifies their limitations.

11.7.1 Exploiting Symmetric Differences

A sufficient (but not necessary) condition to find a collision on BLAKE is to find two message
blocks for which, given same IV’s and salts, the corresponding internal states v and v′ after the
sequence of rounds satisfy the relation

vi ⊕ vi+8 = v′i ⊕ v′i+8, i = 0, . . . , 7 .

Put differently, it suffices to find a message difference that leads after the rounds sequence to a
difference of the form









v0 ⊕ v′0 v1 ⊕ v′1 v2 ⊕ v′2 v3 ⊕ v′3
v4 ⊕ v′4 v5 ⊕ v′5 v6 ⊕ v′6 v7 ⊕ v′7
v8 ⊕ v′8 v9 ⊕ v′9 v10 ⊕ v′10 v11 ⊕ v′11

v12 ⊕ v′12 v13 ⊕ v′13 v14 ⊕ v′14 v15 ⊕ v′15









=









∆0 ∆1 ∆2 ∆3

∆4 ∆5 ∆6 ∆7

∆0 ∆1 ∆2 ∆3

∆4 ∆5 ∆6 ∆7









.

We say that the state has symmetric differences. This condition is not necessary for collisions,
because there may exist collisions for different salts.

A search for two messages with symmetric differences, that is, a collision for the “top” and
“bottom” differences, can be achieved by trying about 2128 messages and negligible memory (see
the methods presented in §3.3. This approach is likely to be a bit faster than a direct collision
search on the hash function, because here one never computes the finalization of the compression
function. The attack may be improved if one finds message differences that give, for example,
v0⊕v′0 = v8⊕v′8 with probability noticeably higher than 2−32 (for BLAKE-32). Such correlations
between differences are however unlikely with the recommended number of rounds.

Another line of attack goes as follows: one can pick two random v and v′ having symmetric
differences, and compute rounds backward for two arbitrary distinct messages. In the end the
initial states obtained need

1. To have an IV and salt satisfying hi⊕si mod 4 = h′
i⊕s′i mod 4, for i = 0, . . . , 7, which occurs

with probability 2−256;

109

2. To be valid initial states for a counter 0 < t ≤ 512, which occurs with probability 2−128.

Using a birthday strategy, running this attack requires about 2256 trials, and finds collisions
with different IV’s and different salts. If we allow different counters of arbitrary values, then the
initial state obtained is valid with probability 2−64, and the attacks runs within 2128×264 = 2192

trials, which is still slower than a direct birthday attack.

11.7.2 Differential Attack

BLAKE functions can be attacked if one finds a message difference that gives certain output
difference with significantly higher probability than ideally expected. A typical differential
attack uses high-probability differentials for the sequence of round functions. An argument
against the existence of such differentials is that BLAKE’s round function is essentially ChaCha’s
“double-round”, whose differential behavior has been intensively studied without real success
in [12].

Attacks on ChaCha are based on the existence of truncated differentials after three steps
(that is, one and a half BLAKE round) [12]. These differentials have a 1-bit input difference
and a 1-bit output difference; in other words, flipping certain bits gives non-negligible biases
in certain output bits. No truncated differential was found through four steps (two BLAKE
rounds). This suggests that differentials in BLAKE with input difference in the IV or the salt
cannot be found for more than two rounds. An input difference in the message spreads even
more, because the difference affects the state through each round of the function.

Rumba [28] is a compression function based on the stream cipher Salsa20; contrary to
BLAKE, the message is put in the initial state and no data is input during the rounds iteration.
Attacks on Rumba in [12] are based on the identification of a linear approximation through
three steps, and the use of message modification techniques to increase the probability of finding
compliant messages. Rumba is based on Salsa20, not on ChaCha, and thus such differentials
are likely to have much lower probability with ChaCha. With its ten rounds (20 steps), BLAKE
is unlikely to be attacked with such techniques.

11.7.3 Slide Attack

Slide attacks were originally proposed to attack block ciphers [60,61], and recently were applied
in some sense to hash functions [169]. Here we show how to apply the idea to attack a weakened
variant of BLAKE’s compression function.

Suppose all the permutations σi are equal (to, say, the identity). Then for a message such
that m0 = · · · = m15, the sequence of rounds is a repeated application of the same permutation
on the internal state, because for each Gi, the value (mσr(2i) ⊕ cσr(2i+1)) is now independent of
the round index r. The idea of the attack is to use 256 bits of freedom of the message to have,
after one round, an internal state v′ such that hi ⊕ si mod 4 = h′

i ⊕ s′i mod 4, for h′ and s′ derived
from v′ according to the initialization rule. The state obtained will be valid with probability
2−64. Then, for the same message and the (r − 1)-round function, we get a collision after the
finalization process, with different IV, salt, and counter. Runtime is 264 trials, to find collisions
with two different versions of the compression function. For the full version (with nontrivial
permutations), this attack cannot work for more than two rounds.

11.7.4 Finding Fixed Points

A fixed point for BLAKE’s compression function is a tuple (m, h, s, t) such that

compress(m, h, s, t) = h .

110

Functions based on a block cipher E and of the form Em(h)⊕h make the finding of fixed points
easy by computing h = E−1(0), which gives Em(h)⊕ h = h.

BLAKE’s structure can be viewed as a particular case of Davies-Meyer construction: e.g.,
when no salt is used (s = 0), then for finding fixed points, we have to choose the final v such
that

h0 = h0 ⊕ v0 ⊕ v8

h1 = h1 ⊕ v1 ⊕ v9

h2 = h2 ⊕ v2 ⊕ v10

h3 = h3 ⊕ v3 ⊕ v11

h4 = h4 ⊕ v4 ⊕ v12

h5 = h5 ⊕ v5 ⊕ v13

h6 = h6 ⊕ v6 ⊕ v14

h7 = h7 ⊕ v7 ⊕ v15

That is, we need v0 = v8, v1 = v9, . . . , v7 = v15, so there are 2256 possible choices for v. From
this v we compute the round function backward to get the initial state, and we find a fixed
point when

• The third line of the state is c0, . . . , c3;

• The fourth line of the state is valid, that is, v12 = v13 ⊕ c4 ⊕ c5 and v14 = v15 ⊕ c6 ⊕ c7.

