
International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

ADAPTIVE LEARNING SEARCH, A NEW TOOL TO HELP
COMPREHENDING METAHEURISTICS

JOHANN DRÉO∗

JEAN-PHILIPPE AUMASSON†

WALID TFAILI∗

PATRICK SIARRY∗

∗ Université Paris XII Val-de-Marne
Laboratoire Images, Signaux et Systèmes Intelligents (LISSI, EA 3956)

61, avenue du Général de Gaulle, 94010 Créteil, France
{dreo, siarry, tfaili}@univ-paris12.fr

† Security and Cryptography Laboratory, EPFL, Switzerland

The majority of the algorithms used to solve hard optimization problems today are pop-
ulation metaheuristics. These methods are often presented under a purely algorithmic
angle, while insisting on the metaphors which led to their design. We propose in this
article to regard population metaheuristics as methods making evolution a probabilistic
sampling of the objective function, either explicitly, implicitly, or directly, via processes
of learning, diversification, and intensification. We present a synthesis of some meta-
heuristics and their functioning seen under this angle, called Adaptive Learning Search.
We discuss how to design metaheuristics following this approach, and propose an imple-
mentation with our Open Metaheuristics framework, along with concrete examples.

Keywords: metaheuristics; hard optimization; evolutionary algorithm; ant colony algo-
rithm; simulated annealing; estimation of distribution; optimization framework; software;
performance assessment.

1. Introduction

Optimization problems appear in many fields, as various as identification prob-
lems, supervised learning of neural networks, shortest path problems, etc.
Metaheuristics18 are a family of stochastic optimization algorithms, often applied
to hard combinatorial problems for which no more efficient method is known. They
have the advantage of being generic methods, thus do not require a complex tuning
for each problem, and can be used as a kind of “black boxes”. Recall that, gen-
erally, optimization algorithms search for a point into the search space, so as to
optimize (i.e., minimize or maximize) the objective function (also called fitness or
goal function). Metaheuristics are often divided into two sets:

(1) Algorithms handling a single point, making it evolve towards a solution.
(2) Algorithms handling a population, i.e., a finite set of points, and computing a

new population at each iteration.

1

2 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

An essential observation is that the population of the second category is a sampling
of the objective function. Although those classes are not disjoint (an algorithm can
belong to both classes, according to the point of view), we only consider population
metaheuristics, which are simply referred as metaheuristics hereafter.

In order to analyze metaheuristics, several formalizations were proposed40,41,10,
following the adaptive memory programming52 concept, which aims at unifying the
population metaheuristics by stressing a common process. Following our previous
observation, we present a new model which considers the population as a proba-
bilistic sampling, and illustrate our approach with a software specially developed,
Open Metaheuristics15. It provides a common framework to all metaheuristics, and
so facilitates their implementation and comparison. This contrasts with general
frameworks55 such as HotFrame21, Templar33 or HSF 14 where metaheuristics are
simply algorithms without a specific structure, and with specific frameworks, such
as Evolving-Objects34, where only one specific metaheuristic structure is considered.

We introduce the preliminary material in Section 2, then we present our model
Adaptive Learning Search in Section 3. Section 4 focuses on the implementation,
presenting the software Open Metaheuristics along with several examples. Section 5
is the conclusion.

2. Fundamental concepts

Metaheuristics share a certain number of properties. An essential one is that they
handle a sampling of the objective function, via common processes. The framework
of adaptive memory programming aims at stressing those processes.

The probabilistic sampling should ideally pick the best solutions with higher
probability. However, in an optimization problem, the effective goal is not to sam-
ple the objective function, but to find the distribution’s optimum. Thus, sampling
must concentrate on the areas of interest, while converging gradually towards the
optimum by means of algorithms. From the point of view of sampling, this conver-
gence is carried out by a progressive fall of dispersion in these areas.

2.1. Adaptive memory programming

Adaptive Memory Programming (AMP) is a common framework to
metaheuristics52, described in Algorithm 1. It stresses out the concepts of mem-
ory, intensification, and diversification. In the literature of evolutionary algorithms,
these two last notions are often replaced by the words exploitation and exploration,
which have a similar meaning.

We briefly detail each element of the AMP framework:

• Memory stands for the information collected by the algorithm on the objective
function distribution. It can be represented either as a simple set of points, or
as more complex structures, like pheromone tracks in ant colony algorithms.
Memory can be defined as global (compared to the problem as a whole) or

Adaptive learning search, a new tool to help comprehending metaheuristics 3

Algorithm 1 AMP framework.
(1) Memorization of a set of solutions, or of a data structure containing the char-

acteristics of the solutions produced by the search.
(2) Construction of a temporary solution based on the data memorized.
(3) Improvement of the solution by an algorithm of local search.
(4) Memorization of the new solution, or of the data structure associated.

inter-individual (a solution relative to another one).
• Intensification exploits the information obtained, in order to improve the current

solutions. This is typically a local search algorithm (for instance with the Nelder-
Mead algorithm43 or a taboo search).

• Diversification aims at collecting new information, by exploring the search
space.

The three components presented are not always clearly distinct, and are strongly
interdependent in an algorithm. An example of metaheuristic that fits well the AMP
model is the method GRASP47.

