
On the Key Schedule Strength of PRESENT

Julio Cesar Hernandez-Castro1, Pedro Peris-Lopez2

Jean-Philippe Aumasson 3

1 School of Computing, Portsmouth University, UK
2 Information Security & Privacy Lab, TU-Delft, The Netherlands

3 NagravisionSA, Cheseaux, Switzerland

Abstract. We present here the results of a playful research on how to
measure the strength of a key schedule algorithm, with applications to
PRESENT, including its two variants with 80 and 128 bit keys. We do not
claim to have discovered any devastating weakness, but believe that some
of the results presented, albeit controversial, could be of interest for other
researchers investigating this cipher, notably for those working in impos-
sible differentials and related key or slide attacks. Furthermore, in the
case of PRESENT, key schedule features shown here may be exploited
to attack some of the PRESENT-based hash functions. We carried out a
probabilistic metaheuristic search for semi-equivalent keys, annihilators
and entropy minima, and proposed a simple way of combining these re-
sults into a single value with a straightforward mathematical expression
that could help in abstracting resistance to the set of presented analysis.
Surprisingly, PRESENT−128 seems weaker than PRESENT−80 in the
light of this new measure.

Keywords: Key Schedule, Semi-Equivalent Keys, Annihilators, Entropy
Minimization, Simulated Annealing, PRESENT

1 Introduction

The PRESENT block cipher [7] is an ultra-lightweight substitution-permutation
network aimed at extremely constrained environments such as RFID tags and
sensor networks. Hardware efficiency was one of its most important design goals,
and at 1570 GE it really is one of the very few realistic options in such constrained
environments for providing an adequate security level. PRESENT works with
two key lengths, 80 and 128 bits, and operates over 64-bit blocks with a very
simple round scheme which is iterated 31 times. Each round is the composition of
three operations: addRoundKey, sboxLayer and pLayer. The addRound-
Key operation is simply an XOR between the 64-bit roundkey and the State;
sboxLayer is a 64-bit nonlinear transformation which uses 16 parallel instances
of a 4-to-4-bit S-box; pLayer is a bitwise permutation of the 64-bit internal
state.

Previous works. Due to its very good performance and neat design, partly
inspired by SERPENT [8], PRESENT has attracted a lot of attention from

2 Hernandez-Castro, Peris-Lopez and Aumasson

cryptanalysts: Wang presented a disputed [5] differential attack [9] against a
reduced 16-round variant which requires 264 texts and 265 memory, Albrecht
and Cid [11] presented another differential attack using algebraic techniques,
with a very similar complexity against 16-rounds of the 80-bit variant, and 2113

operations against the 128-bit version with 19 rounds. A saturation attack was
presented by Collard and Standaert [12], that is able to recover the key of a 24
round variant with 257 texts and 257 time. Another relevant attack was proposed
by Ohkuma [13], where linear approximations and a class of weak keys were used
against a 24-round variant requiring 263.5 known texts.

Contribution. The contribution of this paper is twofold: we present a number
of new results on the key schedule of PRESENT, and then combine these into
a single value that abstracts to some point key schedule strength and aims to
be useful for other block ciphers, and specifically for comparing between them.
As a side result, we conclude that PRESENT-80 seems to have a stronger key
schedule than PRESENT-128.

Organization. This paper is organized as follows. In Section 2, the key sched-
ule of PRESENT is briefly introduced. The methodology and parameters used
in our experimentation are explained in Section 3. In Section 4, we describe
our results regarding semi-equivalent keys, annihilators and entropy minima.
Later, we propose in Section 5 a measure to evaluate the strength of a given key
schedule algorithm, and provide the corresponding values for PRESENT-80 and
PRESENT-128. In Section 6, we extract some conclusions and describe what we
consider will be interesting future research lines.

2 The Key Schedule of PRESENT

We focus in the following on the PRESENT key schedule, first on that of its
80-bit variant, later on that of PRESENT-128.

