
1

VLSI Characterization of the Cryptographic Hash
Function BLAKE

Luca Henzen,Student Member, IEEE, Jean-Philippe Aumasson, Willi Meier, and
Raphael C.-W. Phan,Member, IEEE

Abstract—Cryptographic hash functions are used to protect
information integrity and authenticity in a wide range of appli-
cations. After the discovery of weaknesses in the current deployed
standards, the U.S. Institute of Standards and Technology started
a public competition to develop the future standard SHA-3,
which will be implemented in a multitude of environments,
after its selection in 2012. In this paper, we investigate high-
speed and low-area hardware architectures of one of the 14
“second-round” candidates in this competition: BLAKE. VLSI
performance results of the proposed high-speed designs indicate
a throughput improvement between 16 and 36 % compared to
the current standard SHA-2. Additionally, we propose a compact
implementation of BLAKE with memory optimization that fits in
0.127 mm2 of a 0.18 µm CMOS. Measurements reveal a minimal
power dissipation of 9.59 µW/MHz at 0.65 V, which suggests that
BLAKE is suitable for resource-limited systems.

Index Terms—Cryptographic hash functions, SHA-3, VLSI
implementations, low-power, latch memory

I. I NTRODUCTION

Hash functions1 are cryptographic algorithms that take as
input a message of arbitrary length, and that return adigest
(or hash value) of fixed length (between 160 and 512 bits, in
most applications). Hash functions are used in a multitude of
protocols, be it for digital signatures within high-end servers,
or for authentication of embedded systems.

The research scene of hash functions has seen a surge of
works since attacks [1], [2], [3] on the two most deployed
hash functions, MD5 and SHA-1. A notable milestone was the
forgery of a MD5-signed certificate using a cluster of PlaySta-
tion 3’s [4]. Such results have led to a lack of confidence
in the current U.S. (and de facto worldwide) hash standard,
SHA-2 [5], due to its similarity with MD5 and SHA-1. As
a response to the potential risks of using SHA-2, the U.S.
Institute of Standards and Technology (NIST) has started a
public competition—theNIST Hash Competition—to develop
the future hash standard SHA-3 [6].

SHA-3 is expected to have at least the security of SHA-2,
and to achieve this with significantly improved efficiency. By

L. Henzen is with the Integrated Systems Laboratory (IIS), ETH Zurich,
CH-8092 Zurich, Switzerland (e-mail: henzen@iis.ee.ethz.ch).

J.-Ph. Aumasson is with Nagravision SA, CH-1033 Cheseaux, Switzerland
(e-mail: jeanphilippe.aumasson@gmail.com).

W. Meier is with the IAST institute, FHNW, CH-5210 Windisch,Switzer-
land (e-mail: willi.meier@fhnw.ch).

R.C.-W. Phan is with the Electronic & Electrical Engineering, Loughbor-
ough Uni, LE11 3TU, UK (e-mail: r.phan@lboro.ac.uk).

1Throughout the paper, “hash functions” refers to cryptographic hash
functions, rather than to hash functions used for table lookup.

the deadline of October 31, 2008, NIST received 64 submis-
sions, of which 51 were accepted as first round candidates,
and 14 as second round candidates in July 2009.

Besides a sufficient security level, the new hash standard
should be implementable on a wide range of environments.
In particular, performance in hardware is a crucial criterion to
select the future SHA-3, because available hardware is often
not flexible or limited, whereas high-end PCs can accommo-
date a relatively slow function. It is thus necessary to study
implementations of candidate algorithms on ASIC and FPGA,
and to evaluate their suitability for high-speed or resource-
limited environments.

BLAKE [7] is a second round candidate in the NIST
Hash Competition. Preliminary analysis suggests that BLAKE
performs well in software [8]. In this article, we investigate
VLSI implementations of BLAKE, by presenting two archi-
tectures for high-speed applications, and reporting on a silicon
implementation of a compact BLAKE core. Our work extends
the initial hardware evaluation of BLAKE described in its
supporting documentation [7], and the subsequent implemen-
tations in [9], [10].

The rest of this paper is structured as follows. Section II
gives a complete specification of the BLAKE hash function.
Section III describes our high-speed architectures and Sec-
tion IV our compact silicon implementation. Conclusions are
drawn in Section V.

II. A LGORITHM SPECIFICATION

BLAKE has two main versions: BLAKE-32 and BLAKE-
64. This section gives a brief specification of these algorithms.
A complete specification can be found in [7].

A. BLAKE-32

The BLAKE-32 algorithm operates on 32-bit words and
returns a 256-bit hash value. It is based on the iteration of a
compression function, described below.

1) Compression Function: Henceforth we shall use the
following notations: if m is a message (a bit string),mi

denotes itsi-th 16-word block, andmi
j is thej-th word of the

i-th block ofm. Indices start from zero, for example aN -block
messagem is decomposed asm = m0m1 . . .mN−1, and the
block m0 is composed of wordsm0

0, m0
1,m

0
2, . . . ,m

0
15. Idem

for other bit strings. Endianness conventions are described
in [7].

The compression function of BLAKE-32 takes as input four
values:

2

• a chaining valueh = h0, . . . , h7.
• a message blockm = m0, . . . ,m15.
• a salts = s0, . . . , s3.
• a countert = t0, t1.

These inputs represent 30 words in total (i.e., 960 bits). The
salt is an optional input for special applications, such as
randomized hashing [11]. The output of the compression
function is a new chaining valueh′ = h′

0, . . . , h
′

7 of eight
words (i.e., 256 bits). We write

h′ := compress(h,m, s, t).

