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Abstract. We investigate the definition and construction of hash functions that incorporate a backdoor
allowing their designer (and only her) to efficiently compute collisions, preimages, or more. We propose
semi-formal definitions of various types of malicious generators—i.e. probabilistic algorithms modeling
a malicious designer—and of the intuitive notions of undetectability and undiscoverability. We describe
relations between the notions defined as well as basic strategies to design malicious hashes. Based on
the observation that a backdoor can be at least as hard to discover as to break the underlying hash, we
present a backdoored version of the SHA3 finalist BLAKE. This preliminary work leaves many open
points and challenges, such as the problem of finding the most appropriate definitions. We believe that
a better understanding of malicious uses of cryptography will assist combat it; malicious hash functions
are indeed powerful tools to perform insider attacks, government espionnage, or software piracy.
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1 Introduction

In the 1983 movie Wargame, a programmer of a military supercomputer hides the feature that
logging on with his son’s name as a password gives access to undocumented parts of the system,
which in the movie almost leads to a nuclear war—this is an example of application backdoor. A
nonfiction example is the 2003 attempt to backdoor the Linux 2.6 kernel [1], when one added three
lines of code in kernel/exit.c to allow illegitimate root access. The maintainers quickly noticed,
for the culprit directly modified the CVS tree rather than committing a change with the usual
mechanism. More recently, the FBI was accused of planting application backdoors in the IPSEC
stack of OpenBSD1.

In the same spirit as application backdoors, cryptographic backdoors are intentionally designed
weaknesses in a cryptographic algorithm that allow the designer to obtain information, or to perform
a computation, that is supposed to be infeasible for a normal user. For example, Shumow and
Ferguson discovered [2] the possibility of a backdoor in the NSA-designed Dual EC algorithm, a
NIST-standard pseudorandom generator [3] whose security relies on a hard elliptic-curve problem.
The alleged backdoor consists in the knowledge of the exponent e mapping the specified constant
point Q to the generator P ; knowing e would allow one to determine the internal state of the
pseudorandom generator, and thus to predict all future outputs (more problems with Dual EC were
reported in [4, 5]).

Other famous suspicions of cryptographic backdoors concerned the S-boxes of DES [6, Ch.9]
[7, §12.3] and the encryption devices by the Swiss company Crypto AG [8], though the former
allegation is now known to be unfounded2. Other cases that may be considered as backdoors are
the intentionally weak algorithms allowed for export in the 90’s, such as A5/2 in GSM technology,
or the password protection in Lotus’ Ami Pro word processor.

∗Part of this work was done while the author was with FHNW, Switzerland.
1See http://marc.info/?l=openbsd-tech&m=129236621626462&w=2 (Accessed 21/01/2011).
2Cf. NSA’s Dickie George’s comments during the Cryptographers Panel at the RSA Conference 2011.



Cryptographic backdoors can also be found in implementations. For instance, Wagner and
Biondi [9] discovered how to plant a simple and powerful backdoor in a C implementation of
RC4. Hardware implementations are not immune to cryptographic backdoors, as shown by bug
attacks [10].

After mentioning backdoors in pseudorandom generators, block ciphers, and stream ciphers,
this paper proposes to investigate backdoors in cryptographic hash functions, a topic yet unstudied
in the published literature. Hash functions incorporating a backdoor3 will henceforth be called
malicious hash functions.

We believe that cryptographic backdoors should be considered as a realistic threat, and that
their study should not be left to government agencies and to malevolent parties. A better under-
standing of the (im)possibilities of an adversary to use cryptography maliciously will help combat
it, as previously argued by Young and Yung [11], who coined the term “cryptovirology” to denote
this field of study.