2.2. Sampling and AMP

In the majority of metaheuristics, the sampling of the objective function is prob-
abilistic (diversification). Ideally, this sampling should be performed with respect
to an approximation of the distribution of the points, so as to locate an area of
interest, and then converge towards the optimum (intensification).

Most of the metaheuristics do not have any a priori information on the distri-
bution, thus implicitely learn it by diversification and intensification, such as ant
colony algorithms, and “classical” metaheuristics. Conversely, some methods use
an approximation of the distribution, and are called explicit methods (see3). For
example, Estimation of Distribution Algorithms37 (EDA) are explicit methods. We
also distinguish the direct methods, using directly the objective function, like the
simulated annealing.

2.3. General scopes

We assisted to several attempts of structuration in the scope of distribution sam-
pling. For instance, Monmarché et al. proposed the model Probabilistic Search Meta-
heuristic 40,41 (PSM), based on the comparison of the algorithms PBIL2,4, BSC 50,
and the ant system algorithm10. The general principle of a PSM method is presented
in Algorithm 2. Notice the relation of this approach with the estimation of distri-
bution algorithms. However, the PSM approach is limited to the use of probability
vectors, while specifying an essential update rule for these vectors.

The EDA’s were presented as evolutionary algorithms, with an explicit
diversification42. They are undoubtedly the algorithms closest to a general scope.

4 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

Algorithm 2 The scope of the PSM method.
Initialize a probability vector p0(x)
Until stopping criteria:

Build m individuals xl
1, . . . , x

l
m using pl(x)

Evaluate f
(
xl

1

)
, . . . , f

(
xl

m

)
Rebuild a probability vector pl+1(x) while considering xl

1, . . . , x
l
m and

f
(
xl

1

)
, . . . , f

(
xl

m

)

End

The Iterated Density Evolutionary Algorithms6,7,8 (IDEA) are a generalization of
those, presented in Algorithm 3.

Algorithm 3 The IDEA approach.
Initialize a population P0 of n points
Until stopping criteria:

Memorize the worst point θ

Search an appropriate distribution Di(X) from the population Pi−1

Build a population Oi of m points according to Di(X), with ∀Oj
i ∈ Oi :

f
(
Oj

i

)
< f (θ)

Create a population Pi from a part of Pi−1 and a part of Oi

Evaluate Pi

End

IDEA uses a more general diversification than PSM, while not being limited to a
probability vector as model, but specifying that the search for the best probability
distribution forms an integral part of the algorithm. However, the fall of dispersion
is carried out by selecting the best individuals, no precision on the use of different
intensification principles is given.

3. Adaptive learning search

In this section we present Adaptive Learning Search (ALS), a new framework for
considering the structure of metaheuristics, based on the AMP approach.

3.1. Main processes

Instead of considering only a memorization process, we propose to consider a learn-
ing phase. Indeed, the memory concept is quite static and passive; in a sampling
approach, it suggests that the sample is simply stored, and that the metaheuristic
only takes into account the previous iteration, without considering the whole opti-

Adaptive learning search, a new tool to help comprehending metaheuristics 5

mization process. We emphasize on the fact that the memorized data is not only a
raw input, but provides information on the distribution, and thus on the solutions.

Thereby, we propose to consider three terms to describe the main steps in a
population metaheuristic: learning, diversification and intensification, with respect
to a sampling either explicit, implicit, or direct. An ALS algorithm is thus organized
as presented in Algorithm 4.

Algorithm 4 ALS algorithm.
Initialize a sample;
Iterate until stopping criteria:

Sampling: either explicit, implicit or direct,
Learning: the algorithm extracts information from the sample,
Diversification: it searches for new solutions,
Intensification: it searches to improve the existing sample,
Replace the previous sample with the new one.

End

3.2. Examples

We present several famous metaheuristics under the scope of ALS.

3.2.1. Simulated annealing

The simulated annealing36,9 was created from the analogy between a physical pro-
cess (the annealing) and an optimization problem. As a metaheuristic, it is based on
works simulating the evolution of a solid towards its minimal energetic state39,28.

The classic description of simulated annealing presents it as a probabilistic algo-
rithm, where a point evolves in the search space. The method uses the Metropolis
algorithm, recalled in Algorithm 5, inducing a markovian process1,35. The simulated
annealing, in its usual version (“homogeneous”), calls this method at each iteration.

It is possible to see the simulated annealing as a population algorithm. Indeed,
the Metropolis algorithm directly samples the objective function using a degenerated
parametric Boltzmann distribution (of parameter T). Hence, one of the essential
parameters is the temperature decrease, for which many laws were proposed53.
There also exists some versions of the simulated annealing more centred on the
handling of a points population 30,56,38,31.

Here, the Metropolis method represents the diversification (coupled with the
learning), while the temperature decrease is controlling the intensification process.
Note that other methods than Metropolis’ may be used11,45.

Algorithm 6 presents a synthesis of the simulated annealing. The learning step is
not present in basic versions, but many existing variants have tried to link the tem-

6 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

Algorithm 5 Sampling with the Metropolis method.
Initialize a starting point x0 and a temperature T

For i = 1 to n:

Until xi accepted

If f (xi) ≤ f (xi−1): accept xi

If f (xi) > f (xi−1): accept xi with a probability e−
f(xi)−f(xi−1)

T

End

End

perature to certain characteristics of the sampling obtained through the Metropolis
method20,44,12. Finally, the simulated annealing is mainly characterized by its direct
sampling of the objective function.