Thus we find a fixed point with effort 2128 × 264 = 2192, instead of 2256 ideally. This technique
also allows one to find several fixed points for a same message (up to 264 per message) in
less time than expected for an ideal function. This technique does not give a distinguisher
between BLAKE and a random function in the classical sense, because we use here the internal
mechanisms of the compression function, and not blackbox queries.

11.8 Conclusion

BLAKE partially inherits the security of ChaCha for its compression function, and uses a mode
of operation that, although simple, was proved to induce no vulnerability. The recommended
number of rounds ensure a comfortable security margin: BLAKE-32 makes ten rounds, which
is equivalent to 20 rounds of the stream cipher ChaCha, for which the best attack exploits a
truncated differential over only three rounds (so 1.5 of BLAKE-32). The absence of external
attack despite the simplicity of the design suggests that even reduced versions of BLAKE are
difficult to attack. Finally, one may compare BLAKE with the AES: both operate on a 4×4
matrix column-wise and diagonal-wise, and both achieve full diffusion after two rounds and
make ten or 14 rounds depending on the size of the key (for AES) or of the words (for BLAKE).

111

112

Bibliography

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
low-degree polynomials over GF(2). In RANDOM-APPROX, 2003.

[2] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision
and element distinctness with small range. Theory of Computing, 1(1), 2005.

[3] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-property-
preserving iterated hashing: ROX. In ASIACRYPT, 2007.

[4] Kazumaro Aoki and Kazuhiro Kurokawa. A study on linear cryptanalysis of Multi2 (in
Japanese). In The 1995 Symposium on Cryptography and Information Security, SCIS95,
1995.

[5] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and
Alon Rosen. SWIFFTX: A proposal for the SHA-3 standard. Submission to the NIST
Hash Competition, 2008.

[6] ARIB. STD B25 v. 5.0, 2007.

[7] Craig Asher, Jean-Philippe Aumasson, and Raphael C.-W. Phan. Security and privacy
preservation in human-involved networks. In iNetSec, 2009.

[8] Jean-Philippe Aumasson. Faster multicollisions. In INDOCRYPT, 2008.

[9] Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir. Efficient
FPGA implementations of high-dimensional cube testers on the stream cipher Grain-128.
IACR ePrint report 2009/218, 2009. Presented at SHARCS 2009.

[10] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers and
key-recovery on MD6 and Trivium. In FSE, 2009.

[11] Jean-Philippe Aumasson, Orr Dunkelman, Florian Mendel, Christian Rechberger, and
Søren S. Thomsen. Cryptanalysis of Vortex. In AFRICACRYPT, 2009.

[12] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Christian
Rechberger. New features of Latin dances: analysis of Salsa, ChaCha, and Rumba. In
FSE, 2008.

[13] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3
proposal BLAKE, 2008. Submission to the NIST Hash Competition.

[14] Jean-Philippe Aumasson, Jorge Nakahara Jr., and Pouyan Sepehrdad. Cryptanalysis of
the ISDB scrambling algorithm (MULTI2). In FSE, 2009.

113

[15] Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks on 3-pass
HAVAL and step-reduced MD5. In SAC, 2008.

[16] Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan. The hash function family
LAKE. In FSE, 2008.

[17] Jean-Philippe Aumasson and Maŕıa Naya-Plasencia. Second preimages on MCSSHA-3.
Available online, 2008.

[18] Jean-Philippe Aumasson and Raphael C.-W. Phan. How (not) to efficiently dither
blockcipher-based hash functions? In AFRICACRYPT, 2008.

[19] Shi Bai and Richard P. Brent. On the efficiency of Pollard’s rho method for discrete
logarithms. In CATS, 2008.

[20] Thomas Baignères. Quantitative security of block ciphers: designs and cryptanalysis tools.
PhD thesis, EPFL, 2008.

[21] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond linear
cryptanalysis? In ASIACRYPT, 2004.

[22] Elad Barkan, Eli Biham, and Nathan Keller. Instant ciphertext-only cryptanalysis of
GSM encrypted communication. Journal of Cryptology, 21(3), 2008.

[23] Paulo Barreto and Vincent Rijmen. The Whirlpool hashing function. First Open NESSIE
Workshop, 2000.

[24] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM Conference on Computer and Communications Security,
1993.

[25] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making
UOWHFs practical. In CRYPTO, 1997.

[26] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt
Robshaw, and Yannick Seurin. SHA-3 proposal: ECHO. Submission to the NIST Hash
Competition, 2008.

[27] Daniel J. Bernstein. A reformulation of TRIVIUM. ECRYPT forum, February 20, 2006.

[28] Daniel J. Bernstein. The Rumba20 compression function. See also [31].

[29] Daniel J. Bernstein. Salsa20. Technical Report 2005/25, ECRYPT eSTREAM, 2005.

[30] Daniel J. Bernstein. Understanding bruteforce, 2005.

[31] Daniel J. Bernstein. What output size resists collisions in a XOR of independent expan-
sions? ECRYPT Workshop on Hash Functions, 2007.

[32] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In SASC. ECRYPT, 2008.

[33] Daniel J. Bernstein. Cubehash specification (2.B.1). Submission to the NIST Hash Com-
petition, 2008.

[34] Daniel J. Bernstein. Response to ”Slid Pairs in Salsa20 and Trivium”, 2008.

114

[35] Daniel J. Bernstein. The Salsa20 family of stream ciphers. In New Stream Cipher Designs,
2008. See also [29].

[36] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-Quantum
Cryptography. Springer, 2009.

[37] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmarking of Cryp-
tographic Systems. http://bench.cr.yp.to. Accessed 20 January 2009.

[38] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions.
In ECRYPT Workshop on Hash Functions, 2007.

[39] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak specifica-
tions. Submission to the NIST Hash Competition, 2008.

[40] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indiffer-
entiability of the sponge construction. In EUROCRYPT, 2008.

[41] Eli Biham. How to make a difference: Early history of differential cryptanalysis. Invited
talk at FSE 2006.

[42] Eli Biham. New types of cryptanalytic attacks using related keys. Journal of Cryptology,
7(4), 1994.