1.1 Applications of malicious hash functions

Like application backdoors most applications of crypto backdoors are malicious, though one could
imagine less malicious ones such as DRM’s. Be it in software or in cryptography, backdoors lead to
powerful attacks and can be very hard to detect, as they typically bypass most security counter-
measures and are most easily planted by insiders4. Furthermore, backdoors can potentially affect
many systems with little effort. To illustrate these properties, below are some simplified scenarios
wherein an ill-intentioned individual or institution could exploit a backdoor in a hash function:

• Eve has to design the hash function of pony’s GameStation 3 console for authenticating
boot code and games. To kill two birds with one stone, she creates a hash for which she can
efficiently compute second preimages. This will allow her to

1. Execute arbitrary code on her GS3, including pirated games and malware;

2. Anonymously blackmail pony by presenting evidence of a weakness in the authentication
mechanism.

Of course, the latter should be done only if the evidence does not reveal the presence of the
backdoor (suggesting the notion of deniable backdoors, which can be related to the notion
of deniable password snatching in [11, p97]). This illustrates the power of what we shall call
dynamic second preimage backdoors.

• The intelligence agency of Freedonia assists a foreign cryptography company to improve the
resistance to tampering and reverse engineering of its new secure chipset, which is to be
used by thousands of machines of the Lower Slobbovia government. Besides completing its
mandate, the agency surreptitiously modifies the hardware, for “test purposes”, such that
a magic suffix s exists for which H(m‖s) returns some encoding of m’s first bits. This will
allow the agency to recover HMAC keys with a single chosen-message query. Such malicious
hardware implementations of hash functions are briefly discussed in §§3.1.

• Charlie is the submitter of the SHA3 candidate Bløccakein, and designed it such that he
knows two (and only two) colliding messages m and m′, but such that the function is

3Note that, in cryptography, a backdoor differs from a trapdoor in that the former is supposed to be hidden,
whereas the latter is a publicly know property of, say, a one-way permutation. Trapdoor hash functions have previously
been defined, e.g. VSH.

4For a thorough study of the insider threat, we refer the reader to the work by Bishop et al. [12].
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otherwise secure. A few years after Bløccakein is chosen as SHA3, Charlie triggers cryptoar-
mageddon after anonymously publishing m and m′ on the IACR ePrint server with claims
that SHA3’s broken. The type of backdoor used is what we shall call a static collision
backdoor.

One can imagine many other applications of backdoors in hash functions.

1.2 Previous works

Academic research paid little attention to cryptographic backdoors and to malicious cryptography
in general. Below we present some of the most relevant related works:

• In 1997 Rijmen and Preneel [13] proposed to hide linear relations in S-boxes and presented
“backdoor versions” tCAST and tLOKI; these were broken in [14] along with the general
strategy proposed. Rijmen and Preneel already noted that “[besides] the obvious use by
government agencies to catch dangerous terrorists and drug dealers, trapdoor block ciphers
can also be used for public key cryptography.” [13]; indeed, [15] previously argued that a
backdoor block cipher is equivalent to a public key cryptosystem.
• Still in 1997, Patarin and Goubin [16] proposed an S-box based asymmetric scheme which

works by publishing the explicit equations describing a 2-round SPN, while keeping the
actual S-boxes and linear transforms secret; this was broken independently by Ye et al. and
Biham [17,18].
• More recently, Young and Yung designed backdoor blackbox malicious ciphers, which assume

that the algorithm is not known to an adversary. Such ciphers exploit low-entropy plain-
texts to embed information about the key in ciphertexts [19, 20]. Young and Yung coined
the term cryptovirology [11] and proposed various malicious applications of cryptography:
ransomware, deniable data stealing, etc.
• Bug attacks by Biham, Carmeli, and Shamir [10] are implementation backdoors for crypto-

graphic algorithm, via the introduction of a bug in the hardware; no backdoor is hidden in
the actual algorithm, but an attacker exploits a bug in the multiplication instruction of the
processor to attack a class of cryptographic algorithms. A related topic is that of hardware
trojans (design and detection).
• In 2010 Filiol [21] proposed to use malicious pseudorandom generators to assist the creation

of executable code difficult to reverse-engineer with static and dynamic analysis. Typical
applications are the design of malwares that resist detection methods that search for what
looks like obfuscated code (suggesting the hiding of malicious instructions).