The compression functioncompress() can be decomposed
into three main steps, described in II-A1a) to II-A1c).

a) Initialization: A 16-word internal statev0, . . . , v15 is
initialized such that different inputs produce different initial
states. This state is represented as a 4×4 matrix:









v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15









(1)

The initial state is defined as follows:









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









, (2)

wherec0, . . . , c15 are predefined word constants.
b) Round Function: Once the state is initialized, the

compression function iterates a series of tenrounds. A round
is a transformation of the state that computes

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13)
G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

(3)

and then

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12)
G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

(4)

where, at roundr, Gi(a, b, c, d) sets

a := a+ b+ (mσr(2i) ⊕ cσr(2i+1))
d := (d⊕ a) ≫ 16
c := c+ d

b := (b⊕ c) ≫ 12
a := a+ b+ (mσr(2i+1) ⊕ cσr(2i))
d := (d⊕ a) ≫ 8
c := c+ d

b := (b⊕ c) ≫ 7

(5)

The G function2 uses ten permutations of{0, . . . , 15},
written σ0, . . . , σ9, which are fixed by the design.G also
uses the constantsc0, . . . , c15. The unary operator≫ denotes
rotation of words towards least significant bits.

Note that the first four callsG0, . . . ,G3 in (3) can be
computed in parallel, because each updates a distinct column

2In the following, for statements that do not depend on the index i we shall
omit the subscript and write simplyG.

of the state. The sequenceG0, . . . ,G3 is called acolumn step.
Similarly, the last four callsG4, . . . ,G7 in (4) update distinct
diagonals and are called adiagonal step.

c) Finalization: After the sequence of rounds, the new
chaining valueh′ is extracted from the statev0, . . . , v15 with
input of the initial chaining valueh and the salts:

h′

0 := h0 ⊕ s0 ⊕ v0 ⊕ v8
h′

1 := h1 ⊕ s1 ⊕ v1 ⊕ v9
h′

2 := h2 ⊕ s2 ⊕ v2 ⊕ v10
h′

3 := h3 ⊕ s3 ⊕ v3 ⊕ v11
h′

4 := h4 ⊕ s0 ⊕ v4 ⊕ v12
h′

5 := h5 ⊕ s1 ⊕ v5 ⊕ v13
h′

6 := h6 ⊕ s2 ⊕ v6 ⊕ v14
h′

7 := h7 ⊕ s3 ⊕ v7 ⊕ v15

(6)

2) Hashing a Message: When hashing a message, the
function starts from aninitial value (IV), and the iterated
hash process computes intermediate hash values that are called
chaining values. Before being processed, a message is first
padded so that its length is a multiple of the block size (512
bits). It is then processed block per block by the compression
function, as described below:

h0 := IV
for i = 0, . . . , N − 1

hi+1 := compress(hi,mi, s, ℓi)
return hN

Here,ℓi is the number of message bits inm0, . . . ,mi, that is,
excluding the bits added by the padding. It is used to avoid
certain generic attacks on the iterated hash (e.g., [12]). The
salt s is chosen by the user, and set to zero by default.

B. BLAKE-64

BLAKE-64 operates on 64-bit words and returns a 512-bit
hash value. All lengths of variables are doubled compared to
BLAKE-32: for instance, chaining values are 512-bit, message
blocks are 1024-bit, salt is 256-bit, counter is 128-bit.

The compression function of BLAKE-64 is similar to that
of BLAKE-32 except that it makes 14 rounds instead of ten,
and thatGi(a, b, c, d) uses rotation distances 32, 25, 16, and
11, respectively. After ten rounds, the round function usesthe
permutationsσ0, . . . , σ4 for the last four rounds. The algorithm
for hashing a message is similar to that of BLAKE-32.

III. H IGH-SPEEDVLSI I MPLEMENTATIONS

In this section we investigate high-speed implementationsof
BLAKE, with an iterative decomposition of the round process.

Different architectures are made possible by varying the
number of integratedG modules. Modern high-speed commu-
nication systems where the space is not a fierce constraint can
take advantage of architectures with eightG modules or even
with a complete round-unrolled circuit [13]. At the opposite,
by scaling the number ofG modules the design becomes
slower but decreases in size (see design proposals of [7]).

Besides the round computation, BLAKE requires some
circuitry to perform initialization and finalization; for instance,

3

32 w-bit XORs are required to compute (2) and (6), where
w = 32 for BLAKE-32 andw = 64 for BLAKE-64. Further-
more, the complete execution of initialization and finalization
can be performed in the same clock cycle, when the new
message block is given. Like most hash functions, BLAKE
uses some constant values, which are

• the initial value IVi (eightw-bit words);
• the 16 round constantsci;
• the ten permutationsσi (in total of 640 bits).

These values are used mainly by theG function; the best
solution is to hard-code them without using special macro
blocks for storage. Since BLAKE iterates a series of rounds
over an internal state, additional sequential components are
required to store the following 44 values:

• the 8-word chaining valueh;
• the 16-word internal statev ;
• the 4-word of the salt values;
• the 16-word message blockm.

The two words of the countert need not be stored. In high-
speed architectures, the initialization process (the onlyphase
where the counter is used) is indeed executed in a single clock
cycle. Moreover, we decided to take the counter externally
as input together with the message block. This choice is
motivated by the fact that the counter during the last call of
the compression function “knows” the number of padded bits
inside the last message block. It is thus natural to treat it like
a normal input. The sequential area is thus made up by 44×w

registers (i.e., 1408 for BLAKE-32, 2816 for BLAKE-64) plus
some additional registers for the control unit.