[43] Eli Biham. A fast new DES implementation in software. In FSE, 1997.

[44] Eli Biham. New techniques for cryptanalysis of hash functions and improved attacks on
snefru. In FSE, 2008.

[45] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block cipher proposal.
In FSE, 1998.

[46] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks on IDEA and
Khufu. In FSE, 1999.

[47] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In CRYPTO, 2004.

[48] Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA. Second
NIST Cryptographic Hash Workshop, 2006.

[49] Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA. IACR
ePrint report 2007/278, 2007. Extended version of [48].

[50] Eli Biham and Orr Dunkelman. The SHAvite-3 hash function. Submission to the NIST
Hash Competition, 2008.

[51] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling the
Serpent. In EUROCRYPT, 2001.

[52] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle
attacks. In EUROCRYPT, 2005.

[53] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key impossible differential attacks
on 8-round AES-192. In CT-RSA, 2006.

[54] Eli Biham, Orr Dunkelman, and Nathan Keller. A unified approach to related-key attacks.
In FSE, 2008.

115

http://bench.cr.yp.to

[55] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal
of Cryptology, 4(1), 1991.

[56] Alex Biryukov. The boomerang attack on 5 and 6-round reduced AES. In AES4, 2004.

[57] Alex Biryukov, Praveen Gauravaram, Jian Guo, Dmitry Khovratovich, San Ling, Krystian
Matusiewicz, Ivica Nikolic, Josef Pieprzyk, and Huaxiong Wang. Collisions of the LAKE
hash family. In FSE, 2009.

[58] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and related-key
attack on the full AES-256. In CRYPTO, 2009.

[59] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a
PC. In FSE, 2000.

[60] Alex Biryukov and David Wagner. Slide attacks. In FSE, 1999.

[61] Alex Biryukov and David Wagner. Advanced slide attacks. In EUROCRYPT, 2000.

[62] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash
function. In FSE, 2006.

[63] John Black, Martin Cochran, and Trevor Highland. A study of the MD5 attacks: Insights
and improvements. In FSE, 2006.

[64] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-
efficient blockcipher-based hash functions. In EUROCRYPT, 2005.

[65] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. IACR ePrint report 2002/066, 2002.
Full version of [66].

[66] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. In CRYPTO, 2002.

[67] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. In STOC, 1990.

[68] Charles Bouillaguet, Pierre-Alain Fouque, Adi Shamir, and Sébastien Zimmer. Second
preimage attacks on dithered hash functions. IACR ePrint report 2007/395, 2007.

[69] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-
free functions. SIGACT News, 28(2), 1997.

[70] Philippe Bulens, Kassem Kalach, Francois-Xavier Standaert, and Jean-Jacques
Quisquater. FPGA implementations of eSTREAM phase-2 focus candidates with hard-
ware profile. Technical Report 2007/024, ECRYPT eSTREAM, 2007.

[71] Samuel Burer, Renato D.C. Monteiro, and Yin Zhang. Maximum stable set formulations
and heuristics based on continuous optimization. Mathematical Programming, 64, 2002.

[72] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM, 51(4), 2004.

[73] Christophe De Cannière, Özgül Kücük, and Bart Preneel. Analysis of Grain’s initialization
algorithm. In SASC, 2008.

116

[74] Christophe De Cannière and Bart Preneel. Trivium. In New Stream Cipher Designs.
Springer, 2008.

[75] Christophe De Cannière and Christian Rechberger. Finding SHA-1 characteristics: Gen-
eral results and applications. In ASIACRYPT, 2006.

[76] Christophe De Cannière and Christian Rechberger. Preimage attacks for (reduced) SHA-0
and SHA-1. In CRYPTO, 2008.

[77] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damg̊ard revisited: How to construct a hash function. In CRYPTO, 2005.

[78] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model
and the ideal cipher model are equivalent. In CRYPTO, 2008.

[79] Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. In SASC.
ECRYPT, 2006.

[80] Paul Crowley. Trivium, SSE2, CorePy, and the ”cube attack”, 2008.
http://www.lshift.net/blog/.

[81] Christopher Y. Crutchfield. Security proofs for the MD6 hash function mode of operation.
Master’s thesis, Massachusetts Institute of Technology, 2008.

[82] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In FSE,
1997.

[83] Joan Daemen and Vincent Rijmen. Rijndael for AES. In AES Candidate Conference,
2000.

[84] Ivan Damg̊ard. A design principle for hash functions. In CRYPTO, 1989.

[85] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr
Universität Bochum, 2005.

[86] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999.

[87] Dorothy E. Robling Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[88] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. IACR
ePrint report 385, 2008.

[89] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In EU-
ROCRYPT, 2009. See also [88].

[90] Orr Dunkelman. Re-visiting HAIFA. Talk at the workshop Hash functions in cryptology:
theory and practice, 2008.

[91] Orr Dunkelman. What is the best attack? Echternach Symmetric Cryptography Seminar,
2008.

[92] Hakan Englund, Thomas Johansson, and Meltem Sonmez Turan. A framework for cho-
sen IV statistical analysis of stream ciphers. In Special ECRYPT Workshop – Tools for
Cryptanalysis, 2007.

117

[93] Gaëtan Leurent. MD4 is not one-way. In FSE, 2008.

[94] Decio Gazzoni Filho, Paulo Barreto, and Vincent Rijmen. The Maelstrom-0 hash function.
In 6th Brazilian Symposium on Information and Computer Security, 2006.

[95] Eric Filiol. A new statistical testing for symmetric ciphers and hash functions. In ICICS,
2002.

[96] Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV statistical analysis for key
recovery attacks on stream ciphers. In AFRICACRYPT, 2008.

[97] Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew J. B. Rob-
shaw. Non-randomness in eSTREAM candidates Salsa20 and TSC-4. In INDOCRYPT,
2006.

[98] Marc Fischlin. Perfectly-crafted Swiss Army knives – in theory. Talk at the workshop
Hash Functions, Theory and Practice, Lorentz Center, Leiden, 2008.

[99] Robert W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14(4), 1967.

[100] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design. O’Reilly, 1998.

