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Abstract—A public competition organized by the NIST re-
cently started, with the aim of identifying a new standard
for cryptographic hashing (SHA-3). Besides a high security
level, candidate algorithms should show good performance on
various platforms. While an average performance on high-
end processors is generally not critical, implementability and
flexibility in hardware is crucial, because the new standard will
be implemented in a variety of lightweight devices. This paper
investigates VLSI architectures of the SHA-3 candidates MD6
and ïrRUPT. The fastest circuit is the 16×parallel MD6 core,
reaching 16.3Gbps at a complexity of 69.8 k gate equivalents
(GE) on ASIC and 8.4Gbps using 4465 Slices on FPGA. However,
large memory requirements preclude the application of MD6
to resource-constrained systems. The most flexible and efficient
circuit turns out to be our 2-ïrRUPT64x2-256/8 core, which
achieves a throughput of 5.0Gbps at 12.7 kGE on ASIC and
1.7Gbps using 613 Slices on FPGA.

I. INTRODUCTION

Cryptographic hash functions are ubiquitous algorithm used
in numerous schemes like digital signatures, public-key en-
cryption, or MAC’s. Hash functions process an arbitrary-length
message to produce a small fixed-length digital fingerprint,
and should satisfy a variety of security properties (preimage
resistance, collision resistance, pseudorandomness, etc.). In the
last years, a wide range of attacks have been applied to the pre-
vious standards MD5 and SHA-1, to break their collision re-
sistance [1], [2]. Although only collisions in reduced versions
of the current standard SHA-2 are known [3]–[5], researchers
are skeptical about its long-term security. As a response, the
U.S. National Institute of Standards and Technologies (NIST)
recently launched a call for candidate functions for a new
cryptographic hash algorithm (SHA-3) family [6]. The hash
functions MD6 [7] (by the author of MD5) and ïrRUPT [8]
have been accepted as Round 1 candidates.
Besides a high security, the new hash standard should be
suitable for implementations on a wide range of applications.
In particular, hardware efficiency will be crucial to determine
the future SHA-3, because hardware resources are often lim-
ited, whereas on high-end PC’s it does not matter much in
general; indeed, even the slowest hash function has acceptable
performance on a PC. Furthermore, hash function designers
seldom study the hardware performance. It is thus necessary to
independently study implementations of future candidates on
ASIC and FPGA, and determine their suitability for resource-
limited environments.

Contributions: This paper presents five hardware archi-
tectures for the hash functions MD6 and ïrRUPT. Particular
attention has been drawn in the analysis of the round process
to exploit parallelism, to maximize the circuit speed. A com-
parison between the analyzed circuits and other cryptographic
hash primitives is provided. To the best of the authors’
knowledge this is the first paper that investigates hardware
implementations of SHA-3 candidates.
Outline: The remainder of this paper is organized as
follows. Sec. II defines the algorithm specification of MD6
and ïrRUPT. Sec. III describes our methodologies and the
parallelization process used in our implementations. Sec. IV
reports our results along with a comparison to previous hash
function, and Sec. V draws the conclusions.

II. ALGORITHM SPECIFICATION

The hash functions considered produce a n-bit hash value by
processing fixed-length blocks of the variable-length message.
In some cases, before starting to hash the message, the final
block needs to be completed, in order to reach the required
length. This procedure, referred to as message padding, is a
common preprocessing operation in several hash functions.