To exploit the full parallelizability of BLAKE, two types
of design have been coded in VHDL. Referring to [14], [7],
the first is called [8G], which corresponds to a straightforward
round-iterative implementation with eightG modules comput-
ing the column and diagonal step; and the second, called [4G],
where only four parallelG modules concurrently compute
the two steps. Outside the round module, the sequential part
(register memories), and the components for initialization and
finalization, we added a control unit, based on a simple
finite-state machine, which computes the round increment
and starts or terminates the hashing process. Fig. 1 shows a
block diagram of the [8G]- and [4G]-BLAKE cores. During
the round iteration, only the state memory and the [8G],
respectively [4G], module are mainly involved.

A. Round Rescheduling

The G function of BLAKE is a modified version of the
core function of the stream cipher ChaCha [15] proposed by
Bernstein in the context of the eSTREAM Project3. Speed
limits for plain designs implementing several architectures of
ChaCha have been reported in [14]. The introduction of the
addition with the message/constant (MC) -pair in theG func-
tion leads to an increment of the propagation delay. If in the
core function (similar toG) the maximal delay is given by the

3Organized by the European NoE ECRYPT, the eSTREAM Project was a
multi-year effort running from 2004 to 2008, which identifieda portfolio of
promising stream ciphers

mi mem.mi mem. mi mem.

Finalization

Initialization

h mem. m mem.s mem.

[8G] resp. [4G]

counter salt message block

hash value
fe

e
d
fo

rw
rd

round iteration

σr

cici

ciIV

v mem.

Fig. 1. The main architecture of the [8G]- and [4G]-BLAKE cores.

total delay of four XORs and four modular adders (rotation is
a simple re-routing of the word without effective propagation
delay), the slightly modifiedG function inserts an addition
with the MC-pair. Accordingly, the maximal frequency values
of analogous BLAKE architectures (cf. [7]) are slightly lower
than those obtained for the stream cipher ChaCha. However,
with a rescheduling of theG computation, it is possible to
recover the original maximal path of ChaCha (four XORs and
four adders), hence decreasing the overall propagation delay
of the core function. Observing the flow dependencies in (5),
it is clear that the addition with the MC-pair is independent
(message word and constant are unrelated to the statev) and
can be computed in parallel to the other computations. If in a
single call ofG, similarly to the core function of ChaCha, each
update of the state has been conceived to operate sequentially,
the MC-pair addition can be shifted within the computations.
It is thus possible to anticipate it, reducing the critical path of
G. The rescheduledGi(a

∗, b, c, d) computes

a := a∗ + b

d := (d⊕ a) ≫ r0
c := c+ d

b := (b⊕ c) ≫ r1
a := a+ b+ (mσr(2i+1) ⊕ cσr(2i))
d := (d⊕ a) ≫ r2
c := c+ d

b := (b⊕ c) ≫ r3
a∗ := a+ (mσr+1(2i) ⊕ cσr+1(2i+1))

(7)

4

>>> 8

>>> 7

>>> 16

>>> 12

cσr(2i)

mσr(2i+1)

a∗

b

c

d

a∗

b

c

d

cσr+1(2i+1)

mσr+1(2i)

last round

Anticipated

computation

Fig. 2. Block diagram of the rescheduledG function. Note: the round index of the second message/constant pair is increased by one.

TABLE I
PERFORMANCE COMPARISON FOR A0.18 µM CMOS TECHNOLOGY.

Algorithm
Area

Cyc.
Freq. Thr. HW-Eff.

[kGE] [MHz] [Gbps] [kbps/GE]

[4G]-BLAKE-32 48 21 240 5.847 123
[4G]-BLAKE-64 98 29 204 7.192 74
[8G]-BLAKE-32 79 11 137 6.376 81
[8G]-BLAKE-64 147 15 106 7.216 49
BLAKE-32a [9] 46 22 171 3.971 87
BMW-256 [9] 170 1 10 5.385 32
CH16/32(-256)b [9] 59 8 146 4.665 79
ECHO-256 [9] 141 97 142 2.246 16
Fugue-256 [9] 46 2 256 4.092 88
Grøstl-256 [9] 58 22 270 6.290 108
Grøstl-512 [16] 340 14 85 6.225 18
Hamsi-256 [9] 59 1 174 5.565 95
JH-256 [9] 59 39 380 4.992 85
Keccak(-256) [9] 56 25 488 21.229 377
Luffa-256 [9] 45 9 483 13.741 306
Shabal-256 [9] 54 50 321 3.282 61
SHAvite-3-256 [9] 57 37 228 3.152 55
SIMD-256 [9] 104 36 65 0.924 9
Skein-256-256 [9] 59 10 74 1.882 32
Skein-512-512 [9] 102 10 49 2.205 22
SHA-256 [9] 19 66 302 2.344 122
SHA-512 [17] 31 88 169 1.969 64

a Salt support is omitted.
b We refer to the CubeHash candidate [18].

whereri are the rotation indices for BLAKE-32 and BLAKE-
64, and a∗ corresponds to the modified first input/output
variable after the MC addition. Fig. 2 shows the block diagram
of the modifiedG function. To keep the correct functional be-
havior, a 2-input MUX should be inserted before the sequential
logic, hence allowing the record ofa instead ofa∗ in the last
round.

B. Performance Analysis

To evaluate the speed-up provided by theG rescheduling,
we coded the [8G] and [4G] architectures in VHDL and we
synthesized them for BLAKE-32 and BLAKE-64 with the
Synopsys Compiler. Our results refer to fully-autonomous
designs, which take as input salt, counter, and message blocks
and generate the final hash value. Moreover, to obtain an
exhaustive analysis of the BLAKE hash cores, the designs
have been synthesized in four different UMC technologies:
0.18 µm, 0.13 µm, and 90 nm.