[101] Kris Gaj, Gabriel Southern, and Ramakrishna Bachimanchi. Comparison of hardware
performance of selected phase II eSTREAM candidates. Technical Report 2007/026,
ECRYPT eSTREAM, 2007.

[102] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-
tian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3 candidate.
Submission to the NIST Hash Competition, 2008.

[103] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, 1989.

[104] Tim Good and Mohammed Benaissa. Hardware performance of eSTREAM phase-III
stream cipher candidates. In SASC, 2008.

[105] Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC,
1996.

[106] Tim Gueneysu, Timo Kasper, Martin Novotny, Christof Paar, and Andy Rupp. Crypt-
analysis with COPACOBANA. IEEE Transactions on Computers, 57(11):1498–1513,
2008.

[107] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized hashing.
In CRYPTO, 2006.

[108] Shai Halevi, Steven Myers, and Charles Rackoff. On seed-incompressible functions. In
TCC, 2008.

[109] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4), 1999.

[110] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream cipher
proposal: Grain-128. In IEEE International Symposium on Information Theory (ISIT
2006), 2006.

118

[111] Martin Hell, Thomas Johansson, and Willi Meier. Grain - a stream cipher for constrained
environments. Technical Report 2005/010, ECRYPT eSTREAM, 2005.

[112] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for constrained
environments. IJWMC, 2(1), 2007.

[113] Martin Hellman. A cryptanalytic time-memory tradeoff. IEEE Transactions on Informa-
tion Theory, 26, 1980.

[114] Julio Cesar Hernandez-Castro, Juan M. E. Tapiador, and Jean-Jacques Quisquater. On
the Salsa20 hash function. In FSE, 2008.

[115] Hitachi. Japanese laid-open patent application no. H1-276189, 1998.

[116] Sebastiaan Indesteege, Florian Mendel, Martin Schlaeffer, and Christian Rechberger.
Practical collisions for SHAMATA. Available online, 2009.

[117] ISO. Algorithm registry entry 9979/0009, 1994.

[118] Goce Jakimoski and Yvo Desmedt. Related-key differential cryptanalysis of 192-bit key
AES variants. In SAC, 2003.

[119] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In CRYPTO, 2004.

[120] Antoine Joux and Thomas Peyrin. Hash functions and the (amplified) boomerang attack.
In CRYPTO, 2007.

[121] Pascal Junod and Serge Vaudenay. Optimal key ranking procedures in a statistical crypt-
analysis. In FSE, 2003.

[122] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In
STOC, 2008.

[123] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks against
reduced-round MARS and Serpent. In FSE, 2000.

[124] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In EUROCRYPT, 2005.

[125] Dimitry Khovratovich. Gaussian cryptanalysis of hash functions: collisions, preimages,
distinguishers. Schloss Dagstuhl ”Symmetric cryptography” seminar, 2009.

[126] Lars Knudsen and Vincent Rijmen. Known-key distinguishers for some block ciphers. In
ASIACRYPT, 2007.

[127] Lars R. Knudsen. Truncated and higher order differentials. In FSE, 1994.

[128] Lars R. Knudsen. DEAL - a 128-bit block cipher. Technical Report 151, University of
Bergen, 1998. Submitted as an AES candidate.

[129] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl hash
functions. In FSE, 2007.

[130] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In FSE, 2002.

119

[131] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, second edition
edition, 1981.

[132] Özgül Kücük. The hash function Hamsi. Submission to the NIST Hash Competition,
2008.

[133] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimmler. Break-
ing ciphers with COPACOBANA - a cost-optimized parallel code breaker. In CHES,
2006.

[134] Samuel Kutin. Quantum lower bound for the collision problem with small range. Theory
of Computing, 1(1), 2005.

[135] Xuejia Lai and James Massey. Hash function based on block ciphers. In EUROCRYPT,
1992.

[136] Wonil Lee, Mridul Nandi, Palash Sarkar, Donghoon Chang, Sangjin Lee, and Kouichi
Sakurai. PGV-style block-cipher-based hash families and black-box analysis. IEICE
Transactions, 88-A(1), 2005.

[137] Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong. Related-key chosen IV attacks
on Grain-v1 and Grain-128. In ACISP, 2008.

[138] Leonid A. Levin. The tale of one-way functions. CoRR, cs.CR/0012023, 2000.

[139] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential properties
of addition. In FSE, 2001.

[140] Helger Lipmaa, Johan Wallén, and Philippe Dumas. On the additive differential proba-
bility of exclusive-or. In FSE, 2004.

[141] Moses Liskov, Ronald Rivest, and David Wagner. Tweakable block ciphers. In CRYPTO,
2002.

[142] Stefan Lucks. The saturation attack - a bait for Twofish. In FSE, 2001.

[143] Stefan Lucks. A failure-friendly design principle for hash functions. In ASIACRYPT,
2005.

[144] Jason Worth Martin. ESSENCE: A candidate hashing algorithm for the NIST competi-
tion. Submission to the NIST Hash Competition, 2008.

[145] Mitsuru Matsui. Linear cryptoanalysis method for DES cipher. In EUROCRYPT, 1993.

[146] Mitsuru Matsui and Atsushiro Yamagishi. On a statistical attack of secret key cryp-
tosystems. Electronics and Communications in Japan, Part III: Fundamental Electronic
Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 77(9), 1994.

[147] Stephen Matyas, Carl Meyer, and Jonathan Oseas. Generating strong one-way functions
with cryptographic algorithm. IBM Technical Disclosure Bulletin, 27(10A), 1985.

[148] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In TCC, 2004.

[149] Alexander Maximov and Alex Biryukov. Two trivial attacks on Trivium. In SAC, 2007.

120

[150] Alexander Maximov and Dmitry Khovratovich. New state recovery attack on RC4. In
CRYPTO, 2008.

[151] Cameron McDonald, Chris Charnes, and Josef Pieprzyk. Attacking Bivium with MiniSat.
Technical Report 2007/040, ECRYPT eSTREAM, 2007.

[152] Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (second) preimage
attack on the GOST hash function. In FSE, 2008.

[153] Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak, and Janusz
Szmidt. Cryptanalysis of the GOST hash function. In CRYPTO, 2008.