PRESENT-80 The key is stored in a register K and represented as k79k78 . . .
k0. At round i the 64-bit round key Ki = k63 k62 . . . k0 consists of the 64 leftmost
bits of the current contents of register K:

Ki = k63k62 . . . k0 = k79k78 . . . k16

After extractingKi, the key registerK = k79k78 . . . k0 is updated as described
below:

Step 1 [k79k78 . . . k1k0] = [k18k17 . . . k20k19]
Step 2 [k79k78k77k76] = S[k79k78k77k76]
Step 3 [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter

On the Key Schedule Strength of PRESENT 3

PRESENT-128 The key is stored in a register K and represented as k127k126
. . . k0. At round i the 64-bit round key Ki = k63 k62 . . . k0 consists of the 64
leftmost bits of the current contents of register K:

Ki = k63k62 . . . k0 = k127k126 . . . k64

After extracting Ki, the key register K = k127k126 . . . k0 is updated (we have
two calls to S in this case) as described below:

Step 1 [k127k126 . . . k1k0] = [k66k65 . . . k68k67]

Step 2 [k127k126k125k124] = S[k127k126k125k124]

Step 3 [k123k122k121k120] = S[k123k122k121k120]

Step 4 [k66k65k64k63k62] = [k66k65k64k63k62]⊕ round counter

3 Methodology

We have used Simulated Annealing in our search for keys with useful properties,
after having a limited success in getting similarly powerful results by analyti-
cal means. For example, we found that in the case of PRESENT-80, key bits
k76, k77, k78 do not enter the key schedule Sbox until round 20, and during the
20 first rounds they only appear in 15 of the round keys. Thus the Hamming
weight of the differences between round keys is 15 during the first 20 rounds.
However, the results we got using Simulated Annealing were way more relevant.

The main advantage of Simulated Annealing is that it allows for a black-
box look-up that performs generally much better than a random search, while
having very little added computational costs. In every case, we proposed fitness
functions that abstracted what kind of property we were looking for, and tune
parameters for trying to get the best possible results.

We used our own implementation of a Simulated Annealing algorithm in
Python, and followed a bisection method to tune parameters. We ran multiple
experiments, each of them taking approximately three hours in our baseline
computer. The best keys found were then double tested by a different member
of our team, over a different PRESENT implementation.

3.1 Simulated Annealing

Simulated Annealing [1] is a combinatorial optimization technique based on the
physical annealing of molten metals. It has been quite successfully used in dif-
ferent cryptanalytic attacks, such as those against the Permuted Perceptron
Problem (PPP) [4, 3], or, more recently, Trivium [2].

We briefly describe the technique, closely following the presentation at [4] in
the following:

4 Hernandez-Castro, Peris-Lopez and Aumasson

A General Simulated Annealing Algorithm

INPUT: a temperature T , a cooling rate α ∈ (0, 1), N the number of moves at
each temperature, MaxFailedCycles the number of consecutive unsuccess-
ful cycles before aborting, and ICMax the maximum number of temperature
cycles before aborting.

ALGORITHM

Step 1.: Let T0 be the initial temperature. Increase it until the percentage of
moves accepted within an inner loop of N trials exceeds some threshold.

Step 2.: Set the iteration count IC to zero, finished = 0, ILaccepted = 0
(inner loops since last accepted move), and randomly generate a current
solution Vcurr.

Step 3.: While not(finished) do
Step 3.1.: Inner Loop: repeat N times

Step 3.1.1.: Vnew=generateMoveFrom(Vcurr)
Step 3.1.2.: Compute cost change ∆cost = cost(Vnew)− cost(Vcurr).
Step 3.1.3.: If ∆cost < 0 accept the move, so Vcurr = Vnew.
Step 3.1.4.: Otherwise, generate a random uniform value in (0, 1)→ u.