Tab. I-III present a detailed performance comparison with

TABLE II
PERFORMANCE COMPARISON FOR A0.13 µM CMOS TECHNOLOGY.

Algorithm
Area

Cyc.
Freq. Thr. HW-Eff.

[kGE] [MHz] [Gbps] [kbps/GE]

[4G]-BLAKE-32 43 21 330 8.047 187
[4G]-BLAKE-64 92 29 291 10.265 111
[8G]-BLAKE-32 67 11 201 9.365 140
[8G]-BLAKE-64 139 15 158 10.802 78
CH16/32 [19] 34 16 578 9.248 269
ECHO-256 [20] 521 9 87 14.850 29
ECHO-512 [20] 517 11 83 7.750 15
Hamsi-256 [21] 22 7 1 080 4.937 224
Hamsi-512 [21] 50 13 820 4.036 81
Keccak [22] 48 18 526 29.900 623
Luffa-256 [23] 27 9 444 12.642 471
Luffa-512 [23] 44 8 444 12.642 286
Shabal [19] 41 52 645 6.351 154
SHA-256 [24] 22 68 794 5.975 271
SHA-512 [24] 43 84 746 9.096 210

TABLE III
PERFORMANCE COMPARISON FOR A90NM CMOS TECHNOLOGY.

Algorithm
Area

Cycles
Freq. Thr. HW-Eff.

[kGE] [MHz] [Gbps] [kbps/GE]

[4G]-BLAKE-32 38 21 621 15.143 396
[4G]-BLAKE-64 79 29 532 18.782 237
[8G]-BLAKE-32 65 11 376 17.498 269
[8G]-BLAKE-64 128 15 298 20.317 158
Fugue-256[25] 110 2 870 13.913 127

the current standard SHA-2, and with other second round
candidates in the NIST Hash Competition for which per-
formance figures are available. Each entry refers to a post-
synthesis implementation, and the last column reports the
hardware efficiency, i.e., the ratio between throughput and
required area. Only for 0.18 µm we were able to provide a
full comparison between the 14 candidates. This was possible
thanks to the results provided in [9]. Fig. 3 illustrates thetrade-
off between area and processing time for the 256-bit versions
of the candidate functions plus the SHA-2 standard. Note that
our designs for BLAKE-32 support salted hashing which is
not the case in [9].

Compared to the architectures presented in [7], we obtain
a 20 % speed-up, due to the delay reduction of the round
rescheduling process described in the previous section. We
should however take into account an area increase caused by
the integration of the register-based memories for message

5

Processing time for 1Gbit [s]

A
re

a
[k

G
E

]

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

140

160

180
faster

smaller
more
efficient

ECHO-256

Skein-256-256

SIMD-256

SHA-256

SHAvite-3-256

Shabal-256

BLAKE-32
Fugue-256

CubeHash16/32

JH-256[8G]-BLAKE-32

BMW-256

Hamsi-256
Keccak-256

Luffa-256
[4G]-BLAKE-32

Grostl-256

Constant area x processing time

Fig. 3. Processing time for 1 Gbit of data versus total area of the 14 second round candidates (0.18 µm CMOS technology). Theblue points refer to the
implementations of [9]. The BLAKE-32 cores presented here arein red. The dashed lines defines the limit of constant efficiency equal to the SHA-2 core.

block, chaining value, and salt; note that the previous designs
of [7] represent only the compression function.

Comparing the proposed BLAKE cores with the SHA-
2 family, we observe a substantial throughput gain. This
improvement comes at the cost of an area increase, which
can also be a side effect of the alleged security improvement.
Comparing with the other candidates, BLAKE is faster than
about half of them. If we take into account that the function
Blue Midnight Wish [26] requires a large area to achieve the
same speed, we could assert that our architectures improve
the results of [9], outperforming in efficiency a set of four
candidate algorithms with similar throughput performances,
i.e., Grøstl [16], Hamsi [21], JH [27], and CubeHash [18]
(see Fig. 3). With the application of the round rescheduling,
we could indeed increase the hardware efficiency up to the
value achieved by SHA-256 in 0.18 µm.

The functions Keccak [22] and Luffa [23] outperform ev-
ery candidate in maximal achievable speed, requiring at the
same time limited-area hardware. This mainly follows from
their sole use of Boolean operators, rather than of modular
additions. Note however that such optimization for hardware
comes at a price in terms of performance in software (where
the function cannot benefit of CPU’s arithmetic instructions).
Moreover, previous cryptanalysis results suggest that such
designs may have structural flaws [28], [29].

IV. SILICON IMPLEMENTATION OF A COMPACT

BLAKE-32 CORE

We designed a compact architecture of BLAKE-32, to sat-
isfy the stringent restrictions of resource-constrained environ-
ments. Besides an area reduction, the cryptographic core must
also keep the energy dissipation at minimal values. Following
these two design principles, we concentrated our efforts inthe
reduction of the round circuit and in the implementation of
efficient memory modules (see Sec. IV-A).

As previously noted, BLAKE relies on eight calls of the
G function within the column and diagonal steps. Inside the
G function, the computation that requires most of the area

resources is the modular addition. Instead of implementing
four G modules with six independent 32-bit adders, we opted
for a single adder, where theG function is iteratively de-
composed in ten steps. This causes an increase of theper-
message block processing time, but contributes to a limited
overall size. Fig. 4 shows the block diagram of the proposed
compact architecture. For theG computation, two 32-bit XOR
gates and a rotation selector (ri defines the different rotation
numbers) are implemented in conjunction with the 32-bit adder
(cf. ② in Fig. 4). Each variable required by the hashing
process is stored in optimized two-port memories. In total,
five memory elements are needed, while an intermediate 32-
bit register allows the extraction of temporary state words. This
architecture leads to a total latency in clock cycles of 816 for
512-bit message block. In addition to the 10× 8×10 cycles
to complete the round function, 16 cycles are indeed needed
for the initialization process. Moreover, the initialization is
started while the update of the chaining value (finalization)
is still ongoing. Here after sorting the selected state wordvi
(required for theh′ computation, cf.③ in Fig. 4), the free
memory slot is filled with the new chaining value or with the
result coming from①, respectively.