[154] Florian Mendel, Christian Rechberger, and Martin Schläffer. Collisions for round-reduced
LAKE. In ACISP, 2008.

[155] Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V compression function. In
ICISC, 2007.

[156] Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

[157] Ralph Merkle. One way hash functions and DES. In CRYPTO, 1989.

[158] Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. New 128-bit hash function. In 4th
International Joint Workshop on Computer Communications, 1989.

[159] NaCl: Networking and cryptography library. http://nacl.cr.yp.to/, 2009.

[160] Ivica Nikolic, Alex Biryukov, and Dmitry Khovratovich. Hash family LUX - algorithm
specifications and supporting documentation. Submission to the NIST Hash Competition,
2008.

[161] NIST. FIPS 180-2 secure hash standard, 2002.

[162] NIST. Announcing request for candidate algorithm nominations for a new cryptographic
hash algorithm (SHA-3) family. Federal Register, 72(112), November 2007.

[163] NIST. SP 800-106, randomized hashing digital signatures, 2007.

[164] NIST. Cryptographic hash competition, Accessed 28 April 2009.
http://www.nist.gov/hash-competition.

[165] Schneier on Security. Forging SSL certificates (comments section), December 2008.

[166] Sean O’Neil. Algebraic structure defectoscopy. IACR ePrint report 2007/378, 2007.

[167] Enes Pasalic. Transforming chosen IV attack into a key differential attack: how to break
TRIVIUM and similar designs. IACR ePrint report 2008/443, 2008.

[168] Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT, 2007.

[169] Thomas Peyrin. Security analysis of extended sponge functions. Talk at the workshop
Hash functions in cryptology: theory and practice, 2008.

[170] Thomas Peyrin. Chosen-salt, chosen-counter, pseudo-collision on SHAvite-3 compression
function. Available online, 2009.

121

http://nacl.cr.yp.to/
http://www.nist.gov/hash-competition

[171] Raphael C.-W. Phan and Jean-Philippe Aumasson. Next generation networks: human-
aided and privacy-driven. In ITU-T ”Innovations in NGN” Kaleidoscope Conference,
2008.

[172] Raphael C.-W. Phan and Jean-Philippe Aumasson. On hashing with tweakable ciphers.
In IEEE International Conference on Communications (ICC), 2009.

[173] John M. Pollard. Monte-Carlo methods for index computation mod p. Mathematics of
Computation, 32(143), 1978.

[174] Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

[175] Bart Preneel, Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Collision-free
hash functions based on block cipher algorithms. In Carnahan Conference on Security
Technology, 1989.

[176] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In CRYPTO, 1993.

[177] Deike Priemuth-Schmid and Alex Biryukov. Slid pairs in Salsa20 and Trivium. In IN-
DOCRYPT, 2008.

[178] Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search? Appli-
cation to DES (extended summary). In EUROCRYPT, 1989.

[179] Jean-Jacques Quisquater and Marc Girault. 2n-bit hash-functions using n-bit symmetric
block cipher algorithms. In EUROCRYPT, 1989.

[180] Michael Rabin. Digitalized signatures. In Richard Lipton and Richard DeMillo, editors,
Foundations of Secure Computation. Academic Press, 1978.

[181] Michael Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. Technical Report MIT/LCS/TR-212, MIT, 1979.

[182] Havard Raddum. Cryptanalytic results on Trivium. Technical Report 2005/001, ECRYPT
eSTREAM, 2005.

[183] Ronald Rivest. RFC 1321 - The MD5 Message-Digest Algorithm, 1992.

[184] Ronald L. Rivest. The MD6 hash function. Invited talk at CRYPTO 2008.

[185] Ronald L. Rivest, Benjamin Agre, Daniel V. Bailey, Christopher Crutchfield, Yevgeniy
Dodis, Kermin Elliott Fleming, Asif Khan, Jayant Krishnamurthy, Yuncheng Lin, Leo
Reyzin, Emily Shen, Jim Sukha, Drew Sutherland, Eran Tromer, and Yiqun Lisa Yin.
The MD6 hash function – a proposal to NIST for SHA-3, 2008. Submission to the NIST
Hash Competition.

[186] Phillip Rogaway. Formalizing human ignorance. In VIETCRYPT, 2006.

[187] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Defini-
tions, implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In FSE, 2004.

[188] Phillip Rogaway and John P. Steinberger. Constructing cryptographic hash functions
from fixed-key blockciphers. In CRYPTO, 2008.

122

[189] Phillip Rogaway and John P. Steinberger. Security/efficiency tradeoffs for permutation-
based hashing. In EUROCRYPT, 2008.

[190] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM Journal on Computing, 25(2), 1996.

[191] Markku-Juhani Olavi Saarinen. Chosen-IV statistical attacks on eStream ciphers. In
SECRYPT, 2006.

[192] Alex Samorodnitsky. Low-degree tests at large distances. In STOC, 2007.

[193] Yu Sasaki and Kazumaro Aoki. Preimage attacks on MD, HAVAL, SHA, and others.
Rump session of CRYPTO 2008.

[194] Yu Sasaki and Kazumaro Aoki. Preimage attack on step-reduced MD5. In ACISP, 2008.

[195] Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In ASI-
ACRYPT, 2008.

[196] Yu Sasaki and Kazumaro Aoki. Preimage attacks on one-block MD4, 63-step MD5 and
more. In SAC, 2008.

[197] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than exhaustive
search. In EUROCRYPT, 2009.

[198] Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta. Improved collision attack
on MD5. IACR ePrint report 2005/400, 2005.

[199] Bruce Schneier. Applied Cryptography. John Wiley & Sons, second edition, 1996.

[200] Robert Sedgewick, Thomas G. Szymanski, and Andrew Chi-Chih Yao. The complexity
of finding cycles in periodic functions. SIAM Journal on Computing, 11(2), 1982.

[201] Adi Shamir. How to solve it: New techniques in algebraic cryptanalysis. Invited talk at
CRYPTO 2008.

[202] Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression function
from non-compressing primitives. In ICALP (2), 2008.

[203] Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers, 34(1), 1985.

[204] Bhupendra Singh, Lexy Alexander, and Sanjay Burman. On algebraic relations of Serpent
S-boxes. IACR ePrint report 2009/038, 2009.