For a good overview of backdoors we refer to Wysopal and Eng’s 2007 paper [22], which categorizes
computer backdoors in three types:

1. Crypto backdoors, designed weaknesses for a particular key or message.
2. System backdoors: malware written to compromise a system, sometimes relying on social engi-

neering for initial execution.
3. Application backdoors: modifications to legitimate programs designed to bypass security mech-

anisms.

As [22] focuses on application backdoors, it refines it definition by describing four classes of appli-
cation backdoors: special credentials, hidden functionality, unintended network activity, and ma-
nipulation of security critical parameters.
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1.3 Contribution and future work

We propose semi-formal definitions of malicious hash functions as adversaries composed of a pair of
algorithms: a (probabilistic) malicious generator and an exploit algorithm. Based on this formalism,
we define intuitive notions of undetectability and undiscoverability. Relations between those notions
are discussed as well as examples of strategies to design concrete malicious hash functions. We
introduce dedicated notions as neutral structure, entropy spraying, and chameleon structure. As a
proof of concept, a maliciously modified version of the SHA3 finalist BLAKE is proposed: using
simple techniques, we build a version of BLAKE for which we can find arbitrarily many collisions,
while ensuring that the modified version is at least as secure as the original BLAKE.

To the best of our knowledge, no research on malicious hash functions has been published. Our
work is preliminary and leaves many questions and problem open, such as that of finding the most
appropriate definitions. Goals of this article are to foster research in the area of cryptographic
backdoors (a.k.a. cryptovirology [11]), and to assist detection and prevention of malicious cryptog-
raphy. Future research may also address related problems, like that of constructing trapdoor(less)
one-way permutations with only efficient operations (i.e. no bignum arithmetic, low memory and
computation).

2 Defining malicious hash functions

We define several types of malicious hash functions as well as the related security notions. Contrary
to typical security definitions, our adversary does not attack an existing algorithm, but rather
creates the primitive, knows the secret (i.e. the backdoor and how to exploit it), while honest
parties play the attackers and cryptanalyze Eve’s design. Definitions should thus identify malicious
hash functions with the adversary, who is then seen as a generator of malicious hash functions
equipped with the ability to exploit a backdoor. Malicious hash functions will thus be defined by
two efficient algorithms:

• A malicious generator, i.e. a probabilistic algorithm returning a hash function and a back-
door;

• An exploit algorithm, i.e. a deterministic or probabilistic algorithm that uses the knowledge
of the backdoor to bypass some security property of the hash function.

We shall distinguish two types of backdoors: static (backdoor) adversary, which have a deterministic
exploit algorithm, and dynamic (backdoor) adversaries, which have a probabilistic one.

Our definitions are only semi-formal, i.e. not well-defined mathematically, for example due
to unspecified distributions or to being subject to arbitrary interpretations (for distinguishers).
Reasons are that we failed to find definitions that are both rigorous and that capture well real-
world attack scenarios. As our work is more practice- than theory-oriented, we prefered more general
and flexible definitions, rather than unusable and limited mathematically sound ones. That said,
we do not claim that satisfying both goals is impossible.

Below, the hash algorithms and backdoors returned as outputs of a malicious generator are
assumed to be encoded as bitstring in some normal form, and to be of reasonable finite length. The
generator and exploit algorithms, as well as the backdoor string, are kept secret by the malicious
designer.
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2.1 Static backdoors adversaries

We first define static collision adversary (SCA). Informally, Eve is an SCA if she designs a hash
function for which she knows one pair of colliding messages.

Definition 1 (SCA). A static collision adversary is a pair (GenSC,ExpSC) such that

• The malicious generator GenSC is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpSC is a deterministic algorithm that takes a hash function H and
a backdoor b and that returns distinct m and m′ such that H(m) = H(m′).