A. The MD6 Hash Function
Messages processed by the MD6 hash function are parsed
in words of w=64 bits. The first distinctive feature of MD6 is
its mode of operation. The standard operation mode builds a
quadtree structure (in the spirit of Merkle trees), which allows
the parallel computation of large messages. Every leaf node
of the tree computes an intermediate chaining value, which
is passed to a parent node with other three chaining values,
coming from other leaf nodes. The final digest is computed
in the root node of the tree. However, MD6 has also been
specified to work in a sequential mode (where the level of the
tree is L=0) similar to the classical iterated hash construction.
The full tree-based and the alternative reduced tree-based
modes allow multi-processor computations. However, this
feature concerns more the software implementation of MD6
rather than the hardware. From a pure hardware point of view,
the main component turns out to be the internal compression
function fc(). This defines the speed of the hashing core
and mainly contributes to the circuit size. Furthermore, by
replicating the compression core and switching from the



Algorithm 1 MD6 compression function fc()

input A = (a0, a1, . . . , a88)
= (Q, K, U, V, C(−1), B(0), B(1), B(2))

set s = 0x0123456789abcdef

mask = 0x7311c2812425cfa0

for i = 89, 90, . . . , 16r + 88 do
x = s ⊕ ai−89 ⊕ ai−17

x = x ⊕ (ai−18 ∧ ai−21) ⊕ (ai−31 ∧ ai−67)
x = x ⊕ (x # ri−89)
ai = x ⊕ (x $ li−89)
if (i − 89)mod16 = 15

s = (s ≪ 1) ⊕ (s ∧ mask)
return C = (a16r+73, a16r+74, . . . , a16r+88)

sequential to a tree-based mode, the overall throughput of the
MD6 circuit can simply be increased.
In the sequential L=0 operation mode, the function fc()
compresses four blocks of 16 64-bit words to a 16-word
block C = (c0, . . . , c15). The first input block corresponds
to the previous computed compression value C(−1) and the
last three are message blocks B(j) = (b(i)

0 , . . . , b(i)
15 ). Before

the computation, the 64-word input is prefixed by a constant
vector Q of 15 words, a 8-word key K , and two additional
control words U (unique node ID) and V (parameters). The
resulting 89-word input vector A is then compressed to the
16-word C through a sequence of 16r steps (see Alg. 1). If
the computed compression is the last node (root), its final
C value is truncated to the desired n-bit digest length. The
number of rounds is set as r = &n/4' + 40, i.e. MD6-256
makes 104 rounds and MD6-512 168 rounds. The 16-word
shift operators ri and li increase diffusion between the input
words, while the constants si, defined by a simple recurrence,
reduce self-similarity.

B. The ïrRUPT Stream Hashing Mode
ïrRUPT is the stream hashing mode of the polymorphic
cryptographic primitive EnRUPT. The compressed hash value
C is computed by processing a S-bit message one word at a
time, with w=64 bits. The EnRUPT stream hash functions have
different ïrRUPTwxP -n/s variants, where P and s defines the
parallelization end security degree. After collisions were found
in the first presented version with P=2 and s=4, the authors
now recommend to use s=8 for 256-bit hashing (ïrRUPT64x2-
256/8), and s=16 for 512-bit hashing (ïrRUPT64x2-512/16).

Algorithm 2 ïrRUPT stream hashing mode
input M = (m0, m1, . . . , m"S/w#)
set H = s, x0...H−1 = d0 = d1 = r = 0
for i = 0, 1, . . . , &S/w' do ïr2s(mi)
ïr2s(n)
for i = 0, 1, . . . , H − 1 do ïr2s(0)
for i = 0, 1, . . . , n/w − 1 do ci=ïr2s(0)
return C = (co, c1, . . . , cn/w−1)

Alg. 2 depicts the structure of ïrRUPT. The stream construc-
tion schedules a first process phase, where theH-word internal
state X is updated using message words and the round number
r. The middle stage seals the state, while the output stage sorts
a word ci of the digest every iteration. The ïr2s(p) function
performs 2s=8 non-invertible EnRUPT round computations ïr1
over X and the delta accumulator D = (d0, d1). At the end,
it returns the second word of D updated and combined with
the input word, i.e., d1 = d1 ⊕ p. The basic component of the
algorithm is the ïr1 module, defined as
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f = [(2xr⊕1 ⊕ xr+4 ⊕ dr∧1 ⊕ r) ≫ w/4] × 9
xr+2 = xr+2 ⊕ f
dr∧1 = dr∧1 ⊕ f ⊕ xr

r = r + 1

(1)

This structure only uses exclusive-ORs (XOR’s), word-wise
rotations, and modulo 2w additions. Multiplication by nine is
turned into the addition of the word with its ’$ 3’ part.