[205] Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. MD5 considered harmful today: Creating a
rogue CA certificate. In 25th Annual Chaos Communication Congress, 2008.

[206] Martjin Stam. Blockcipher based hashing revisited. In FSE, 2009.

[207] Marc Stevens, Arjen Lenstra, and Benne de Weger. Predicting the win-
ner of the 2008 US presidential elections using a Sony PlayStation 3.
http://www.win.tue.nl/hashclash/Nostradamus/, 2007.

[208] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5
and colliding X.509 certificates for different identities. In EUROCRYPT, 2007.

123

http://www.win.tue.nl/hashclash/Nostradamus/

[209] Kazuo Takaragi, Fusao Nakagawa, and Ryoichi Sasaki. U.S. patent no. 4982429, 1989.

[210] Kazuo Takaragi, Fusao Nakagawa, and Ryoichi Sasaki. U.S. patent no. 5103479, 1990.

[211] Edlyn Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In
ANTS, 1998.

[212] Luca Trevisan. CS 276 – Cryptography Spring – 2009, lecture notes, 2009.

[213] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki Nakashima.
Differential cryptanalysis of Salsa20/8. In SASC. ECRYPT, 2007.

[214] Meltem Sönmez Turan and Orhun Kara. Linear approximations for 2-round Trivium.
Technical Report 2007/008, ECRYPT eSTREAM, 2007.

[215] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1), 1999.

[216] Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack.
IACR ePrint report 2007/413, 2007.

[217] David Wagner. The boomerang attack. In FSE, 1999.

[218] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash func-
tions MD4, MD5, HAVAL-128 and RIPEMD. IACR ePrint report 2004/199, 2004. See
also [219].

[219] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In EURO-
CRYPT, 2005.

[220] Ralf-Phillip Weinmann and Kai Wirt. Analysis of the DVB common scrambling algorithm.
In 8th IFIP TC-6 TC-11 Conference on Communications and Multimedia Security (CMS),
2004.

[221] Michael J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology, 17(2),
2004.

[222] Wikipedia. Mobaho! Accessed 29-August-2008.

[223] Kai Wirt. Fault attack on the DVB common scrambling algorithm. In ICCSA (2), 2005.

[224] Hirotaka Yoshida, Alex Biryukov, Christophe De Cannière, Joseph Lano, and Bart Pre-
neel. Non-randomness of the full 4 and 5-pass HAVAL. In SCN, 2004.

[225] Toshiro Yoshimura. Conditional access system for digital broadcasting in Japan. Proceed-
ings of the IEEE, 94(1), 2006.

[226] Erik Zenner. Cache timing analysis of HC-256. In SASC. ECRYPT, 2008.

[227] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL - a one-way hashing algo-
rithm with variable length of output. In ASIACRYPT, 1992.

To save space, I omitted details of references in proceedings published in Springer’s LNCS
series, which represent a large majority of the articles cited in this thesis. Detailed references
(volume number, editor, etc.) can be found by Googling “CONFERENCE YEAR DBLP”.

124

Curriculum Vitae

Education

PhD in Computer Science, EPFL doctoral school (Switzerland), 2009.

Thesis: Analysis and design of symmetric cryptographic algorithms

Advisers: Willi Meier, Serge Vaudenay

Master in Computer Science (MPRI), Université Paris 7 (France), 2006.

Thesis: A novel asymmetric scheme with stream cipher construction

Adviser : Serge Vaudenay

Mâıtrise in Computer Science, Université Cergy-Pontoise (France), 2005.

Thesis: Design of a test module for metaheuristics

Adviser : Johann Dréo

Publications

Journal Publications

J.-Ph. Aumasson. Cryptanalysis of a hash function based on norm form equations, Cryp-
tologia, 33(1):1-4, 2009.

J. Dréo, J.-Ph. Aumasson, P. Siarry, W. Tfaili. Adaptive learning search, a new tool to
help comprehending metaheuristics, International Journal on Artificial Intelligence Tools,
16(3):483-505, 2007.

Conference Publications

J.-Ph. Aumasson, Ç. Çalık, W. Meier, O. Özen, R. C.-W. Phan, K. Varıcı. Improved analysis
of Skein, Asiacrypt 2009. To appear in LNCS, Springer.

J.-Ph. Aumasson, I. Dinur, L. Henzen, W. Meier, A. Shamir. Efficient FPGA Implementa-
tions of High-Dimensional Cube Testers on the Stream Cipher Grain-128, SHARCS 2009.

J.-Ph. Aumasson, O. Dunkelman, S. Indesteege, B. Preneel, Cryptanalysis of Dynamic
SHA(2), Selected Areas in Cryptography (SAC) 2009. To appear in LNCS, Springer.

J.-Ph. Aumasson, M. Naya-Plasencia. Cryptanalysis of the MCSSHA hash functions, WE-
WoRC 2009.

C: Asher, J.-Ph. Aumasson, R. C.-W. Phan. Security and privacy preservation in human-
involved networks, iNetSec 2009. To appear in LNCS, Springer.

J.-Ph. Aumasson, E. Brier, W. Meier, M. Naya-Plasencia, T. Peyrin. Inside the hypercube,
14th Australasian Conference on Information Security and Privacy (ACISP 2009). To appear
in LNCS, Springer.

J.-Ph. Aumasson, O. Dunkelman, F. Mendel, C. Rechberger, S. Thomsen. Cryptanalysis of
Vortex, AFRICACRYPT 2009. To appear in LNCS, Springer.

125

J.-Ph. Aumasson, I. Dinur, W. Meier, A. Shamir. Cube testers and key-recovery: on
reduced-round MD6 and Trivium, Fast Software Encryption (FSE) 2009. To appear in LNCS,
Springer.

J.-Ph. Aumasson, J. Nakahara, P. Sepehrdad. Cryptanalysis of the ISDB scrambling algo-
rithm (MULTI2), Fast Software Encryption (FSE) 2009. To appear in LNCS, Springer.

L. Henzen, F. Carbognani, J.-Ph. Aumasson, S. O’Neil, W. Fichtner. VLSI implementations
of the cryptographic hash functions MD6 and ı̈rRUPT, IEEE ISCAS 2009. To appear in
IEEE Press.