This definition can be generalized to define an adversary able to produce a small number of colli-
sions, through the definition of several ExpSC algorithms (e.g. ExpSC1, . . . ,ExpSCn).

As a notion of static second preimage adversary would not concretely differ from that of static
collision, our next definition relates to (first) preimages:

Definition 2 (SPA). A static preimage adversary is a pair (GenSP,ExpSP) such that

• The malicious generator GenSP is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpSP is a deterministic algorithm that takes a hash function H and
a backdoor b and that returns m such that H(m) has low entropy.

In the above definition “low entropy” is undefined. Very informally, a low-entropy digest is one that
will convince a third party that “something is going wrong” with the hash function; for example,
the all-zero digest, one will all bytes identical, etc. A formal definition would require a definition of
the (negligibly small) set of low entropy digests. We believe that such a definition is unnecessary,
for it would necessarily rely on arbitrary choices, and for it is sufficient for low-entropy digests to
pass a duck test (a.k.a. “I know it when I see it”).

We now give the definition of a distinguishing backdoor, which generalizes the two previous
ones:

Definition 3 (SDA). A static distinguishing adversary for a relation R is a pair (GenSD,ExpSD)
such that

• The malicious generator GenSD is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpSD is a deterministic algorithm that takes a hash function H and
a backdoor b and that returns a list m1, . . . ,mN such that

R (m1, . . . ,mN , H(m1), . . . ,H(mN )) .

Clearly, the relation R must be difficult to satisfy for an ideal function, so that the backdoor is
meaningful. R can for example model multi-collisions, input/output linear relations, etc. SCA and
SPA can thus be seen as particular cases of a static distinguishing adversary. Another requirement is
that the relation should be convincing: for example, one can hash a random message with SHA512
and arguing that finding a preimage of the digest obtained is difficult for an ideal function, in order
to claim that this gives a distinguisher for SHA512.
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2.2 Dynamic backdoors

Dynamic backdoors naturally extend static backdoors from one or a few successful attacks to an
arbitrary number. In some sense, dynamic backdoors are to static backdoors what universal forgery
is to existential and selective forgery for MAC’s.

Definition 4 (DCA). A dynamic collision adversary is a pair (GenDC,ExpDC) such that

• The malicious generator GenDC is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpDC is a probabilistic algorithm that takes a hash function H and
a backdoor b and that returns distinct m and m′ such that H(m) = H(m′).

In this definition, the ExpDC algorithm should be seen as an efficient sampling algorithm choosing
the pair (m,m′) within a large set of colliding pairs, as implicitly defined by GenDC. The latter may
be created in such a way that sampled messages satisfy a particular property, e.g. have a common
prefix.

The definitions of second preimage and preimage dynamic backdoor adversaries follow naturally:

Definition 5 (DSPA). A dynamic second preimage adversary is a pair (GenDSP,ExpDSP) such
that

• The malicious generator GenDSP is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpDSP is a probabilistic algorithm that takes a hash function H, a
backdoor b, and a message m and that returns an m′ distinct from m such that H(m) =
H(m′).

Definition 6 (DPA). A dynamic preimage adversary is a pair (GenDP,ExpDP) such that

• The malicious generator GenDP is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpDP is a probabilistic algorithm that takes a hash function H, a
backdoor b, and a digest d and that returns m such that H(m) = d.

In the definitions of DSPA and DPA, the challenge values m and d are assumed sampled at random
(unrestrictedly to uniform distributions). One may consider “subset” versions of (second) preimage
backdoors, i.e. where the backdoor only helps if the challenge value belongs to a specific subset; for
example, one may design a hash for which only preimages of short strings—as passwords—can be
found by the exploit algorithm.

Note that the notion of preimage dynamic adversaries are much closer to the original definitions
of preimage resistance than the static versions. Roughly speaking, a dynamic preimage backdoor
adversary exists only if trapdoor one-way functions (not necessarily permutations) exist, for the
former is essentially a stealth version of the latter.