If the output of the architecture is the 32-bit value stored in
the intermediate register, the input is a 32-bit word which is
consequently routed to the memories for message block, salt,
or block counter.

A. Memory Architecture

The VLSI implementation of BLAKE-32 needs memory to
store 16 words of internal state and eight words of chaining
value, plus additional registers to store the salt (four words),
the counter (two words), and the message block (16 words),
i.e., in total 1472 bits of memory. The counter is used during
four clock cycles and needs thus to be stored. Compared to
the minimum circuit needed to implement the compression
function (initialization, rounds, and finalization), the memory
units is the main contribution in terms of area and energy
consumption. It is thus of primary interest to design special-
purpose register elements, to decrease the global resource

6

1)

ri

IVi

ci

input word

output word

intermediate

register

chain value hi

[256-bit]

chain value h

[256-bit]

internal state vi

[512-bit]

internal state v

[512-bit]

message block mi

[512-bit]

message block m

[512-bit]

counter ti

[64-bit]

counter t

[64-bit]

salt si

[128-bit]

salt s

[128-bit]

1

2

3

2

Fig. 4. Block diagram of the implemented lightweight BLAKE-32. All
connections are 32-bit wide.

requirements of the hash core. We introduced in the compact
architecture of BLAKE-32 semi-custom memories based on
clock-gated latch arrays, able to store at most one word per
cycle. In general, depending on the word number of the target
value to be stored, these memories replace the standard flip-
flop gates by latch gates. The latches are organized in 32-bit
banks, so that each bank stores a single word and is triggered
by a dedicated gated clock [30].

Our example architecture in Fig. 5 depicts a 4-word latch
array, that is used to store the salt value. In the address decoder,
the different one-hot enable signals are activated, depending
on the write address. To prevent timing loops inside the logic,
caused by the transparent behavior of latches, an input flip-flop
bank is added. This bank is in turn driven by a gated clock
generated with the write enable signal, while the outputs ofthe
flip-flops are connected to the inputs of all latch banks. When
a write enable occurs, the input word is firstly stored insidethe
flip-flop bank and subsequently passed to the activated latch
bank.

To keep the functionality similar to a normal flip-flop-based
memory, the outputs of the latch array are connected with a
large multiplexer driven by the read address signal. This allows
an instantaneous response of the memory.

An area comparison between the proposed latch-array and
standard flip-flop-based memories is shown in Tab. IV. By
decreasing the number of words, the two memories get closer
in size. However, we still achieve a slight area saving, even

output

word

1

2

32

read

clock

address

write

address

write
enable

input
word

Address

decoder

Clock-gated

latch array

[4 × 32-bit]

gated-clock gated-clock

gated-clock

gated-clock

gated-clock

one-hot

write

enables

input
flip-flop bank

latch bank

latch bank

latch bank

Fig. 5. Overview of a 4-word memory unit implemented as clock-gated latch
array.

TABLE IV
SIZE COMPARISON INGEa OF THE MEMORY ELEMENTS IN A0.18 µM

CMOS TECHNOLOGY (POST LAYOUT RESULTS FOR200 MHZ) .

Word number 2 4 8 16

Standard FF 585 1234 2370 5434
Latch array 550 926 1681 3376

Area gain [%] 6 25 29 39

a One GE corresponds to the area of a two-input drive-one NAND gate in the 0.18µm
CMOS technology (area 9.3744 µm2).

with the smaller used memory size (counter). As can be seen
in Fig. 4, the compact BLAKE-32 architecture works with five
memories. This means an overall area reduction of about 34 %
for the memory components and 28 % for the complete design.
In order to compare the power consumption, we integrated
two equal BLAKE-32 cores up to layout, using different
memory strategies. With the aid of post place & route power
simulations, a 60 % mean reduction in the energy dissipationof
the five latch-based memory components has been measured,
leading to a global energy decrease of 36 % for the complete
design.

B. ASIC Constraints

The compact BLAKE-32 architecture has been coded in
VHDL and synthesized with the Synopsys Compiler using
the UMC 1P/6M 0.18 µm technology. The Cadence SoC
Encounter System has then been used to place & route the
final layout of the ASIC. The chip layout and the die photo
are presented in Fig. 6. The BLAKE-32 core fills only
0.127 mm2, which is only a small fraction of the total chip
(size 1.565 mm×1.565 mm, i.e., 2.450 mm2). Tab. V gives an
overview of the area partitioning of the hash core. In the
remaining space, additional projects distinct from BLAKE
have been integrated.

7

BLAKE-32 BLAKE-32

Fig. 6. Die photo (left) and layout (right) of the compact BLAKE-32 implementation in 0.18 µm CMOS technology. Note that the ASIC hosts some additional
unrelated circuitry for other cryptographic algorithms.

TABLE V
DETAILED CHIP AREA AND POWER CONTRIBUTION OF THE COMPACT

BLAKE-32 CORE.

Component
Area Powera

[GE] [%] [%]

m mem. (16 w) 3295 24.3 3.4
v mem. (16 w) 3457 25.5 26.4
h mem. (8 w) 1681 12.4 3.1
s mem. (4 w) 926 6.8 0.4
t mem. (2 w) 550 4.1 0.2
Controller 776 5.7 6.6
Round 2890 21.3 60.0

Total 13 575 100.0 100.0

a The power consumption values of the single modules are extracted from a
post-layout simulation-based power analysis.