R. C.-W. Phan, J.-Ph. Aumasson. On hashing with tweakable ciphers, IEEE ICC 2009. To
appear in IEEE Press.

J.-Ph. Aumasson. Faster multicollisions, INDOCRYPT 2008. In LNCS vol. 5365, p.67-77,
Springer, 2008.

J.-Ph. Aumasson, W. Meier, F. Mendel. Preimage attacks on 3-pass HAVAL and step-
reduced MD5, Selected Areas in Cryptography (SAC) 2008. To appear in LNCS, Springer.

J.-Ph. Aumasson, R. C.-W. Phan. How (not) to efficiently dither blockcipher-based hash
functions?, AFRICACRYPT 2008. In LNCS vol. 5023, p.308-324, Springer, 2008.

R. C.-W. Phan, J.-Ph. Aumasson. Next generation networks: human-aided and privacy-
driven, ITU-T “Innovations in NGN” Kaleidoscope Conference, 2008. In IEEE proceedings,
p.331-336, 2008.

J.-Ph. Aumasson, W. Meier, R. C.-W. Phan. The hash function family LAKE, Fast Software
Encryption (FSE) 2008. In LNCS vol. 5086, p.36-53, Springer, 2008.

J.-Ph. Aumasson, S. Fischer, S. Khazaei, W. Meier, C. Rechberger. New features of Latin
dances: analysis of Salsa, Chacha, and Rumba, Fast Software Encryption (FSE) 2008. In
LNCS vol. 5086, p.470-488, Springer, 2008.

J.-Ph. Aumasson, W. Meier. Analysis of multivariate hash functions, 10th International
Conference on Information Security and Cryptology (ICISC 2007). In LNCS vol. 4817,
p.309-323, Springer, 2007.

J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay. TCHo: a hardware-oriented trapdoor
cipher, 12th Australasian Conference on Information Security and Privacy (ACISP 2007). In
LNCS vol. 4586, p.184-199, Springer, 2007.

J.-Ph. Aumasson. On a bias of Rabbit, The State of the Art of Stream Ciphers (SASC 2007).
In ECRYPT online proceedings at http://sasc.crypto.rub.de/, 2007.

Other Publications

J.-Ph. Aumasson, L. Henzen, W. Meier, R. C.-W. Phan. SHA-3 proposal BLAKE, candidate
to the NIST Hash Competition, website: http://131002.net/blake/, 2008.

J.-Ph. Aumasson, O. Dunkelman. A note on Vortex’ security, public comment on the NIST
Hash Competition, 2008.

J.-Ph. Aumasson, M. Naya-Plasencia. Second preimages on MCSSHA-3, public comment on
the NIST Hash Competition, 2008.

126

http://sasc.crypto.rub.de/
http://131002.net/blake/

J.-Ph. Aumasson. On the pseudo-random generator ISAAC, Cryptology ePrint archive,
report 2006/438.

Talks

Excluding rump session talks.

2009 Sep 10, Efficient FPGA Implementations of High-Dimensional Cube Testers on the
Stream Cipher Grain-128, SHARCS 2009 (Lausanne, Switzerland)

2009 Jun 19, Algebraic methods for cryptanalysis, meeting of the Swiss GMFH Mathematics
Society (Windisch, Switzerland)

2009 Apr 24, Security and privacy preservation in human-involved networks, iNetSec 2009
(Zurich, Switzerland).

2009 Feb 26, SHA-3 proposal BLAKE, NIST First SHA-3 Conference (Leuven, Belgium).

2009 Feb 24, Cube testers and key-recovery attacks on reduced-round MD6 and Trivium,
FSE 2009 (Leuven, Belgium).

2009 Jan 12, Cube testers: theory and practice, Schloss Dagstuhl seminar “Symmetric cryp-
tography” (Dagstuhl, Germany).

2008 Dec 8, Faster multicollisions, INDOCRYPT 2008 (Kharagpur, India).

2008 Aug 14, Preimages attacks on 3-pass HAVAL and step-reduced MD5, SAC 2008 (Sackville,
Canada).

2008 Jun 13, How (not) to dither blockcipher-based hash functions?, Africacrypt 2008 (Casablanca,
Morocco).

2008 Jun 5, Preimages of HAVAL and MD5, Lorentz center workshop “Hash functions in
cryptology: theory and practice” (Leiden, Netherlands).

2008 Feb 11, The hash function family LAKE, FSE 2008 (Lausanne, Switzerland).

2007 Dec 12, The odd couple: MQV and HMQV, EPFL “Advanced topics in cryptology”
seminar (Lausanne, Switzerland).

2007 Nov 30, Analysis of multivariate hash functions, ICISC 2007 (Seoul, South Korea).

2007 Oct 9, Kryptographie im 21. Jahrhundert, with S. Fischer and W.Meier, FHNW Transfer
Transparent seminar (Windisch, Switzerland).

2007 Oct 1, Asymmetric encryption with 2 XOR’s: the cipher TCHo, EPFL “Lightweight
cryptography” seminar (Lausanne, Switzerland).

2007 Oct 1, Multivariate hash functions: constructions and security, EPFL “Lightweight
cryptography” seminar (Lausanne, Switzerland).

2007 Jul 3, TCHo: a hardware-oriented trapdoor cipher, ACISP 2007 (Townsville, Australia).

2007 Feb 1, On a bias of Rabbit, SASC 2007 (Bochum, Germany).

127

Awards

Prize (coffee machine) for the most interesting cryptanalysis of the hash function Keccak,
awarded by the Keccak Team (Sep 2009).

Prize (25 Trappist beers) for the best cryptanalysis of the hash function Keccak, awarded by
the Keccak Team (Apr 2009).

Prize (e100) for the most interesting cryptanalysis of the hash function CubeHash, awarded
by Daniel Bernstein (Dec 2008).

Prize ($1000) for the most interesting cryptanalysis of the compression function Rumba20,
awarded by Daniel Bernstein (Jan 2008).

Prize ($1000) for the best cryptanalytic result on the cipher Rabbit, awarded by Cryptico
(Oct 2007).