Again, the general definition of a distinguishing backdoor captures the previous definitions:

Definition 7 (DDA). A dynamic distinguishing adversary for a relation R is a pair (GenDD,ExpDD)
such that
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• The malicious generator GenDD is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpDD is a probabilistic algorithm that takes a hash function H and
a backdoor b and that returns a list m1, . . . ,mN such that

R (m1, . . . ,mN , H(m1), . . . ,H(mN )) .

As in the definitions of dynamic (second) preimage adversaries, ExpDD can be seen as a sampler
for the set of inputs satisfying the relation. Note that, depending on the relation R considered, the
number of satisfying inputs may not be exponential. As with static distinguishers, relations should
be non-trivial and convincing.

Our last definition is that of a key recovery backdoor, for some keyed hash function (e.g. HMAC):

Definition 8 (KRA). A dynamic key recovery adversary is a pair (GenKR,ExpKR) such that

• The malicious generator GenKR is a probabilistic algorithm that returns a pair (H, b), where
H is a hash function and b is a backdoor.

• The exploit algorithm ExpKR is a probabilistic algorithm that takes a hash function H and
a backdoor b and that has oracle-access to HK(·) for some key K and that returns K.

The definition assumed K to be secret, and may be relaxed to subsets of “weak keys”. This definition
may also be relaxed to model forgery backdoors, i.e. adversaries that can forge MAC’s (existentially,
selectively, or universally) without recovering K.

2.3 Stealth definitions

We formalize the intuitive notions of undetectability (“Is there a backdoor?”) and of undiscover-
ability (“What is the backdoor?”) based on our definitions of static and dynamic adversaries. It is
tempting to define undetectability in terms of indistinguishability between a malicious algorithm
and a legit one. However, such a definition does not lend itself to a practical evaluation of hash
algorithms. We thus relax the notion to define undetectablity as the inability to determine the
exploit algorithm. In other words, it should be difficult to reverse-engineer the backdoor. We thus
obtain the following definitions:

Definition 9. A static collision backdoor (GenSC,ExpSC) is undetectable if given a H returned by
GenSC it is difficult to find ExpSC.

Definition 10. A static preimage backdoor (GenSP,ExpSP) is undetectable if given a H returned
by GenSP it is difficult to find ExpSP.

And so on with respect to the other type of malicious hashes. For the sake of simplicity we do
not specify the distribution of H’s. One may imagine stronger definitions wherein a number of
distinct H’s and/or GenSC are available to the attackers. Subtleties may lie in the specification of
H: one can imagine a canonical-form description that directly reveals the presence of the backdoor,
while another description or implementation would make detection much more difficult. This issue
is directly related to the notion of program obfuscation—be it practice- or theory-oriented—and
to the impossibility of universal obfuscation [23]. In practice, however, algorithms are generally
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described in a simplified algorithmic form, which bypasses the problem of obfuscated programs.
That said, we do not exclude the application of techniques from white-box cryptography or from
software obfuscation (binary packers, etc.) to enhance undetectability or undiscoverability of a
malicious hash.

Undiscoverability is more easily defined: it is the inability to find the backdoor b when given
the exploit algorithm. Example definitions are:

Definition 11. A static distinguishing backdoor is undiscoverable if given ExpSD and a H it is
difficult to find the b associated to H.

Definition 12. A dynamic collision backdoor is undiscoverable if given ExpDC and a H it is
difficult to find the b associated to H.

2.4 Remarks

Relations between static and dynamic adversaries. First, note that the notions of static
collision and static preimage backdoors, as defined in §§2.1, are unrelated, i.e. none implies the
other. Both allow the construction of a static distinguisher (SDA).

Relations between notions of dynamic backdoors are similar to relations between classical se-
curity notions for hash functions, and share the same subtleties. Therefore, it is in general possible
to construct DSPA from a DPA by setting GenDSP := GenDP and

ExpDSP(H, b,m) := ExpDP(H, b,H(m)) .