Algorithm 6 ALS model for the simulated annealing.
Sampling: direct.
Learning: relational mechanisms between the set of points and the temperature.
Diversification: sampling of the objective function through the Metropolis

method.
Intensification: temperature decrease.

3.2.2. Evolutionary algorithms

Evolutionary algorithms19 are inspired from the biological process of the adaptation
of alive beings to their environment. The analogy between an optimization problem
and this biological phenomenon has been formalized by several approaches29,22,46,
leading for example to the famous family of genetic algorithms25. The term popu-
lation metaheuristics fits particularly well; following the metaphor, the successive
populations are called generations. A new generation is computed in three stages,
detailed below.

(1) Selection: improves the reproduction ability of the best adapted individuals.
(2) Crossover: produces one or two new individuals from their two parents, while

recombining their characteristics.
(3) Mutation: randomly modifies the characteristics of an individual.

One clearly identifies the third step with the diversification stage, while the first
one stands for the intensification. We interpret the crossover as a learning from
the previous information (i.e. from the ancesters). Several methods50,27,26,5 were
designed for the diversification operators, which emphasize the implicit process of
distribution sampling.

Adaptive learning search, a new tool to help comprehending metaheuristics 7

The ALS modelling of this generic scheme is presented in Algorithm 7.

Algorithm 7 ALS model for evolutionary algorithms.
Sampling: implicit.
Learning: crossover.
Diversification: mutation.
Intensification: selection.

3.2.3. Estimation of distribution algorithms

Estimation of Distribution Algorithms (EDA) were first created as an alternative to
evolutionary algorithms42: the main difference is that crossover and mutation steps
are replaced by the choice of random individuals with respect to an estimated dis-
tribution obtained from the previous populations. The general process is presented
in Algorithm 8.

Algorithm 8 Estimation of distribution algorithm.
D0 ← Randomly generate M individuals.
i = 0
While stopping criteria:

i = i + 1
DSe

i−1 ← Select N ≤M individuals in Di−1 using the selection method.

pi(x) = p
(
x | DSe

i−1

)
← Estimate the probability distribution of the selected

individuals.
Di ← Sample M individuals from pi(x)

End

The main difficulty is how to estimate the distribution; the algorithms used for
this are based on an evaluation of the dependency of the variables, and can belong
to three different categories:

(1) Models without any dependency: the probability distribution is factorized from
univariant independent distributions, over each dimension. That choice has the
defect not to be realistic in case of hard optimization, where a dependency
between variables is often the rule.

(2) Models with bivariant dependency: the probability distribution is factorized
from bivariant distributions. In this case, the learning of distribution can be
extended to the notion of structure.

(3) Models with multiple dependencies: the factorization of the probability distri-
bution is obtained from statistics with an order higher than two.

8 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

For continuous problems, the distribution model is often based on a normal distri-
bution.

Some important variants were proposed, using for example “data clustering”
for multimodal optimization, parallel variants for discrete problems (see37). Con-
vergence theorems were also formulated, in particular with modeling by Markov
chains, or dynamic systems.

We model the EDA algorithms in the ALS scope in Algorithm 9.

Algorithm 9 ALS model for estimation of distribution algorithms.
Using an explicit sampling.
Learning: extraction of the parameters of an explicit distribution;
Diversification: sampling of the distribution;
Intensification: selection.

3.3. Implementing metaheuristics

The ALS concept can be used as a tool for implementing several metaheuristics in
a common framework. This approach permits to reuse common code and facilitates
implementation, by focusing on the original parts of an algorithm. Thus we have
chosen to separate the implementation of the ALS concept from the implementation
of the metaheuristics theirselves.

In order to maximize the factorization of the code, an object oriented language
is suitable. Some modelling languages, such as the UML language49, also help to
describe the sketch concepts handled. Additionally, design patterns provide generic
solutions for common problems in software design, they became popular in the
90’s24, and are now commonly used for most of projects implemented with oriented
object languages, like Java or C++.

In order to implement the ALS approach, we can use a common pattern, namely
the Template Method pattern. This method is a quite simple behavioral pattern, it
only consists in defining the skeleton of an algorithm, in terms of sketch methods
for common operations, while allowing subclasses to define particular steps of the
algorithm. It can be used for the metaheuristics classes (see Figure 1), which need
to share basic attributes or methods (sample, output, etc.) but will implement dif-
ferently common methods (mainly diversification, intensification and learning) that
will be called by the main procedure. Additionally, this pattern permits to define
methods for some steps of the algorithm that are specific to a given metaheuristic.
One of the advantages of this pattern is to force the use of a common interface for
all metaheuristics, thus facilitating their manipulation23.

Implementing metaheuristics through an ALS approach can facilitate compre-
hension and comparison of several algorithms. Indeed, as they are structured over
the three main steps and a sample, one can compare the evolution of this sample

Adaptive learning search, a new tool to help comprehending metaheuristics 9

Fig. 1. UML diagram of the template pattern, used to implement a metaheuristic as an ALS.

through these steps, and not only through iterations.
One of the advantages of implementing different metaheuristics in a common

framework is to reduce the implementation differences, thus facilitating the com-
parison of two algorithms.