If e−∆cost/T > u accept the move, otherwise, reject it.
Step 3.2.: If no move has been accepted after 3.1, then ILaccepted =

ILaccepted+ 1, else ILaccepted = 0.
Step 3.3.: T = α ∗ T , IC = IC + 1.
Step 3.4.: finished = (ILaccepted > MaxFailedCycles) or (IC > ICmax)

OUTPUT: The state Vbest with the lowest cost obtained in the search.

We can informally say that Simulated Annealing is a type of Hill Climb-
ing [2], that generally outperforms and has very little added cost over a random
search, specially when compared with other much heavier heuristics such as
Genetic Algorithms, Particle Swarm Optimization, etc. We have obtained the
results presented in next Section with a standard Simulated Annealing algo-
rithm, generally using an initial temperature of or close to T0 = 50, a cooling
rate α = 0.9999, and a maximum iteration ICmax = 200.

4 Results

In this section, the strength of the PRESENT key schedule is examined in a
combined search for semi-equivalent keys, annihilators, and entropy minimiza-
tion.

On the Key Schedule Strength of PRESENT 5

K1 K2 KeySchedule Distance
0x8ba018d26545f5d34dd1 0x8ba018d26545f5d32dd1 35
0x60cf1262a6af5d01a7fb 0x60cf1262a6af4501a7fb 35
0x83b4d3e2f49cbd4d5e2e 0xa3b4d3e2f49cbd4d5e2e 35
0x8eeb6a18106618d098da 0x8ee26a18106618d098da 35
0xd0ce94581e6eda685d77 0xd0c794581e6eda685d77 35
0x9f2d24499c081289fe11 0x9f2824499c081289fe11 35
0x87668990280c70b56574 0x87668990280c70b4e574 34
0xf718fc4e78a82353328a 0xf718fc4f58a82353328a 34
0x6c96cfd01ad1a5ca7900 0x6c96cfd07ad1a5ca7900 34
0xaaf6b7f4d95265eb3188 0xaaf6b7f4d95025eb3188 32
0x5a46487f282a052f1b0f 0x5a46487f882a052f1b0f 32

Table 1. Semi-equivalent keys for PRESENT-80

4.1 The Search for Semi-Equivalent Keys

There are not equivalent keys for PRESENT-80 or PRESENT-128, because in
both cases the PRESENT Key Schedule is an invertible mapping involving all
input bits. So we started considering the search for semi-equivalent keys, that is,
different keys that produce a very similar (w.r.t. the Hamming weight metric)
key expansion.

The existence of semi-equivalent keys could potentially have more grievous
consequences if, as it is the case of PRESENT [6], the block cipher is to be used
as a hash function, because this could make finding collisions much easier.

The gap between the best pair of semi-equivalent keys we found, and the
optimum value of zero (corresponding to a pair of equivalent keys) was uncom-
fortably close. In particular, we found key pairs (k1, k2) with a Hamming distance
of 2 that produced very similar key expansions where all 32 round keys were at
a Hamming distance of 2 bits or less, including 17 cases of distance 1 and 6 of
distance zero. The total accumulated round key distance after 32 rounds of these
two keys (shown in Table 1) was only 35.

We were able to obtain a lot more key pairs with these or even better charac-
teristics, including multiple values of 34. The closest we got to a pair of equivalent
keys was with key pairs

(0xaaf6b7f4d95265eb3188, 0xaaf6b7f4d95025eb3188)

and

(0x5a46487f282a052f1b0f, 0x5a46487f882a052f1b0f)

that produced very close round keys that differ only in 32 bits, that is, an average
difference of a single bit for every round key.

Is this a statistically significant result? Yes, if we randomly flip one bit in the
user key, this generates on average (statistics computed over 10, 000 random keys
with random flips) 54.995 bits of accumulated changes in their corresponding
round keys. This is relatively poor value, as in the case of a perfectly designed key
expansion algorithm (i.e. a good hash function) the value should be on overage
around 32 · 32 = 1024 bits. That result clearly shows that the PRESENT key

6 Hernandez-Castro, Peris-Lopez and Aumasson

schedule does not present a good degree of diffusion, and is far from having the
avalanche effect.

