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Abstract. This note presents distinguishers for the compression functions of Blue Midnight Wish-
256 and -512, with data complexity of 219 pairs of images of uniformly random unknown inputs
with a given difference.

Blue Midnight Wish (BMW) is a second round candidate in NIST’s SHA-3 competition, which was
“tweaked” after the first round to avoid weaknesses discovered by Thomsen [2]. So far no attack is known
for the tweaked BMW (or for its compression function).

This note describes practical distinguishers for the compression functions of BMW-256 and BMW-
512. We refer to [1] for a description of its algorithm and of the notations. Below we describe our
strategy in detail for BMW-512: we first enumerate observations about the propagation of differences in
its compression function, then we describe the actual distinguisher.

High-probability differentials for f0. Given any difference ∆ (with respect to XOR) in Hi and
Mi, for some i in {0, . . . , 15}, the output Q0, . . . , Q15 has a difference only in Q(i−1) mod 16. For random
inputs, this difference is ∆ with probability 2|∆∧7FF...FF|, where | · | denotes the Hamming weight.

For our distinguisher, we shall consider a difference ∆ in H1,M1,H5,M5 (the choice of these indices
and of ∆ is explained below).

Pseudo-T-function behavior of the expand2 function. Recall that a T-function T : x 7→ y acting
on (say) a 64-bit word is such that the i-th bit of y does not depend on the (i + j)-th bits of x (j =
1, . . . , 65− i).

Observe that in expand2, the r1, . . . , r7 are rotations towards MSB’s; hence as long as input differences
are not too close to the MSB, they will only propagate towards MSB’s. expand2 also uses the functions
s4 and s5 that are essentially right-shifts of one and two positions, which makes diffusion towards LSB’s
very slow.

We shall exploit that “pseudo T-function” behavior in order to minimize differences in the LSB’s of
the Qi’s, i = 16, . . . , 31. But first, we explain how to avoid differences in the LSB’s during the two calls
to expand1 (which precedes 14 calls to expand2).

Good differences for the first expand1 function. In expand1, suppose we have a same difference ∆
in (say) Qj−16 and Qj−12; both these words enter the same function s1, which is linear. Hence the two
differences s1(∆) can cancel themselves in expand1. In particular, Q16 can be free of difference. However,
the bias exploited by our distinguisher does note come from a zero difference in Q16, but rather from a
difference ∆ (as explained later).

Recall that from a difference ∆ in H1,M1,H5,M5 we obtain after f0 a difference ∆ in Q0 and Q4

with high probability. We chose those indices to minimize the diffusion of differences (note that Q0 is
used once and Q4 five times, which is optimal). We then searched for a difference ∆ that minimizes the
differences in the LSB’s, and such that the sum of two differences s1(∆) gives ∆ with high probability.
Such a ∆ exist, and the best we found is ∆ = 0000400 . . . 00. We can thus obtain a difference ∆ in Q16

with high probability.

Good differences for the second expand1 function. Note that in the second call to expand1, only
two of the state words used contain a difference (Q4 and Q16). Luckily, these words enter the same
function s0, and the two differences s0(∆) can cancel themselves.



For our distinguisher, however, we don’t need Q17 to have zero differences, but only differences close
to the MSB. After the second expand1, we thus have differences only in the MSB’s of the message
and state words (note that the function AddElement, which processes message words, also has a slow
diffusion towards LSB’s). Since the subsequent calls to expand2 are pseudo-T-functions, we can thus
expect differences to propagate slowly towards LSB’s.

Propagation of good differences and exploit. As an example, we give below an example of differ-
ential characteristic obtained with the above strategy:

Q16 0000400000000000 Q24 26D7A46760968000

Q17 0001C00000000000 Q25 D2C4CFB637460000

Q18 3F51D00000000000 Q26 48D2B05C28EEC210

Q19 11857C1800000000 Q27 FA4544FE30A35110

Q20 739DFB2600000000 Q28 2A44095E9D7C9BAD

Q21 B299152486000000 Q29 B26C7ACE6D57F268

Q22 BBD0F2CF26800000 Q30 40421B4BD09BA528

Q23 A94A246A0F380000 Q31 17C315BA83521432

Hence, with high probability the first four bits of Qi, i = 16, . . . , 27, will have no difference. Now
observe that in f2 (i.e., the finalization of the compression function) the five LSB’s of the new H0 only
depend on the five LSB’s of Q0, Q16, Q17, . . . , Q24 and on the 6-th to 10-th bits of Q16. As described
above, given a difference in the 47-th bit of H1,M1,H5,M5, all those bits will be free of difference with
high probability. One can thus distinguish the compression function of BMW-512 from a random function
by querying for the images of random unknown pairs of values with that differences, and checking whether
the differences in the four LSB’s of the new H0 are biased.

To estimate the number of samples required, we need to estimate the probability that Q16 has a
difference ∆, and that in Q17 there is no difference in the least significant half of the word (that is, we
need the bit difference(s) caused by ROTL37 to vanish). First, Q0 and Q4 will both have difference ∆
with probability 1/4. Given these differences, Q16 will have difference ∆ with probability approximately
(1/2)3 × (1/2)2 = 1/25. Then, Q17 has a good difference with probability (1/2)2. All the conditions
are thus satisfied with probability approximately 1/29, for (uniformly) random inputs. Empirically, the
statistical deviation could be detected with probability close to one using 219 pairs of inputs.

Application to BMW-256. The above strategy works as well for the compression function of BMW-
256, with same complexity and for example input difference 00100000 (in same words as for BMW-512).

Conclusion. The compression functions of BMW-256 and BMW-512 do not behave ideally, as they
admits strong differential biases. However, these seem difficult to exploit to build a distinguisher (or any
other attack) for the hash function, because

1. the IV is fixed, hence an adversary cannot choose differences in the chaining values entering the
compression function;

2. even if differences in the IV could be controlled, the additional “blank” invocation to the compression
function would prevent an adversary from observing the output differences of the first compression
function.

Therefore, our observations do not contradict the security claims of BMW.
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