4. Implementation in the Open Metaheuristics framework

We implemented the ALS approach in a framework called Open Metaheuristics15

(oMetah), a project under the LGPL licence.

4.1. Algorithms, problems and communication layers

In order to separate the implementation of metaheuristics from the implementation
of problems, we have designed the project around three components:

• metaheuristics,
• problems,
• communication layers.

As shown on Figure 2, metaheuristics and problems communicate through a
client/server abstraction module. This permits to easily interface implemented prob-
lems and algorithms, but also external problems with existing metaheuristics. In-
deed, such an approach can help interfacing oMetah objects with another software.
For example, if a problem is only available as a command line binary software, one
can use a communication protocol using a temporary file where results are written,
a network protocol can also be used. Such an approach is used in several general
frameworks, but in a static link way, whereas we prefer a client/server way, more
generalized and flexible.

In order to handle the different object types, we use an abstraction of a set of
objects (see Figure 3). Thanks to this class and to the abstract factory pattern,

10 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

Fig. 2. UML diagram of relationships between metaheuristics and problems in oMetah.

Fig. 3. UML diagram of the set class.

it is possible to manipulate several objects sharing a common interface. This class
can be used to connect several metaheuristics with several problems through several
communication protocols.

4.2. The metaheuristic base class

Each new metaheuristic must inherit from a base class, which contains tools to build
it and manages its interface. The most important method in this base class is the
start function, depicted in Algorithm 10, which is used to start the optimization
process. Basically, it iterates through the three steps, and output the sample, until a
stopping criterion is reached. Virtual methods are provided for additional processes
at the beginning or at the end of the optimization.

4.3. Examples of implementations

Implementing a search algorithm in oMetah is rather simple: defining the three
steps (learning, diversification and intensification) is sufficient. Currently, several

Adaptive learning search, a new tool to help comprehending metaheuristics 11

Algorithm 10 Implementation of the start method for the metaheuristic base class.
void itsMetaheuristic::start() {

// an initialization step before performing the optimization
initialization();

// while no stopping criterion reached
while(!isStoppingCriteria()) {

learning(); // Learning phase
outputSample();

diversification(); // Diversification phase
outputSample();

intensification(); // Intensification phase
outputSample();

// one more iteration
iterationsCurrent++;

}
// an ending step, if necessary
end();

}

algorithms have been implemented:

• random and exhaustive search,
• Nelder-Mead search,
• genetic algorithms,
• ant colony algorithms,
• estimation of distribution algorithms,
• simulated annealing.

We present three examples of implementations in the following sections.

4.3.1. Random search

As a very simple illustration of implementation, we give in Algorithm 11 the imple-
mentation of a pure random search, using an uniform distribution. This example
demonstrates the definition of the three steps, the class used for points (solution
vector and solution value) and some of the common methods, such as the call for
the objective function.

4.3.2. Estimation of distribution

As a more complex illustration, Algorithm 12 implements a simple EDA, using a
multi-normal probability density function (PDF) as a learning basis. We comment
the three steps below.

(1) The aim of the learning step is to extract the parameters (namely the mean
vector and the variance-covariance matrix) of a multi-normal PDF from the
sample.

12 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

Algorithm 11 Implementation of a simple random search with oMetah.
void itsRandom::learning() { // No learning. }

void itsRandom::diversification() {
// draw each point in an hyper cube
for(unsigned int i=0; i < getSampleSize(); i++) {
itsPoint p;

p.setSolution(

randomUniform(

getProblem()->boundsMinima(),

getProblem()->boundsMaxima()

)

);

setSample[i](evaluate(p)); // call for the problem
}
}

void itsRandom::intensification() { // No intensification. }

(2) At the diversification step, one draws a new sample according to the parameters.
(3) The intensification step selects the best points.

4.3.3. Interface to other frameworks

The high-level structure of Open Metaheuristics permits algorithms written with
other frameworks to be embedded. As an example, we provide an interface to the
Evolving-Objects (EO) framework34. This framework is dedicated to evolutionary
computing, and uses a component-based approach. Algorithm 13 shows the skeleton
of the interface, implemented as a wrapper, to the canonic genetic algorithm (re-
ferred as SGA in EO). The attributes types starting with eo are specific to the EO
framework. The two methods sampleToPop and popToSample are used to convert
the oMetah sample to the EO “population”, and conversely.

4.4. Manipulating objects

The objects (metaheuristics, problems and communication layers) in oMetah can be
easily manipulated through the abstract factory pattern. Abstract factory belongs
to the class of creation design patterns, which deal with object creation in an object
oriented language. It provides an easy way to create objects sharing common prop-
erties – in fact they will have the same parent class – but one has not to explicitly
specify which classes. In a simple way, one will define one abstract factory, as an
instance of an abstract class, that will be used to create instances of derived classes,
via their own factories23.