We have found and shown in Table 1 even better results, with distances of
32, 34 and 35. The significance of our results is even clearer if we study the effect
of flipping two random bits on a random key, which on average produces (statis-
tics computed again over 10, 000 random keys with random flips but without
repetition) 107.4244 bit changes. For three bit differences in the key, the average
change in the sub-round keys is 157.2943, for four 204.744 bits, and 249.8925 for
five bits. Values so small as 32, 34 and 35 should be considered insufficient for
many applications, and too close to the optimum value of zero.

The results herein presented could be useful for other researchers of PRESENT-
80 and, although by themselves do not constitute a major weakness, leave a
discomforting low gap between our best findings and the global minimum that
would lead to a pair of equivalent keys. Even if these pairs do not exist, our
findings might easily lead to pseudo-collisions in one of the PRESENT-based
hash functions. Furthermore, sparse differences in the key schedule have been
successfully used before to cancel differences in the internal state [10].

Even worse results can be found for PRESENT−128, when for example the
two keys

0x2a1145cfce0db6e38eaff175d39c90dc

and
0x2a1145cfcf0db6e38eaff175d39c90dc

with a difference of 0x10000000000000000000000, generate round keys that only
differ, as a whole, in 16 bits over 32 rounds. There are many other pairs with
similar properties. The averages also reveal similar undesirable properties, with
a random flip in a user key averaging only around 40.02 bit changes in the
round keys, in contrast with the almost 55 bits modified by PRESENT−80.
Worse results are also achieved by two random bit flips to PRESENT−128, with
average values of 78.43 bits on the round keys, which is poor compared with
the 107.42 of PRESENT−80. These results show that the 80-bit version has a
stronger key schedule than the 128 bit variant – at least from the point of view
of its diffusion characteristics.

4.2 Global Annihilators

We looked for keys that produced a set of round keys with a very low hamming
weight. Such keys may be useful for impossible differential attacks, or for reduc-
ing the overall security of the cipher, because of course the key addition phase
is way less strong under those low-hamming keys. The most interesting key we
found in this regard is 0x862010e680100a028a10, that generated an extremely
low hamming weight of only 401 (for an average, for a random key, of around
32 · 32 = 1024 bits). In Table 2.A we show the round keys corresponding to this
annihilator key.

Similarly, for PRESENT−128 we can obtain a value of 433.0 with key 0x484a0
4d32c22f3ae28200190103481f3 (See Table 2.B).

On the Key Schedule Strength of PRESENT 7

Round RoundKey Hamming weight
0 0x862010e680100a02 15
1 0x14210c4021cd002 15
2 0x28002842188042 11
3 0x340000500050842 10
4 0x20100680000a002 8
5 0x4210040200d0002 9
6 0x280008420080402 8
7 0x400005000108402 7
8 0x100080000a0006 6
9 0x4210000200100005 7
10 0x8800084200004007 9
11 0x1000110001084005 8
12 0x8100020002200027 9
13 0x1100102000400042 7
14 0x82200204000f 9
15 0x1001000010440047 9
16 0x1000220020000200 5
17 0x5001020004400408 8
18 0x50080a0020400081 9
19 0x60102a0101400401 11
20 0xb0020c0205402022 13
21 0x90101600418040a2 13
22 0x80920202c0083b 14
23 0xa102801012404053 14
24 0xd020f42050020244 16
25 0x31015a041e840a0c 19
26 0xe80906202b4083dd 23
27 0x80283d0120c40565 19
28 0x820f700507a02416 21
29 0x70159041ee00a0fa 24
30 0x904e02b2083dcfL 23
31 0x1283e01209c0564e 22