Top-ranking student in Master’s first year.

Professional Activities

Reviewing

Conference refereeing: Inscrypt 2006, IWSEC 2007, ICISC 2007, ICICS 2007, ASIACCS 2008,
FSE 2008, AFRICACRYPT 2008, ICALP 2008, ICICS 2008, INDOCRYPT 2008, Inscrypt 2008,
ICISC 2008, Pacific Symposium on Biocomputing 2009, FSE 2009, SECRYPT 2009, IN-
TRUST 2009, ICISC 2009

Journal refereeing: IET Information Security, Journal of Systems and Software, Design Codes
and Cryptography

Events Attended

2009 Sep 9-10, SHARCS (EPFL, Switzerland).

2009 Sep 6-9, CHES (EPFL, Switzerland).

2009 May 6-7, ECRYPT research retreat (IAIK Graz, Austria)

2009 Avr 23-24, iNetSec (IBM Zurich, Switzerland)

2009 Feb 25-28, NIST First SHA-3 Conference (K.U. Leuven, Belgium)

2009 Feb 22-25, FSE (K.U. Leuven, Belgium)

2009 Feb 2-6, ECRYPT winter school “mathematical foundations in cryptography” (EPFL,
Lausanne, Switzerland)

2009 Jan 11-16, Seminar “Symmetric cryptography” (Schloss Dagstuhl, Germany).

2008 Dec 14-17, INDOCRYPT (IIT Kharagpur, India).

2008 Aug 14-15, SAC (Mount Allison University, Sackville, Canada).

2008 Jun 11-14, AFRICACRYPT (Le Meridien Hotel, Casablanca, Morocco).

128

2008 Jun 2-6, Workshop “Hash functions in cryptology: theory and practice” (Lorentz Center,
Leiden, Netherlands).

2008 May 12-13, ITU-T Innovations in NGN Kaleidoscope Conference (CICG, Geneva, Switzer-
land).

2008 Feb 13-14, SASC (Moevenpick Hotel, Lausanne, Switzerland).

2008 Feb 10-13, FSE (Moevenpick Hotel, Lausanne, Switzerland).

2007 Nov 29-30, ICISC (Seoul Olympic Parktel, South Korea).

2007 Jul 02-04, ACISP (Southbank Convention Centre, Townsville, Australia).

2007 Jan 31-Feb 1, SASC (Ruhr University Bochum, Germany).

Other

Co-maintainer of the eHash wiki of the ECRYPT network of excellence.

Consulting for the Kudelski Group (2009).

129

http://ehash.iaik.tugraz.at/wiki/

	Introduction
	Hash Functions and Stream Ciphers in 2009
	Overview

	Background
	Notations
	Formal Definitions
	Stream Ciphers
	Block Ciphers
	Hash Functions

	Constructing Hash Functions
	Merkle-Damgård Hash
	Modern Constructions
	Hashing with Block Ciphers

	On Cryptanalytic Attacks

	The Cryptanalyst's Toolbox
	Bruteforce Search
	Multi-Target and Parallel Bruteforce
	In Practice

	Differential Cryptanalysis
	Differences and Differentials
	Finding Good Differentials
	Using Differentials
	Message Modification Techniques
	Advanced Differential Attacks

	Efficient Black-Box Collision Search
	Tails and Cycles
	Cycle Detection Based Methods
	Parallel Search with Distinguished Points
	Application to Meet-in-the-Middle

	Multicollision Search for Iterated Hashes
	Fixed Points
	Joux's Method
	Kelsey and Schneier's Method
	Faster Multicollisions

	Quantum Attacks

	I Cryptanalysis
	Preimage Attacks on the Hash Functions MD5 and HAVAL
	Description of MD5 and HAVAL
	The Compression Function of MD5
	The Compression Function of HAVAL

	Preimage Attacks on the Compression Function of MD5
	Preimage Attack on 32 Steps
	Preimage Attack on 45 Steps
	Preimage Attack on 47 Steps

	Preimage Attacks on the Compression Function of HAVAL
	Preimage Attack A
	Preimage Attack B

	Extension to the Hash Functions
	Conclusion

	Key-Recovery Attacks on the Stream Ciphers Salsa20 and ChaCha
	Salsa20 and ChaCha
	Salsa20
	ChaCha

	The PNB Technique
	Key Recovery on Salsa20
	Key Recovery on ChaCha
	Conclusion

	Cryptanalysis of the ISDB Scrambling Algorithm MULTI2
	Description of MULTI2
	Related-Key Guess-and-Determine Attack
	Linear Cryptanalysis
	Related-Key Slide Attack
	Conclusion

	Cube Testers
	Introduction to Cube Attacks
	Cube Testers
	Preliminaries
	Building on Algebraic Property Testing

	Application to MD6 and Trivium
	MD6
	Trivium

	Application to Grain-128 and Grain-v1
	Brief Description of Grain-128
	Software Bitsliced Implementation
	Hardware Parallel Implementation
	Evolutionary Search for Good Cubes
	Experimental Results and Extrapolation
	Observations on Grain-v1

	Conclusion

	II Design of the Hash Function BLAKE
	Preliminaries
	Design Principles
	Expected Strength
	On Hashing with a Salt

	Specification
	BLAKE-32
	Constants
	Compression Function
	Hashing a Message

	BLAKE-64
	Constants
	Compression Function
	Hashing a Message

	BLAKE-28
	BLAKE-48
	Conclusion

	Implementations
	General Considerations
	ASIC and FPGA
	8-bit Microcontroller
	Large Processors
	Portable Implementations
	SSE2 Implementations
	Benchmark Results

	Conclusion

	Rationale and Analysis
	Choosing Permutations
	Compression Function
	The G Function
	Round Function
	Structure of the Compression Function

	Iteration Mode
	Indifferentiability
	Pseudorandomness
	Applicability of Generic Attacks
	Length Extension
	Multicollisions
	Long-Message Second Preimages
	Side-Channel Attacks

	Dedicated Attack Strategies
	Exploiting Symmetric Differences
	Differential Attack
	Slide Attack
	Finding Fixed Points

	Conclusion

	Bibliography
	Currivulum Vitae