C. Measurements and Performance Comparison

To test the correct functional behavior, the fabricated chip
has been stimulated using a HP83000 digital tester, under
different setups and stimuli vectors. The characteristic period
vs. supply voltage shmoo plot is presented in Fig. 7. The
evident aspect is that the maximal working frequency strongly
depends on the supply voltage.

To reach 200 MHz the chip must be supplied with the
technology nominal voltage of 1.8 V. With these parameters,
post layout power simulations have been performed, in or-
der to evaluate the single energy contributions of the chip
components (cf. last column of Tab. V). Memory modules,
sparsely used during the compression process, consume less
energy independently from their size. This is the primary goal
of the proposed memory architecture. Them memory, which
is one of the largest memory units, but updated only once
per compression, dissipates indeed the same amount of power
like the half-sizedh memory . This leads to a minor global
contribution by the storing elements, which consume globally

functional verification: passed failed

period [ns]

co
re

 s
up

pl
y

vo
lta

ge
 [V

]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

5 10 15 20 25 30 35 40 45 50

Fig. 7. Period-voltage shmoo plot for the compact BLAKE-32 design.

only 33.5 % of the total power, even if they fill more than
70 % of the chip area.

In resource-constrained environments like RFID systems
or smart cards, power is often limited, like the total silicon
size. The decrease of the supply voltage becomes an efficient
solution to reduce the overall consumption. As can be seen
from Fig. 7, this causes a proportional slowdown of the work-
ing frequency. It becomes thus important that in low voltage
regimes the frequency still satisfies the speed requirements
of the target communication protocol. For the case of the
RFID standards ISO 18000, ISO 14443, or ISO 15693, working
in high-frequency (HF) and low-frequency (LF) domains, the

8

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT CRYPTOGRAPHIC

PRIMITIVES.

Algorithm
Area Latency Imean Tech.
[GE] [cycles] [µA] [µm]

BLAKE-32 13.575 816 0.7 0.18
SHA-1 [33] 6.122 344 7.7 0.18
SHA-256 [34] 10.868 1128 3.2 0.35
MD5 [34] 8.001 712 3.2 0.35
AES-128 [35] 3.400 1032 3.0 0.35
ECC-163 [36] 11.904 306 000 5.7 0.18

operating frequency could reach the 13.56 MHz [31], [32]. By
selecting a correct functional region from the shmoo plot, we
could decrease the supply voltage at 0.65 V, ensuring a correct
behavior of the BLAKE-32 core up to 18 MHz.

Real power measurements of the core energy dissipation
have been performed using a long randomized message as in-
put. The mean power consumption, measured during the com-
pression process, indicates that the chip dissipates 22.32mW
in nominal condition at the working frequency of 200 MHz.
For the case of 13.56 MHz, i.e., the maximal frequency of
HF RFID applications, the core dissipates 130 µW at 0.65 V,
which is far below the predictions given in [37] (<500 µW).
However, to meet the restrictive constraints given in [38]
(mean current below 10 µA), the frequency should be scaled
to 100 kHz (see [39]). At this speed the chip requires only
0.55 V to generate correct output data. Tab. VI illustrates a
comparison with other cryptographic protocols (not neces-
sarily hash functions, and of different security levels), e.g.,
AES-128, at this target frequency. Although the area is the
largest, the BLAKE core turns out to be the most efficient
circuit in terms of mean current. Nonetheless, the area demand
of the proposed implementation could be further reduced by
removing the message block memory and the salt support. For
the first case we could suppose the presence of an external
tamper-resistant memory, that stores the secret message, for
the second case we simply omit an added functionality of
the BLAKE algorithm. We designed up to layout a modified
version of the compact BLAKE core. The size of this reduced
BLAKE-32 version requires just 8.802 kGE. In Tab. VII, a
comparison with other compact implementations of second
round candidates of the SHA-3 competition is proposed. The
results demonstrate a fair optimal trade-off between area and
speed for our compact BLAKE designs, which are well-suited
for area-limited embedded systems.

V. CONCLUSION

The future cryptographic hash standard SHA-3 should be
suitable and flexible for a wide range of applications, featuring
at the same time an optimal security strength. In this work,
we presented a complete hardware characterization of the
BLAKE candidate, using different design approaches to gen-
erate fully-autonomous high-speed and compact implementa-
tions. A round rescheduling technique and a special-purpose
memory design are also proposed. Post-synthesis results of
speed optimized architectures demonstrate a throughput im-
provement of up to 36 % for 256-bit hashing and up to 16 %

TABLE VII
OVERVIEW OF LOW-AREA ARCHITECTURES OF THESHA-3 ROUND 2

CANDIDATES.

Algorithm
Area Freq. Thr. Tech.

[kGE] [MHz] [Mbps] [µm]

BLAKE-32 13.575 215 135.0 0.18
BLAKE-32a 8.602 100 62.7 0.18
BLAKE-32 [10] 25.569 31 15.4 0.35
Grøstl [10] 14.622 56 145.9 0.35
Keccakb [22] 5.000 200 52.9 0.13
Luffa-256 [23] 10.157 100 28.7 0.13
Skein-256 [10] 12.890 80 19.8 0.35

a This compact core uses an external memory to hold the message block
and does not provide salted hashing.

b This implementation uses external memory to hold 1600-bit intermediate
values during the hashing of a message.

for 512-bit compared to iterative bounded implementations
of the current standard SHA-2. Furthermore, a low-power
compact implementation of BLAKE-32 has been fabricated
in a 0.18 µm CMOS. Measurements reveal a minimal power
dissipation of 130 µW at the RFID nominal frequency of
13.56 MHz. We believe that a similar memory approach for
compact VLSI implementations of cryptographic protocols is
a valuable choice to reduce the area and power consumption
of the integrated circuit.