In the same manner, a DCA is constructed from a DSPA by setting GenDC := GenDSP and

ExpDC(H, b) :=
[
m

$←− {0, 1}n, return (m,ExpDSP(H, b,m))
]
.

As our definitions of dynamic backdoors are very general and flexible, we stress that the above
reductions are not always possible (for example when the DPA only works for a subset of the
digests). That said, rigorous definitions à la Rogaway [24] are unnecessary for our purposes.

Backdoors for compression functions. We only discussed backdoors for a hash function rather
than for its building blocks. Below we briefly discuss generalizations to compression functions as
well as relations with backdoors on the hash function constructed.

For simplicity, and to model real use-cases, we consider a compression function as a function
mapping a message chunk to an internal state, i.e. implicitly assuming a fixed IV. This allows
us to capture both Merkle-Damg̊ard (as well as HAIFA, wide-pipe, et al.) and sponge functions.
Definitions in §2 directly extend to such a compression function. Examples of relations between
backdoors for compression functions and for the hash are

• An SCA for the compression function is sufficient to construct a DCA for the full hash:
an internal collision can indeed be exploited to produce an arbitrary number of colliding
messages, as in the “poisoned message attack”. Note that this is inapplicable to the rare
constructions that incorporate a “checksum” (as the GOST hash function).
• A DSPA for the compression function can be used to construct a DSPA for the full hash.

However, a DPA for the compression function does not necessarily transfers to the hash, e.g.
in constructions that incorporate a finalization function and in sponge functions with n > b
(i.e. with a multi-block output).
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As we will see below, a backdoor can be planted either in the iterated compression function, in
the finalization function, or in the mode of operation and control logic of the implementation.

3 Strategies

There are two main approaches to create malicious hash functions:

• A priori design: create a new design from scratch with as target classical security notions
as well as one or more malicious notions.

• A posteriori design: incorporate a backdoor in an existing design, via a “tweak”, an “im-
proved version”, or a malicious implementation. For instance, an “improved” message ex-
pansion for SHA256 can easily dissimulate a backdoor, as well as a new set of word constants.

Below we overview more specific strategies, though without providing details.

3.1 Black-box backdoors

Young and Yung investigaged [19] malicious block ciphers in the black-box model, i.e. where the
description of the cipher is unknown to the adversary. In this weak attack model, simple and
powerful backdoors can be implemented in hash functions (or in implementations thereof), in the
same spirit as bug attacks [10]. For example, let’s construct a DPA for the future SHA3:

• GenDP defines the backdoor as an arbitrary string b of (say) 128 bits, and the malicious
function bSHA3-256 as follows5:

• Given an N -block padded message m, process it with SHA3 up to its penultimate
block mN−2;

• Process the last block mN−1 as per SHA3-256; if the first 128 bits of mN−1 are equal
to b, then return the 256 bits following b, otherwise return the digest computed.

• ExpDP, given b, and a target digest d, chooses an arbitrary message of length a multiple of
the block size, appends b and d to it, and verifies that bSHA3-256 returns d as a digest.

Such a backdoor can be used to find preimages representing valid file formats as PDF or JPEG
by placing the malicious data after the end-of-file symbol. Another advantage is that the function
appears as a legitimate version of (say) SHA256, until one submits one of the backdoor strings.
Disadvantages are that b and d appear as substrings of the last block, which may raise alarms; to
avoid this problem, b and d may be encoded (e.g. as noisy codewords of some appropriate error-
correcting code) or encrypted. Finally, implementations of such malicious hash functions should be
careful to avoid trivial side-channel attacks, such as timing attacks (note that our ExpDP makes a
dummy call to the compression function to keep time-constant computations).

3.2 General strategies

General strategies for non-blackbox backdoors consist in which component or building block includes
the backdoor, and what is the general target of the attacker, rather than how, which is the subject
of the next subsection. Below we discuss some examples of general strategies:

5The b-prefix notation is inspired from Rijmen-Preneel [13].
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• Backdoor-in-the-middle: this strategy modifies the internals of a permutation so as to con-
nect given inputs to a given outputs. It applies as well to block-cipher based hashes as to
sponge functions.