Table 2.A

Round RoundKey Hamming weight
0 0x484a04d32c22f3ae 27
1 0x400400320206903e 15
2 0x402128134cb08bce 23
3 0x40001000c8081a40 10
4 0xc00084a04d32c22e 20
5 0x4000004003202068 9
6 0xc80002128134cb09 18
7 0x60000001000c8080 7
8 0xc22000084a04d32e 18
9 0x4080000004003200 6
10 0xc80880002128134e 16
11 0x40020000001000ca 7
12 0x82022000084a04e 12
13 0x4000080000004000 3
14 0xc420808800021282 12
15 0x2000000103 4
16 0xd81082022000084e 14
17 0x4c00000080000000 4
18 0xc860420808800025 13
19 0x8030000002000004 5
20 0xe821810820220005 14
21 0x8600c00000080005 8
22 0xf8a0860420808805 17
23 0x8618030000002005 10
24 0x88e2821810820226 17
25 0x4618600c00000086 12
26 0x4f238a086042080e 20
27 0x4518618030000004 12
28 0xee3c8e2821810827 25
29 0x1014618600c00007 14
30 0x18b8f238a0860427 24
31 0x1c40518618030007 17

Table 2.B
Table 2. Global Annihilators - PRESENT-80 (2.A) & PRESENT-128 (2.B)

4.3 Output Entropy Minimization

When minimizing the output entropy of the key schedule, we obtained the fol-
lowing interesting results for PRESENT−80 (see Table 4.A), which produced an
entropy of 4.006811 bits per byte for key 0x62e00e7e01030028e80. As shown in
Table 4.B, the best result we found for PRESENT−128 had a much lower en-
tropy of 3.744336 bits per byte, for key 0x55048c3882841800b8a669e49628e086.

It is curious that all of the experiments ran with PRESENT−80 did point
towards essentially the same key, with a very high correlation between the ob-
tained optima, but this was clearly not the case for PRESENT−128. This may
have different explanations, but the simplest one is that we are much closer to the
global optima in the case of PRESENT−80 than in the case of PRESENT−128,
or/and that there exists a reduced number of global optima for the 80-bit ver-
sion and multiple ones for the 128-bit version. In any case, all scenarios clearly
favor the design of the smaller version in terms of security, at least from this
test point of view. The fact that the lowest output entropy found for the key
schedule of the 128-bit variant is significantly smaller than the one found for the
80-bit version, after exactly the same computational effort in the search, further
strengthens this point.

8 Hernandez-Castro, Peris-Lopez and Aumasson

Round RoundKeys
0 0x62e00e7e0103002
1 0x1d000c5c01cfc02
2 0xc0003a0018b802
3 0x3f0001800074002
4 0x2e0007e00030002
5 0xd00005c000fc002
6 0xc0001a0000b8002
7 0xf00018000340002
8 0xe0001e000300002
9 0x1c0003c0002
10 0x380002
11 0x2
12 0x6
13 0x4000000000000006
14 0x7000080000000007
15 0x10000e0001000007
16 0x2000020001c00028
17 0xc000040000400030
18 0x5000b80000800001
19 0x6000ca0017000019
20 0xb0000c00194002ea
21 0x9000760001800322
22 0xbb2000ec0003b
23 0xa00c8001764001d3
24 0xd000f40190002ec4
25 0x30075a001e80320c
26 0xe0bb0600eb4003dd
27 0xf0c83c1760c01d65
28 0x800f7e190782ec16
29 0x40759001ecf320fe
30 0x7bb0480eb2003df7
31 0x1c83ef760901d64f