III. HARDWARE IMPLEMENTATION
The basic description of MD6 and ïrRUPT in hardware is
based on the implementation of a memory to store the internal
state variable (A and X , respectively) with in addition one or
more combinational units to execute the round function.

A. MD6 Architecture
The MD6 compression function needs at least 89 64-bit
registers to store A inside a shift register memory unit. Every
cycle the words of A are shifted toward the lower index,
erasing the lowest index term and adding the new computed
word at the top of the memory. The area estimate of such a
712-byte memory is about 30 kGE. This large size suggests the
impossibility of low-area architectures (specifically on ASIC).
Our main goal was to achieve a hardware-efficient high-
speed compression core. Analyzing the structure of the loop
inside Alg. 1, one observes that 17 new ai words can be
computed in parallel (the lowest tap is 17). Nevertheless, a
16×parallel architectures was designed, where only 16 new
words are computed within a clock cycle. This choice is
motivated by the generation of the s constants. The same
constant is indeed used for 16 steps, after which is updated.
Fig. 1 depicts and overview of the implemented architecture.
Memory is implemented as a 89-word 16×shift register.
A compression thus requires r iterations, instead of 16r.
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Fig. 1. Block diagram of the 16×parallel MD6 compression function. All
connections are 64-bit wide.



Every round module uses simple 64-bit AND, XOR, and shift
operators. Furthermore, MD6-256 and MD6-512 are based on
the same described architecture, where essentially only the
round number r differs.

B. ïrRUPT Architectures
The first investigated ïrRUPT architecture, i.e., 2s-ïrRUPT,
is isomorphic to the ïrRUPT algorithm (see Fig. 2(A)). Since
the P parameter is equal to 2, a single double-ïr1 is composed
by two parrallel ïr1 round functions. Every cycle, the updated
X state and the new delta accumulator words di are computed
and stored inside the H+2 w-bit memory. The aim of 2s-
ïrRUPT is to achieve a high throughput, by maintaining the
computational depth of the algorithm.
The second architecture is based on the iterative decomposi-
tion of the ïr2s() function (see Fig. 2(B)). A single double-ïr1
unit has been implemented in combination with the memory.
In 2-ïrRUPT, after s clock cycles a complete ïr2s() is executed.
The final digest words ci are generated every four cycles,
during the output phase.
In both architectures, the double-ïr1 unit consists in a
progressive word-shift of X , combined with two parallel ïr1
blocks (see Fig. 3). As for the implementation of MD6, the
ïr1 modules take as inputs always the same xi words. Hence,
according to the algorithm, every word is shifted by two every
cycle. This final word shift operation is equivalent to the
increment of the index variable r by two.

IV. RESULTS AND PERFORMANCE COMPARISON
The speed of a hash circuit is the result of the operational
frequency f multiplied by the mean number of processed
message bits per clock cycle. This last term is the quotient of
the length of the input message S and the number of cycles
nlat needed to compute the digest. In standard block hashing
schemes, e.g., SHA-2, MD5, nlat corresponds to the product
between the latency in cycles of a single compression process
and the number of executed compressions. The throughput in
our MD6L=0 architecture is, therefore, described by
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Fig. 2. Block diagrams of 16/32-ïrRUPT (A), and 2-ïrRUPT (B) architectures.
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Fig. 3. Word-shift structure of the double-ïr1 module. All connections are
w-bit wide.
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Conversely, the ïrRUPT stream structure is divided into
three functional stages, from which the process stage persists
until the whole message is injected, while the other two are
defined by H and n. This leads to a throughput formula of

T = f
S

nlat
= f

S
1
k

(⌊

S
w

⌋

+ 2 + H + n
w

) , (3)

where k defines the iterative degree of the architecture.
In 2s-ïrRUPT, k is equal to one, while in 2-ïrRUPT, k=1/s.
Fig. 4 shows the throughput variation of the implemented
architectures with increasing message length. Using long sizes,
the speed of the ïrRUPT cores converges to f · k ·w, while in
the MD6L=0 core, to f · (3 · 16w)/r.
The throughput results with the area requirements of the
circuits are summarized in Tab. I and Tab. II. The hashing cores
have been coded in functional VHDL and synthesized with
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TABLE I
ASIC IMPLEMENTATION RESULTS FOR A 0.18 µM CMOS TECHNOLOGY.