For example, an abstract factory for the problems would allow to create instances
of specific metaheuristics, so as to, for example, add them to a specific set, by using

Adaptive learning search, a new tool to help comprehending metaheuristics 13

Algorithm 12 Implementation of an estimation of distribution algorithm.
void itsEDA::learning(){

// mean vector
this->parameterNormalMean = mean(this->getSample());

// variance covariance matrix
this->parameterNormalVarCovar = varianceCovariance(this->getSample());

}
void itsEDA::diversification() {

// draw each point in a multi-normal PDF
for(unsigned int i=0; i < getSampleSize(); i++) {

itsPoint p;

// draw according to parameters
vector<double> sol = randomNormalMulti(this->parameterNormalMean,

this->parameterNormalVarCovar);

// uniform PDF used if out of bounds
for(unsigned int i=0; i < this->getProblem()->getDimension(); i++) {

if(sol[i] < this->getProblem()->boundsMinima()[i] ||

sol[i] > this->getProblem()->boundsMaxima()[i]) {
sol = randomUniform(this->getProblem()->boundsMinima(),

this->getProblem()->boundsMaxima());

}
}
p.setSolution(sol);

sample[i] = evaluate(p); // call for the problem
}

}
void itsEDA::intensification(){

// Select the best points
setSample(selectOnValues(getSample(), selectNumber));

}

the same interface for all. One only has to define a subclass of the metaheuristic
factory for each metaheuristic that we program (see Figure 4). As a result, one
has not to specify the type of objects wanted, it even remains unknown, and the
programmer can easily change it by modifying the factory creating method.

Fig. 4. UML diagram of the abstract factory pattern, used to manipulate metaheuristics imple-
mentations.

14 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

Algorithm 13 Skeleton of the header of an interface to the EO framework.
// oMetah uses real parameters
typedef eoReal<eoMinimizingFitness> EOType;

class itsEOInterface : public itsMetaheuristic {
// EO data structures
eoPop<EOType> * eoOffspring;

eoPop<EOType> * eoPopulation;

// EO operators and their parameters
eoSelectOne<EOType> * eoSelect; // selection
eoQuadOp<EOType> * eoCross; // crossover
float eoCrossRate;

eoMonOp<EOType> * eoMutate; // mutation
float eoMutateRate;

void learning() {
sampleToPop();

/* use the crossover operator for a finite set of point pairs... */
popToSample();

}
void diversification() {

sampleToPop();

/* use the mutation operator on each point... */
popToSample();

}
void intensification() {

sampleToPop();

/* use the replacement operator... */
/* use the selection operator... */
popToSample();

evaluate();

}
// The constructor takes instances of EO operators as arguments
itsEOInterface(eoPop< EOType > * pop, eoSelectOne<EOType> * select,

eoQuadOp<EOType> * cross, float cross rate, eoMonOp<EOType> * mutate,

float mutate rate)

: itsMetaheuristic(), eoPopulation(pop), eoSelect(select), eoCross(

cross), eoCrossRate(cross rate), eoMutate(mutate), eoMutateRate(

mutate rate)

{ }
// Convert the eoPop of EOType individuals to the oMetah sample
void popToSample() { /* ... */ }
// Convert the oMetah sample to the eoPop of EOType
void sampleToPop() { /* ... */ }
};

4.5. Using the library

4.5.1. Results output

In order to facilitate the study of metaheuristics behavior, one needs to know as
much information as possible. An access to the state of a metaheuristic at each

Adaptive learning search, a new tool to help comprehending metaheuristics 15

iteration is thus crucial. In the ALS approach, this state is illustrated by the sample,
modified at each step of an iteration.

To achieve this goal, a structured output format is useful. We proposed an
XML (eXtensible Markup Language) file format, gathering all information of an
optimization session (see Figure 5). The advantages of such an approach is that one
can easily extract information from the files. As XML is extensible, one can also add
a new representation of information. For example, one can add a specific structure
to represent a solution (like a tree or a more complex representation) or add the
values of the metaheuristics parameters at each iteration (when the algorithm is
dynamic, for example). In a XML document, this unpredicted addition will not
disturb the possibility of extracting other information.

<optimization>
<iteration id="0">
<step class="start">
<sample>
<point><values>0.705915</values><solution>0.840188</solution></point>
<point><values>0.155538</values><solution>0.394383</solution></point>

</sample>
</step>
<evaluations>4</evaluations>

</iteration>
<iteration id="1">
<step class="learning">
<sample>
<point><values>0.705915</values><solution>0.840188</solution></point>
<point><values>0.155538</values><solution>0.394383</solution></point>

</sample>
</step>
<step class="diversification">
<sample>
<point><values>0.0771588</values><solution>0.277775</solution></point>

</sample>
</step>
<step class="intensification">
<sample>
<point><values>0.0348113</values><solution>0.186578</solution></point>

</sample>
</step>
<evaluations>7</evaluations>

</iteration>
<optimum>
<point><values>0.0348113</values><solution>0.186578</solution></point>

</optimum>
</optimization>

Fig. 5. Simple example of the oMetah output format for the optimization results. The algorithm
used is a simple EDA, using a sample of 2 points and optimizing the well known Sphere continuous
problem, in one dimension.

Open Metaheuristics also proposes a set of tags to include information about the

16 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

algorithm and the problem used to generate the results. This information, included
in the header of the XML file, are especially useful for verifying and reproducing
experiments.