Table 4.A

Round RoundKeys
0 0x55048c3882841800
1 0x5d14cd3c92c51c10
2 0x55541230e20a1060
3 0x55745334f24b1470
4 0x55555048c3882840
5 0x5555d14cd3c92c50
6 0x55555541230e20a0
7 0x55555745334f24b0
8 0x55555555048c3880
9 0x5555555d14cd3c90
10 0x55555555541230e0
11 0x55555555745334f0
12 0x55555555555048c0
13 0x5555555555d14cd0
14 0x5555555555554120
15 0x5555555555574530
16 0x5555555555555500
17 0x5555555555555d10
18 0x5555555555555550
19 0x5555555555555570
20 0x5555555555555550
21 0xce55555555555550
22 0x5555555555555550
23 0x5839555555555550
24 0x5555555555555553
25 0xae60e55555555553
26 0xa555555555555553
27 0xdfb9839555555553
28 0xd695555555555552
29 0x987ee60e55555552
30 0x9b5a555555555552
31 0xf61fb9839555552

Table 4.B
Table 3. Entropy minimization - PRESENT−80 (A) & PRESENT−128 (B)

5 Measuring the Strength of a Key Schedule

In the following, we propose to combine the presented results in a single measure
that could give a general idea of the strength of a given key schedule algorithm,
and ease analysis and comparison between different block cipher proposals. We
emphasize here that this measure is completely independent of the structured
used in the cipher (e.g. Feistel or SP-network) and only dependent on the key
schedule function. Although we acknowledge that security is a quite complex
concept that can not be fully abstracted in a single value, we however believe that
this abstraction could be useful in a number of testing and designing scenarios.

The simplest and most natural way of combining these results in a single
value is simply by multiplying them, like in the following formula:

SKeySchedule =
−1

ln(SAnnihilators · SEquivalentKeys · SOutputEntropy)
(1)

The above expression particularized with the results obtained over the PRESENT
variants, produces the following values:

On the Key Schedule Strength of PRESENT 9

SPRESENT80
=

−1

ln(401
1024 ·

32
1024 ·

4.006811
8)

= 0, 19628

SPRESENT128 =
−1

ln(433
1024 ·

16
1024 ·

3.744336
8)

= 0, 17304

And we take SKeySchedule = 0 if any of the Sj = 0.
Although this way of combining different strength results into a single value

could be improved, it at least provides a simple, quick and easy way of comparing
between different algorithms or variants. This is exactly our case, where contrary
to our first thoughts it seems clear that the keyschedule of PRESENT−80 is,
at least from the point of view of test S, more secure than that of its cousin
PRESENT−128.

The overall result is consistent with the general impression extracted from
the different tests, which is that the keyschedule of PRESENT−128 is less ro-
bust than that of PRESENT−80 despite the two calls to the S-box done in
PRESENT−128. It seems these two lookups are not enough, and more should
be allowed to offer a similarly strong key schedule.

6 Conclusions

We present a first attempt to measure the strength of a key schedule algorithm in
a single and straightforward fashion, allowing meaningful comparisons between
different algorithms and different variants of the same algorithm. This could
potentially be useful for designing purposes, when a quick way of comparing
different decisions could be handy, and for claiming and testing security proper-
ties of new block cipher proposals. Improvements to our proposed measure are
possible, and we will work on then in future works, but in its current state we
have proved it is good enough to analyze in some depth the key schedules of
both PRESENT−80 and PRESENT−128. Our results point out to a quite good
overall design that only seems slightly worrisome regarding semi-equivalent keys,
specially taking into account the proposal of PRESENT as a basis for various
lightweight hash functions.

We also found the slightly surprising and maybe controversial result that,
in the light of these tests, the PRESENT−80 key schedule seems to be more
robust than that of PRESENT−128. We think that this first attempt to measure
cryptographic strength combining the results of multiple heuristic lookups opens
an avenue for new kinds of more complex analysis that could help in better
understanding some of the recent lightweight cryptographic primitives.

On the other hand, it will be overambitious and highly arguable to claim that
this single value can be an undisputed measure of key schedule strength. Firstly,
overall strength is quite tricky to define. We only aim here to have contributed a
first step in this direction. Furthermore, we also acknowledge that looking at the
key schedule algorithm in complete isolation as we do here could, in some cases,

10 Hernandez-Castro, Peris-Lopez and Aumasson

make little sense because a weaker key schedule does not always lead to a weaker
cipher if this is properly accounted for in the design of the round function.