Ref. Function Area Frequency nlat Throughput HW-eff.
[kGE] [MHz] [Cycles] [Gbps] [Kbps/GE]

Memory (ratio) Total 1 kbit S Long S 1 kbit S Long S
Ours MD6L=0-256 33.13 (47%) 69.78 552 104#S/(48w)$ 5.440 16.320 78.0 233.9
Ours MD6L=0-512 33.13 (47%) 69.78 552 168#S/(48w)$ 3.368 10.103 48.3 144.8
Ours 16-ïrRUPT64x2-256/8 4.22 (7%) 57.86 99 %S/w& + 14 3.363 6.305 58.1 109.0
Ours 2-ïrRUPT64x2-256/8 4.30 (34%) 12.73 621 8(%S/w& + 14) 2.650 4.969 208.1 390.2
Ours 32-ïrRUPT64x2-512/16 7.65 (7%) 117.56 50 %S/w& + 26 1.213 3.184 10.3 27.1
Ours 2-ïrRUPT64x2-512/16 7.21 (44%) 16.41 621 16(%S/w& + 26) 0.946 2.484 57.7 151.4
[9] SHA-256 - 15.10 190 72 1.349 87.6
[9] SHA-512 - 30.75 170 88 1.969 64.0
[9] Whirlpool - 52.79 262 21 6.382 120.9
[10] Grøstl-256 - 130.64 86 - 4.379 33.5
[10] Grøstl-512 - 340.50 85 - 6.225 18.3
[11] BLAKE-32 4.79 (12%) 41.31 170 21 4.153 100.5
[11] BLAKE-64 6.13 (7%) 82.73 136 29 4.810 58.1

the Synopsys Compiler, using a 0.18 µm CMOS technology.
The hardware analysis also includes the evaluation on a Xilinx
Virtex-4 LX100 FPGA device.
The architecture for MD6L=0-256 and MD6L=0-512 is the
fastest design. It takes advantage of the low combinational
logic depth of a step, which translates into high frequency
values. A single compression core indeed reaches 16.3Gbps
on ASIC and 8.4Gbps on FPGA. However, the large memory
requirements reduce the adaptability of MD6 to resource-
constrained environments, where the available chip area for
security features can be assumed between 1 and 10kGE.
Much more versatile is the ïrRUPT function. The isomor-
phic 16-ïrRUPT64x2-256/8 core achieves 6.3Gbps on ASIC
and 2.1Gbps on FPGA, hashing long messages. The best
speed/size trade-off is obtained with the 2-ïrRUPT64x2-256/8
architecture, which shows the most compact area 12.7 kGE
on ASIC and 613 Slices on FPGA, and the best hardware
efficiency.

V. CONCLUSION
This paper investigated five architectures of the crypto-
graphic hash functions MD6 and ïrRUPT. A close comparison
to competitor algorithms stresses an overall increase of the
speed performances of the proposed cores. Although the fastest
speed values have been obtained with the MD6 circuit, the
algorithm construction showed a scarce adaptability to hard-
ware environments, caused by its large memory requirements.
From a pure hardware point of view, the ïrRUPT hash function
results the suitable algorithm for a wide range of VLSI
applications. High-speed systems can integrate the proposed
2s-ïrRUPT architecture, while for minimum-size environments
the 2-ïrRUPT turns out to be the best choice. These statements
are confirmed by the computed hardware efficiency ratios of
the circuits.
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