4.5.2. Tests automation

We worked out a set of tools (called oMetah Lab) for the tests automation. It permits
to run metaheuristics, to manage the data storage and to synthetize results.

This test suite is written in the Python programming language, and consists
of two components: the test and the stats modules. The test module aims at
running a given metaheuristic on a given problem, several times. The role of the
stats module is to read the XML data, outputs graphics and tables, and to syn-
thetize the results in a report. An example of automated script for the comparison
of two metaheuristics is given in Algorithm 14. The stats module permits to choose
between a set of plugins, each one handling a different output.

Algorithm 14 Example of a test session for oMetah Lab. The script runs 10 times
an EDA and a random algorithm, on the Rosenbrock problem with 2 variables, and
outputs all the available graphics in a HTML report.
import ometahtest

import ometahstats

path = ’./ometah’

Number of runs to calculate
runs = 10

u = ometahtest.Test(path,’-s 10 -i 10 -e 100 -p Rosenbrock -d 2 -m

CEDA’,runs)

u.start()

v = ometahtest.Test(path,’-s 10 -i 10 -e 100 -p Rosenbrock -d 2 -m

RA’,runs)

v.start()

calculate all graphics and generate a HTML report
ometahstats.process(paths, ’all’,’html’)

4.5.3. Graphical output

Knowing the state of the sample permits to calculate the distribution of the points
at each iteration or step, as shown on Figure 6, or the distributions of optimums,
as shown in Figure 7. With the knowledge of these distributions, one can also
rigorously compare them through a non-parametric statistical significance test, like
a Mann-Whitney-Wilcoxon one, as recommended by Taillard51. One can also plot
the optimums found in the solution space, as shown on Figure 8.

Adaptive learning search, a new tool to help comprehending metaheuristics 17

1 2 3 4 5 6 7 8 9 10 11

1
2

5
10

20

ometah −s 10 −i 10 −e 100 −p Rosenbrock −d 2 −m CEDA
Convergence of optima

Iteration index

O
pt

im
a

va
lu

e

Fig. 6. Distribution of the sample on the values space for an Estimation of Distribution
Algorithm6 optimizing the Rosenbrock objective function13 with two dimensions. The distribu-
tions are obtained for each iteration, at the intensification step, through 50 runs, with a sample of
10 points, limited by 100 evaluations of the problem. Box plots are showing the median, quartiles,
minimum and maximum, the whiskers size is limited at 1.5 times the inter-quartiles distance.

4.5.4. Application

Open Metaheuristics has been successfully used to solve an optimization problem
in medical imaging17,16: we employed optimization techniques for registration of
retinal angiograms (registration is an important tool for solving many medical image
analysis problems). Many common minimization strategies have been applied to
image registration problems48,32, but metaheuristics have shown interesting results,
especially for high resolution difficult registration problems.

The key feature, in this application, was the ability to implement the problem in
a very simple manner, using the template pattern. Indeed, the separation between
metaheuristics, communication layer and problems permits to focus on the imple-
mentation of a single class, all the other processes being managed by the framework.

The implementation of the imaging part was tackled with the CImg54 template
library. Algorithm 15 shows the skeleton of the problem header. The main method
is the virtual objectiveFunction, which takes a point as an argument, and re-
turns the same point, with its value updated. The mandatory attributes, fixing the
problem bounds, are set up by the constructor.

Once the problem implemented, it is easy to optimize it with the available meta-
heuristics, and benefit of the automated data processing. Figure 9 shows examples
of graphics directly produced by Ometah. The source code is available online, in
the registration module of the Open Metaheuristic project15, and the details of the
problem are presented in two publications17,16.

18 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

Fig. 7. Distribution of the sample on the values space for an Estimation of Distribution Algorithm
(CEDA) and a Random Search (RA) optimizing the Rosenbrock objective function with two
dimensions. The distributions are obtained for each iteration, at the intensification step, through
50 runs, with a sample of 10 points, limited by 100 evaluations of the problem.

Algorithm 15 Skeleton of a registration problem using the CImg imaging library
// The class inherits from the oMetah problem base class
class itsRegistration : public itsProblem

{
public:

// The first image, a CImg type
CImg<unsigned char> img1;

// The second image, to register
CImg<unsigned char> img2;

// The objective function computes the similarity
itsPoint objectiveFunction(itsPoint point);

// Constructor
itsRegistration();

}

5. Conclusion

We have shown that population metaheuristics can be viewed as algorithms handling
a probabilistic sampling of a probability distribution, representing the objective

Adaptive learning search, a new tool to help comprehending metaheuristics 19

d

Y

density

−0.4 −0.2 0.0 0.2

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Fig. 8. Distribution on the solutions space of the optima found by a simple Random Search on
the Rosenbrock problem with two dimensions. The optima are obtained through 50 runs, with a
sample of 10 points, limited by 100 evaluations of the problem. The density is estimated with a
two-dimensional kernel density method, with an axis-aligned bivariate normal kernel.

function of an optimization problem. These algorithms are iteratively manipulating
the sample thanks to three processes: learning, intensification and diversification.
These metaheuristics can thus be viewed as adaptive learning search algorithms.