• Malicious finalization: this strategy consists in designing an output filter, typically indepen-
dent from the hashed data, which behaves in a malicious way for some precomputed inputs
that come from a legitimate function.

• Weak mode trigger: this strategy consists in designing a hash that enters a “weak mode”
(typically, a weak internal state) upon some predetermined input. Eve’s attack then consists
in 1) exploiting the backdoor to enter a weak state and 2) exploiting the said weakness.

The first two strategies are directly applicable to static collision and preimage backdoors, while the
third is more oriented toward dynamic attacks. Note that the trivial approach of using a trapdoor
one-way permutation (e.g. within a sponge) to realize dynamic preimage backdoors leads to easily
detectable backdoors, unless (say) an ARX trapdoor function is discovered.

Examples of recent hash functions that lend themselves to a posteriori malicious finalizations
are the SHA3 candidates SIMD and Grøstl, which use a message-independent output filter. Observe
the the entropy reduction (i.e. truncation) leaves room for collision backdoors.

A simple strategy of the third type, for a Merkle-Damg̊ard hash, consists in exploiting a pre-
computed fixed point Em(h) ⊕ h = h as IV, in order to compute second preimages. The SHA3
candidate CubeHash is an example of function with “weak states”, that may be exploited in the
creation of a backdoored version.

Strategies for compression-based constructions significantly differ from strategies for sponge
functions: for example, input-specific behavior is difficult to implement in typical compression
functions, for message bits are injected regularly to the internal state; this is not the case for sponges,
which seems to facilitate the design of some backdoors. Moreover, collisions (and preimages) for
sponges do not require that all the internal state match the expected value, but only c − r bits
(where c is the capacity and r the bit rate of the sponge).

3.3 Strategies to achieve stealth

Malicious hash functions will typically require a less symmetric and structured construction, due
to the entropy necessary to generate the hash instance. There are basically two approaches to
maximize undetectability, for which we propose dedicated terms:

• Entropy spraying, or “needles in a haystack”, i.e. bits of entropy are dispersed within a
well-organized and clean structure, that should be as large as possible.

• Chameleon structure, or “needles in a needlestack”, i.e. entropy is part of an algorithm that
lacks any structure or consistency, similarly to the Hasty Pudding Cipher.

3.4 Specific strategies: neutral structures

A basic strategy to trigger a specific behavior of a function is to choose operations such that—to
simplify—a given output maps to a given output (for preimages), or that two given inputs map
to a same output (for collisions). We introduce the term neutral structure to denote a tree whose
nodes are undetermined operators, leaves are a subset of the internal state, and the root node is the
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output. Freedom degrees lie in the choice of the operators. A simple example of neutral structure
for a permutation with a 4-word internal state s = (s0, s1, s2, s3) is

s0 = s1 + x

s1 = s2 ⊕ y

s2 = s3 + z

s3 = s0 ? ((s1 • s2) � (s3 ≫ n)

where x, y, z are values to be taken from a set of C unsuspicious constants (pi’s digits, DEADBEEF’s,
etc.), and binary operators ?, • and � are to be chosen among B common operations and n is a
rotation distance in {1, . . . , 31}. This neutral structure thus has entropy approximately

3 log2C + 3 log2B + log2(31) .

The use of word constants as freedom degrees is in general straighforward, however it makes unde-
tectability more difficult.

Neutral structures determined by bruteforce should have an output short enough so that search
is efficient. For example, a neutral structure composed of only ARX operations could return a
single word, as a function of (part of) the internal state. Neutral structures can be based on S-
boxes, arithmetic operations, or any operations used in cryptographic algorithms.

4 Example: malicioused BLAKE

We briefly describe how to plant a simple dynamic collision backdoor in the SHA3 finalist BLAKE,
whose compression function lends itself well to malicious finalization, due to its “local wide-pipe”
construction.