The wide spectrum of achieved performances paves the way
for the application of the BLAKE function to various hardware
implementations.

ACKNOWLEDGMENT

The authors would like to thank F. Carbognani for his
support during the VLSI design and P. Meinerzhagen for his
valuable effort in the memory analysis.

REFERENCES

[1] X. Wang and H. Yu, “How to break MD5 and other hash functions,”
in Advances in Cryptology - EUROCRYPT 2005, ser. Lecture Notes in
Computer Science, vol. 3494. Springer Berlin / Heidelberg, 2005, pp.
19–35.

[2] C. D. Cannière and C. Rechberger, “Finding SHA-1 characteristics: Gen-
eral results and applications,” inAdvances in Cryptology - ASIACRYPT
2006, ser. Lecture Notes in Computer Science, vol. 4284. Springer
Berlin / Heidelberg, 2006, pp. 1–20.

[3] M. Stevens, A. Lenstra, and B. de Weger, “Chosen-prefix collisions
for MD5 and colliding X.509 certificates for different identities,” in
Advances in Cryptology - EUROCRYPT 2007, ser. Lecture Notes in
Computer Science, vol. 4515. Springer Berlin / Heidelberg, 2007, pp.
1–22.

[4] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D. A.
Osvik, and B. de Weger, “MD5 considered harmful today. Creating
a rogue CA certificate,” inProc. of the 25st Chaos Communication
Congress, 2008.

[5] NIST, “Announcing the secure hash standard,” FIPS 180-2, Technical
report, 2002.

[6] ——, “Call for a new cryptographic hash algorithm (SHA-3)fam-
ily,” Federal Register, Vol.72, No.212, 2007, http://www.nist.gov/
hash-competition.

[7] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “SHA-3
proposal BLAKE,” Submission to NIST, 2008, http://131002.net/blake/.

[8] D. J. Bernstain and T. L. (editors), “eBASH: ECRYPT benchmarking
of all submitted hashes,” http://bench.cr.yp.to.

[9] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt,
and A. Szekely, “High-speed hardware implementations of BLAKE,
Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH,
Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein,” Cryptology ePrint
Archive, Report 2009/510, 2009.

9

[10] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck,
M. Mühlberghuber, G. Neubauer, A. Reiter, A. Köfler, and
M. Mayrhofer, “Compact hardware implementations of the SHA-3
candidates ARIRANG, BLAKE, Grøstl, and Skein,” CryptologyePrint
Archive: Report 2009/349, 2009.

[11] NIST, “SP 800-106, randomized hashing digital signatures,” 2007.
[12] J. Kelsey and B. Schneier, “Second preimages on n-bit hash functions

for much less than 2n work,” in EUROCRYPT, ser. Lecture Notes in
Computer Science, R. Cramer, Ed., vol. 3494. Springer, 2005, pp.
474–490.

[13] R. Lien, T. Grembowski, and K. Gaj, “A 1 Gbit/s partially unrolled
architecture of hash functions SHA-1 and SHA-512,” inTopics in
Cryptology - CT-RSA 2004, ser. Lecture Notes in Computer Science,
vol. 2964. Springer Berlin / Heidelberg, 2004.

[14] L. Henzen, F. Carbognani, N. Felber, and W. Fichtner, “VLSI hardware
evaluation of the stream ciphers Salsa20 and ChaCha, and thecompres-
sion function Rumba,” inProc. of the IEEE Int. Conference on Signals,
Circuits and Systems (SCS), Nov. 2008, pp. 1–5.

[15] D. J. Bernstein, “ChaCha, a variant of Salsa20,” 2007, http://cr.yp.to/
chacha.html.

[16] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,C. Rech-
berger, M. Schläffer, and S. S. Thomsen, “Grøstl - a SHA-3 candidate,”
Submission to NIST, 2008, http://www.groestl.info.

[17] A. Satoh, “ASIC hardware implementations for 512-bit hash function
Whirlpool,” in Proc. of the IEEE Int. Symposium on Circuits and Systems
(ISCAS), Seattle, WA, May 2008, pp. 2917–2920.

[18] D. J. Bernstein, “CubeHash specication (2.b.1),” Submission to NIST,
2008, http://cubehash.cr.yp.to/.

[19] M. Bernet, L. Henzen, H. Kaeslin, N. Felber, and W. Fichtner, “Hard-
ware implementations of the SHA-3 candidates Shabal and CubeHash,”
in Proc. of the IEEE Midwest Symposium on Circuits and Systems
(MWSCAS), Cancun, Mexico, Aug. 2009, pp. 515–518.

[20] L. Lu, M. O’Neill, and E. Swartzlander, “Hardware evaluation of SHA-
3 hash function candidate ECHO,” inProc. of the Claude Shannon
Workshop on Coding and Cryptography, 2009.

[21] O. Küçük, “The hash function Hamsi,” Submission to NIST, 2008, http:
//homes.esat.kuleuven.be/~okucuk/hamsi/.

[22] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge
function family,” Submission to NIST, 2008, http://keccak.noekeon.org/.

[23] C. D. Canniere, H. Sato, and D. Watanabe, “Hash functionLuffa,”
Submission to NIST, 2008, http://www.sdl.hitachi.co.jp/crypto/luffa/.