The ALS approach can be used to implement metaheuristics, thus facilitat-
ing their design and analysis. Indeed, implementing a metaheuristic in the ALS
framework consists in implementing the three main steps. As this simplifies the
implementation, the metaheuristics can be more easily compared and studied.

The ALS framework is implemented in the Open Metaheuristics library. This
project proposes a XML format for structuring the output of metaheuristics, in order
to facilitate the comparison between these optimization algorithms. Moreover, the
link between metaheuristics and problems can be handled by several communication
protocols, permitting to connect external problems and/or optimizers with internal
ones.

References

1. E. H. L. Aarts and P. J. M. Van Laarhoven. Statistical cooling : a general approach to
combinatorial optimisation problems. Philips Journal of Research, 40:193–226, 1985.

2. S. Baluja. Population-based Incremental Learning: A Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning. Technical Report
CMU-CS-94-163, Carnegie Mellon University, 1994.

3. S. Baluja. Genetic Algorithms and Explicit Search Statistics. Advances in Neural
Information Processing Systems, 9:319–325, 1997.

4. S. Baluja and R. Caruana. Removing the Genetics from the Standard Genetic Algo-

20 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 s
im

ila
rit

y
er

ro
r

Image

(a) Mean and standard deviations of the similar-
ity error (giving the quality of the registration of
two images), obtained with an ant colony algo-
rithm, hybridicized with a Nelder-Mead search,
on several images

Optima distribution

Value

F
re

qu
en

cy

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07

0
2

4
6

8
10

(b) Distribution of the optimums values for a single image, ob-
tained with an estimation of distribution algorithm.

Fig. 9. Example of results obtained with the implementation of the registration problem opti-
mized by metaheuristics in the oMetah framework.

rithm. In A. Prieditis and S. Russel, editors, International Conference on Machine
Learning, pages 38–46, Lake Tahoe, California, 1995. Morgan Kaufmann.

5. S. Baluja and S. Davies. Fast probabilistic modeling for combinatorial optimization.
In Fifteenth National Conference on Artificial Intelligence, Tenth Conference on In-
novative Applications of Artificial Intelligence, Madison, Wisconsin, 1998.

6. P. A. N. Bosman and D. Thierens. An algorithmic framework for density estimation
based evolutionary algorithm. Technical Report UU-CS-1999-46, Utrech University,
1999.

7. P.A.N. Bosman and D. Thierens. Continuous iterated density estimation evolution-
ary algorithms within the IDEA framework. In M. Muehlenbein and A.O. Rodriguez,
editors, Proceedings of the Optimization by Building and Using Probabilistic Mod-

Adaptive learning search, a new tool to help comprehending metaheuristics 21

els OBUPM Workshop at the Genetic and Evolutionary Computation Conference
GECCO-2000, pages 197–200, San Francisco, California, 2000. Morgan Kauffmann.

8. P.A.N. Bosman and D. Thierens. IDEAs based on the normal kernels probability
density function. Technical Report UU-CS-2000-11, Utrecht University, 2000.

9. V. Cerny. Thermodynamical approach to the traveling salesman problem : an efficient
simulation algorithm. J. of Optimization Theory and Applications, 45(1):41–51, 1985.

10. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant Colonies.
In F. Varela and P. Bourgine, editors, Proceedings of ECAL’91 - First European Con-
ference on Artificial Life, pages 134–142, Paris, France, 1992. Elsevier Publishing.

11. M. Creutz. Microcanonical Monte Carlo simulation. Physical Review Letters,
50(19):1411–1414, May 1983.

12. P. M. C. De Oliveira. Broad Histogram : An Overview. arxiv :cond-mat/0003300v1,
2000.

13. K. Deb and P. N. Suganthan. Special Session on Real-Parameter Optimization. In
IEEE Congress on Evolutionary Computation, September 2005.

14. R. Dorne and C. Voudouris. Metaheuristics: computer decision-making, chapter HSF:
the iOpt’s framework to easily design metaheuristic methods, pages 237–256. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

15. J. Dréo, J.-Ph. Aumasson, and W. Tfaili. Open Metaheuristics.
http://ometah.berlios.de, 2005.

16. J. Dréo, J.-C. Nunes, and P. Siarry. Robust rigid registration of retinal angiograms
through optimization. Computerized Medical Imaging and Graphics, to appear, 2007.
DOI: 10.1016/j.compmedimag.2006.07.004.

17. J. Dréo, J.C. Nunes, P. Truchetet, and P. Siarry. Retinal angiogram registration by es-
timation of distribution algorithm. In 6th IFAC Symposium on Modelling and Control
in Biomedical Systems (IFAC 2006), 2006.

18. J. Dréo, A. Pétrowski, P. Siarry, and É. D. Taillard. Metaheuristics for hard optimiza-
tion. Springer, 2006.

19. J. E. Eiben, A. E. Smith. Introduction to Evolutionary Computing. Springer Verlag,
2003.

20. A. M. Ferrenberg and R. H. Swendsen. Optimized Monte Carlo Data Analysis. Physical
Review Letters, 63:1195, 1989.

21. A. Fink and S. Voß. Generic metaheuristics application to industrial engineering prob-
lems. Computers and Industrial Engineering, 37(1-2):281–284, 1999.

22. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artifical Intelligence through Simulated
Evolution. Wiley, 1966.

23. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison Wesley Professional, 1994.

24. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Abstraction and reuse of object-oriented design. Lecture Notes in Computer Science,
707:406–431, 1993.

25. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine learning.
Addison-Wesley, 1989.

26. G. Harik. Linkage learning in via probabilistic modeling in the EcGA. Technical Re-
port 99010, IlliGAL, 1999.

27. G. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. In IEEE
Conference on Evolutionary Computation, pages 523–528, 1998.

28. W. K. Hastings. Monte Carlo sampling method using Markov chains and their appli-
cations. Biometrika, 57, 1970.

22 Johann DRÉO, Jean-Philippe AUMASSON, Walid TFAILI, Patrick SIARRY

29. J. H. Holland. Outline for logical theory of adaptive systems. J. Assoc. Comput. Mach.,
3:297–314, 1962.

30. K. Hukushima and K Nemoto. Exchange Monte Carlo method and application to spin
glass simulations. Journal of the Physical Society of Japan, 65:1604–1608, 1996.

31. Y. Iba. Population Annealing: An approach to finite-temperature calculation. In Joint
Workshop of Hayashibara Foundation and SMAPIP. Hayashibara Forum, 2003.

32. M. Jenkinson and S. Smith. A global optimisation method for robust affine registration
of brain images. Medical Image Analysis, 5:143–156, 2001.

33. M. Jones. An Object-Oriented Framework for the Implementation of Search Tech-
niques. PhD thesis, University of East Anglia, 2000.

34. Maarten Keijzer, J. J. Merelo, G. Romero, and Marc Schoenauer. Evolving objects:
A general purpose evolutionary computation library. In Artificial Evolution, pages
231–244, 2001.

35. J. Kertesz and I. Kondor, editors. Advances in Computer Simulation, chapter Intro-
duction To Monte Carlo Algorithms. Springer-Verlag, 1998.

36. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

37. P. Larrañaga and J.A. Lozano, editors. Estimation of Distribution Algorithms, A New
Tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Computa-
tion. Kluwer Academic Publishers, 2002.

38. F. Liang and W. H. Wong. Evolutionary Monte Carlo: Application to Cp Model Sam-
pling and Change Point Theorem. Statistica Sinica, 10, 2000.

39. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical Physics,
21:1087–1092, 1953.

40. N. Monmarché, E. Ramat, G. Dromel, M. Slimane, and G. Venturini. On the similar-
ities between AS, BSC and PBIL: toward the birth of a new meta-heuristics. E3i 215,
Université de Tours, 1999.

41. N. Monmarché, N. Ramat, L. Desbarat, and G. Venturini. Probabilistic search with
genetic algorithms and ant colonies. In A.S. Wu, editor, Proceedings of the 2000 Ge-
netic and Evolutionary Computation Conference Workshop, pages 209–211, 2000.

42. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of dis-
tributions I. Binary parameters. Lecture Notes in Computer Science 1411: Parallel
Problem Solving from Nature, PPSN IV:178–187, 1996.

43. J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

44. M. E. J. Newman and R. G. Palmer. Error estimation in the histogram Monte Carlo
method. arxiv:cond-mat/98043006, 1998.

45. Y Okamoto and U. H. E. Hansmann. Thermodynamics of helix-coil transitions studied
by multicanonical algorithms. Journal Physical Chemistry, 99:11276–11287, 1995.

46. I. Rechenberg. Cybernetic Solution Path of an Experimental Problem. Royal Aircraft
Establishment Library Translation, 1965.

47. M.G.C. Resende. Greedy randomized adaptive search procedures (GRASP). Technical
Report TR 98.41.1, AT&T Labs-Research, 2000.

48. N. Ritter, R. Owens, J. Cooper, R. H. Eikelboom, and P. P. V. Saarloos. Registration
of stereo and temporal images of the retina. IEEE Trans. On Medical Imaging, 18:404–
418, 1999.

49. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

50. G. Syswerda. Simulated Crossover in Genetic Algorithms. In L. D. Whitley, editor,

Adaptive learning search, a new tool to help comprehending metaheuristics 23

Second workshop on Foundations of Genetic Algorithms, pages 239–255, San Mateo,
California, 1993. Morgan Kaufmann.

51. É. D. Taillard. A statistical test for comparing success rates. In Metaheuristic inter-
national conference MIC’03, Kyoto, Japan, August 2003.

52. É. D. Taillard, L. M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive Memory
Programming: A Unified View of Meta-Heuristics. European Journal of Operational
Research, 135(1):1–16, 1998.

53. E. Triki, Y. Collette, and P. Siarry. A theoretical study on the behavior of simu-
lated annealing leading to a new cooling schedule. European Journal of Operational
Research, 166:77–92, 2005.

54. D. Tschumperlé. Cimg library. Available at http://cimg.sourceforge.net/, 2005.
55. S. Voß and D. L. Woodruff. Optimization Software Class Libraries. OR/CS Interfaces

Series. Kluwer, Dordrecht, 2002.
56. O. Wendt and W. König. Cooperative Simulated Annealing: How Much Coopera-

tion is Enough ? Technical Report 97-19, Institute of Information Systems, Goethe
University, Frankfurt, 1997.