4.1 Brief description of BLAKE-256’s compression function

The compression function of BLAKE-256 initializes an internal state of sixteen 32-bit words from
an 8-bit chaining value, a salt, and a counter. This 512-bit state is transformed by a permutation
and the new 256-bit chaining value h0, . . . , h7 is updated as as hi+ = vi ⊕ vi+8, where vi’s are
internal state words. We refer to the official documentation of BLAKE for a complete specification.

4.2 Neutral structure for static collisions

It is easy to see that if BLAKE’s permutation is secure, then such a simple finalization transform
is sufficient. However, for some reasons, Eve may claim to use a more “secure” (but in fact only
more complicated) finalization in the compression function. Eve may thus use the following neutral
structure to obtain a compression function for which the two one-block messages of her choice
collide:

Si(v) = (vi • vi+1) ≫ ri,1 • (vi+2 • vi+3) ≫ ri,2 • (vi+4 • vi+5) ≫ ri,3 • (vi+6 • vi+7) ≫ ri,4 • (vi+8 • vi+9) ≫ ri,5

where indices are to be reduced modulo 16. We have 8 binary operators either “+” or “⊕”, and 5
rotations with each 31 possibles distances; hence in total approximately 28×325 = 233 choices. The
entropy of this neutral structure is thus sufficient to find eight instances of the structure S0, . . . , S7

that safisfy
Si(v) = Si(v

′), i = 0, . . . , 7 ,
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for two fixed internal states v and v′ derived from chosen messages. It is clear that if BLAKE is
secure, then this variant is secure as well; informally, finding the backdoor collision is much harder
than finding a simple collision; and would one know the colliding final states, one would have to
find the two preimages that lead to this state.

To find a BLAKE-256 collision between the two strings “YES” and “NO” (null-terminated), we
found the following finalization function:

((v0 ⊕ v1) ≫ 11) + ((v2 ⊕ v3) ≫ 18) + ((v4 ⊕ v5) ≫ 11)⊕ ((v6 + v7) ≫ 20)⊕ ((v8 + v9) ≫ 19)

((v1 ⊕ v2) ≫ 17) + ((v3 ⊕ v4) ≫ 16) + ((v5 ⊕ v6) ≫ 28)⊕ ((v7 + v8) ≫ 10) + ((v9 + v10) ≫ 30)

((v2 ⊕ v3) ≫ 12) + ((v4 + v5) ≫ 17)⊕ ((v6 ⊕ v7) ≫ 13)⊕ ((v8 + v9) ≫ 22)⊕ ((v10 ⊕ v11) ≫ 7)

((v3 ⊕ v4) ≫ 7)⊕ ((v5 ⊕ v6) ≫ 5)⊕ ((v7 + v8) ≫ 11) + ((v9 + v10) ≫ 2)⊕ ((v11 + v12) ≫ 9)

((v4 ⊕ v5) ≫ 6) + ((v6 + v7) ≫ 6) + ((v8 ⊕ v9) ≫ 4) + ((v10 ⊕ v11) ≫ 21)⊕ ((v12 + v13) ≫ 15)

((v5 + v6) ≫ 4) + ((v7 + v8) ≫ 30) + ((v9 ⊕ v10) ≫ 30) + ((v11 + v12) ≫ 29) + ((v13 ⊕ v14) ≫ 2)

((v6 ⊕ v7) ≫ 22)⊕ ((v8 ⊕ v9) ≫ 1)⊕ ((v10 + v11) ≫ 30)⊕ ((v12 ⊕ v13) ≫ 22) + ((v14 + v15) ≫ 21)

((v7 + v8) ≫ 19)⊕ ((v9 + v10) ≫ 8) + ((v11 + v12) ≫ 25)⊕ ((v13 ⊕ v14) ≫ 15)⊕ ((v15 ⊕ v0) ≫ 10)
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