[24] Y. K. Lee, H. Chan, and I. Verbauwhede, “Iteration boundanalysis and
throughput optimum architecture of SHA-256 (384,512) for hardware
implementations,” inInformation Security Applications, ser. Lecture
Notes in Computer Science, vol. 4867. Springer Berlin / Heidelberg,
2008, pp. 102–114.

[25] S. Halevi, W. E. Hall, and C. S. Jutla, “The hash functionFugue,”
Submission to NIST, 2008, http://domino.research.ibm.com/comm/
research_projects.nsf/pages/fugue.index.html.

[26] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J.Amundsen,
and S. F. Mjølsnes, “Cryptographic hash function Blue Midnight Wish,”
Submission to NIST, 2008, http://www.q2s.ntnu.no/blue_midnight_wish/
start.

[27] H. Wu, “The hash function JH,” Submission to NIST, 2008, http://icsd.
i2r.a-star.edu.sg/staff/hongjun/jh/.

[28] I. Dinur and A. Shamir, “Cube attacks on tweakable black box poly-
nomials,” in EUROCRYPT, ser. Lecture Notes in Computer Science,
A. Joux, Ed., vol. 5479. Springer, 2009, pp. 278–299.

[29] C. Boura and A. Canteaut, “A zero-sum property for the Keccak-f per-
mutation with 18 rounds,” NIST mailing list, 2010. [Online]. Available:
http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf

[30] H. Kaeslin,Digital Integrated Circuit Design. From VLSI Architectures
to CMOS Fabrication. Cambridge, UK: Cambridge University Press,
2008.

[31] A. Juels, “RFID security and privacy: a research survey,” IEEE J. Select.
Areas Commun., vol. 24, no. 2, pp. 381–394, Feb. 2006.

[32] Y. Eslami, A. Sheikholeslami, P. G. Gulak, S. Masui, and K.Mukaida,
“An area-efficient universal cryptography processor for smart cards,”
IEEE Trans. VLSI Syst., vol. 14, no. 1, pp. 43–56, Jan. 2006.

[33] M. O’Neill, “Low-cost SHA-1 hash function architecture for RFID tags,”
in Proc. of the Workshop on RFID Security RFIDsec, 2008.

[34] M. Feldhofer and J. Wolkerstorfer, “Strong crypto for RFID tags - a
comparison of low-power hardware implementations,” inProc. of the
IEEE Int. Symposium on Circuits and Systems (ISCAS), New Orleans,
LA, May 2007, pp. 1839–1842.

[35] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES implementation on
a grain of sand,” inProc. of IEE Information Security, vol. 152, Oct.
2005, pp. 13–20.

[36] D. Hein, J. Wolkerstorfer, and N. Felber, “ECC is ready for RFID - a
proof in silicon,” in Selected Areas in Cryptography, ser. Lecture Notes
in Computer Science, vol. 5381. Springer Berlin / Heidelberg, 2009,
pp. 401–413.

[37] L. Batina, J. Guajardo, B. Preneel, P. Tuyls, and I. Verbauwhede,
“Public-key cryptography for RFID tags and applications,”in RFID
Security. Springer US, 2009, pp. 317–348.

[38] J. Wolkerstorfer, “Is elliptic-curve cryptography suitable to secure RFID
tags?” inProc. of the Workshop on RFID and Lightweight Crypto, Graz,
Austria, 2005.

[39] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong authentication
for RFID systems using the AES algorithm,” inCryptographic Hardware
and Embedded Systems - CHES 2004, ser. Lecture Notes in Computer
Science, vol. 3156. Springer Berlin / Heidelberg, 2004, pp.85–140.

Luca Henzen (S’08) received his M.S. degree in electrical engineering
from the Swiss Federal Institute of Technology Zurich (ETHZ), Zurich,
Switzerland, in 2007.

He then joined the Integrated Systems Laboratory of the ETHZ as Research
Assistant, where he is currently pursuing the Ph.D. degree.His research
interests include the design of VLSI circuits for cryptographic applications
and low-power systems.

Jean-Philippe Aumassongot his M.S. degree in computer science at Paris
VII university (France) in 2006, and his doctoral degree in computer science
at the Swiss Federal Institute of Technology Lausanne (EPFL) in 2009.

He has been a doctoral researcher at the University of Applied Sciences
Northwestern Switzerland in Windisch during his PhD. Since2010, he
is working as a cryptography engineer for Nagravision SA in Cheseaux,
Switzerland. His research interests are analysis and design of symmetric
cryptographic algorithms.

Dr. Aumasson is a member of the International Association for Cryptologic
Research.

Willi Meier got his diploma in mathematics in 1972, and his doctoral degree
in mathematics in 1975, both at the Swiss Federal Institute of Technology
Zurich (ETHZ).

He has been a guest researcher at the universities of Oxford and Heidelberg
and a research assistant at University Siegen (Germany). Since 1985 he is a
professor of mathematics and computer science at the University of Applied
Sciences Northwestern Switzerland in Windisch. His present interests are
analysis and design of cryptographic primitives like streamciphers and hash
functions. He is an associate member of ECRYPT II, and an associate editor
of the Journal of Cryptology.

Prof. Meier is a member of the International Association for Cryptologic
Research.

Raphael C.-W. Phan(M’03) obtained his B.Eng. (Hons.) degree in computer
engineering in 1999, and M.Eng.Sc. and Ph.D. degrees in cryptography in
2001 and 2005 respectively.

He is a lecturer in the Electronic & Electrical Engineering department of
Loughborough University, UK. He researches in diverse areas of security and
privacy, ranging from cryptology through side-channel attacks and smart cards
to authentication protocols.

Dr. Phan has served in the technical program committees of IEEEconfer-
ences including ICC, Globecom, WCNC and PIMRC.