Apart from investigating possible improvements to the key schedule strength
measure just proposed, we plan to compare that of the two key schedule algo-
rithms explored here against that of the AES, and other lightweight algorithms
like KATAN and KTANTAN [14]. We will also research for more complex ways
of measuring the difficulty of the problems associated with finding keys with
security-relevant properties, particularly with measures based in problem land-
scape complexity as in [2].

References

1. S. Kirkpatrick, Gelatt, Vecchi. Optimization by Simulated Annealing. Science, 220
(4598): pp. 671–680, 1983

2. Julia Borghoff, Lars R. Knudsen, Krystian Matusiewicz. Analysis of Trivium by
a Simulated Annealing Variant. Proceedings of Ecrypt II Workshop on Tools for
Cryptanalysis 2010

3. Lars R. Knudsen and Willi Meier. Cryptanalysis of an Identification Scheme Based
on the Permuted Perceptron Problem. In Advances in Cryptology, Eurocrypt ’99,
pp. 363–374, LNCS 1592, 1999

4. John A. Clark and Jeremy L. Jacob. Fault Injection and a Timing Channel on
an Analysis Technique. In L.R. Knudsen (Ed.) Eurocrypt 2002, LNCS 2332, pp.
181–196, 2002

5. Manok Kuman, Pratibha Yadav and Meena Kumari. Flaws in Differential Crypt-
analysis of Reduced Round PRESENT. http://eprint.iacr.org/2010/407

6. Bogdanov A, Leander G, Paar C, et al. Hash Functions and RFID Tags : Mind the
Gap. 2008: pp. 283–299

7. Bogdanov A, Knudsen LR, Leander G, et al. PRESENT: An Ultra-Lightweight
Block Cipher. Lecture Notes in Computer Science. 2007, v. 4727, pp. 450–466.
Available at: http://dx.doi.org/10.1007/978-3-540-74735-2_31

8. R. Anderson, E. Biham, and L. Knudsen, Serpent: A proposal for the Advanced
Encryption Standard, First Advanced Encryption Standard (AES) Conference,
1998

9. M. Wang, Differential cryptanalysis of reduced-round PRESENT,
AFRICACRYPT 2008, First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11-14, 2008. Lecture Notes in Computer Science, vol.
5023, 2008, pp. 40-49

10. Onur Ozen, Kerem Varici, Cihangir Tezcan and Celebi Kocair. Lightweight Block
Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In
Boyd, Gonzalez-Benito (Eds.) Proceedings of the 2009 Australasian (ACISP) Con-
ference, pp. 90–107, July 1-3, 2009. Lecture Notes in Computer Science LNCS v.
5594

11. M. Albrecht and C. Cid, Algebraic techniques in differential cryptanalysis, Fast
Software Encryption International Workshop, FSE 2009, Leuven, Belgium, Febru-
ary 22-25, 2009, Lecture Notes in Computer Science, vol. 5665, 2009, pp. 193-208

12. B. Collard and F. Standaert, A statistical saturation attack against the block
cipher PRESENT, CT-RSA, Lecture Notes in Computer Science, vol. 5473, 2009,
pp. 195-210

On the Key Schedule Strength of PRESENT 11

13. Kenji Ohkuma, Weak Keys of Reduced-Round PRESENT for Linear Cryptanaly-
sis, Selected Areas in Cryptography, Lecture Notes in Computer Science, Volume
5867, pp. 249–265, 2009.

14. Christophe De Canniere, Orr Dunkelman and Miroslav Knezevic. KATAN &
KTANTAN A Family of Small and Efficient Hardware-Oriented Block Ciphers.
Proceedings of CHES 2009, LNCS 5747, Springer, 2009

