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Abstract. In 2013 Intel will release the AVX2 instructions, which introduce 256-bit single-
instruction multiple-data (SIMD) integer arithmetic. This will enable desktop and server
processors from this vendor to support 4-way SIMD computation of 64-bit add-rotate-xor
algorithms, as well as 8-way 32-bit SIMD computations. AVX2 also includes interesting in-
structions for cryptographic functions, like any-to-any permute and vectorized table-lookup.
In this paper, we explore the potential of AVX2 to speed-up the SHA-3 finalist BLAKE,
and present the first working assembly implementations of BLAKE-256 and BLAKE-512
with AVX2. We then investigate the potential of the recent AVX and XOP instructions to
accelerate BLAKE, and report new speed records on Sandy Bridge and Bulldozer microar-
chitectures (7.47 and 11.64 cycles per byte for BLAKE-256, 5.71 and 6.95 for BLAKE-512).
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1 Introduction

NIST plans announce the winner of the SHA-3 competition in the second quarter of 2012. At the
time of writing, no significant security weakness is known for any of the five finalists, and all seem
to provide a comfortable security margin. Performance and ease of implementation will thus be
decisive in the choice of SHA-3. An important performance criterion is hashing speed on high-
end CPUs, as found in laptops, desktops, or servers. Arguably, systems hashing large amounts of
data—be it many short messages or a fewer large ones—will only switch from SHA-2 to SHA-3 if
the latter is noticeably faster; fast hashing is for example needed for authenticating data in secure
cloud storage services.

This paper focuses on the hashing speed of the SHA-3 finalist BLAKE. We investigate how the
current and future instructions sets by the CPU vendors Intel (with AVX and AVX2) and AMD
(with AVX and XOP) can be exploited to create efficient implementations of BLAKE-256 and
BLAKE-512, the two main instances of BLAKE. Previous implementations of BLAKE exploited
the SSE instruction sets, which provide single-input multiple-data (SIMD) instructions over the
128-bit XMM registers. Thanks to BLAKE’s inherent internal parallelism, such instructions often
lead to a significant speed-up compared to non-SIMD code. The 2011 AVX and XOP instruction
sets and the future AVX2 extend SIMD capabilities to 256-bit registers, and thus provide new
avenues for optimized implementations of BLAKE.

We wrote C and assembly implementations of BLAKE-256 and BLAKE-512 for AVX2, whose
correctness was verified through Intel’s emulator. As AVX2 is not rolled out in today’s CPUs, a
best effort was to make heuristical estimates based on the information available. We also wrote
an assembly implementation of BLAKE-256 running at 7.47 cycles per byte on our Sandy Bridge
CPU, a new record on this platform. On the same machine, our implementation of BLAKE-512 for
AVX runs at 5.71 cycles per byte, another record. On AMD’s hardware, our XOP implementations
also beat previous ones, with respectively 11.64 and 6.95 cycles per byte for BLAKE-256 and
BLAKE-512.

Besides setting new speed records on recent CPUs, our work shows that BLAKE can benefit
from a number of the sophisticated instructions integrated in modern hardware architectures,
although these were often added for completely different purposes.

∗A preliminary version of this work was presented at the Third SHA-3 Conference. Additions in this
revised and augmented version include observations on tree hashing, AVX implementation of BLAKE-512,
improved AVX implementations of BLAKE-256, and XOP implementations and analyses.



The paper starts with a brief description of BLAKE (§2) followed by an overview of AVX,
AVX2, and XOP (§3). We then successively consider implementations of BLAKE-512 with AVX2
(§4), then of BLAKE-256 with AVX2 (§5) and AVX (§6), and finally of both with XOP (§7),
before concluding (§8).

2 The keyed permutation of BLAKE

The SHA-3 finalist BLAKE includes two main hash functions: BLAKE-256 and BLAKE-512. We
only describe the keyed permutation algorithms at the core of their compression functions, for it
is the only performance-critical part. We refer to [1] for a complete specification of BLAKE.

The keyed permutations of both BLAKE-256 and BLAKE-512 transform 16 words v0, v1, . . . , v15
using 16 message wordsm0,m1, . . . ,m15 as the key. Constant parameters are 16 words u0, u1 . . . , u15
and ten permutations of the set {0, . . . , 15}, denoted σ0, σ1, . . . , σ9. BLAKE-256 operates on 32-bit
words and BLAKE-512 on 64-bit words. The u constants are thus different for the two functions.

A round makes two layers of computations using the G function, respectively on the columns
and on diagonals of the 4×4 array representation of v0, v1, . . . , v15:

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

where Gi(a, b, c, d) does the following, with a round index r ≥ 0 reduced modulo 10:

a← a+ b+ (mσr[2i] ⊕ uσr[2i+1])

d← (d⊕ a) ≫ α

c← c+ d

b← (b⊕ c) ≫ β

a← a+ b+ (mσr[2i+1] ⊕ uσr[2i])

d← (d⊕ a) ≫ γ

c← c+ d

b← (b⊕ c) ≫ δ

BLAKE-256 does 14 rounds and uses rotation constants α = 16, β = 12, γ = 8, δ = 7. BLAKE-512
does 16 rounds and uses α = 32, β = 25, γ = 16, δ = 11.

The four G functions of the first layer (column step) can be computed in parallel, as well as
the four of the second layer (diagonal step). One can view a round as:

1. a column step
2. a left-rotation of the i-th column by i positions, i = 0, 1, 2, 3 (diagonalization), such that

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

 is transformed to


v0 v1 v2 v3
v5 v6 v7 v4
v10 v11 v8 v9
v15 v12 v13 v14

 ,

3. a column step
4. a right-rotation of the i-th column by i positions, i = 0, 1, 2, 3, to reset words to their initial

position (undiagonalization)

Given the above observation, it is straightforward to write pseudocode for a 4-way word-vectorized
implementation of BLAKE-256 or BLAKE-512.

3 Overview of the advanced vector extensions

This section briefly introduces the AVX, AVX2, and XOP vector extensions, with a focus on the
instructions relevant to BLAKE. We refer to the vendors’ reference documents for a complete
documentation [2–4].



3.1 AVX and AVX2

In 2008 Intel announced the Advanced Vector Extensions (AVX), introducing 256-bit wide vector
instructions. These improve on the previous SSE extensions, which work on 128-bit XMM registers.
In addition to SIMD operations extending SSE’s capabilities from 128- to 256-bit width, AVX
brings to implementers non-destructive operations with a 3- and 4-operand syntax (including for
legacy 128-bit SIMD extensions), as well as relaxed memory alignment constraints, compared to
SSE.

AVX operates on 256-bit SIMD registers called YMM, divided in two 128-bit lanes, such that
the low lanes (lower 128 bits) are aliased to the respective 128-bit XMM registers. Most instructions
work “in-lane”, that is, each source element is applied only to other elements of the same lane.
Some more expensive “cross-lane” instructions do exist, most notably shuffles.

AVX2 is an extension of AVX announced in 2011 that promotes most of the 128-bit SIMD
integer instructions to 256-bit capabilities. AVX2 supports 4-way 64-bit integer addition, XOR, and
vector shifts, thus enabling SIMD implementations of BLAKE-512. AVX2 also includes instructions
to perform any-to-any permutation of words over a 256-bit register and vectorized table lookup
to load elements in memory to YMM registers (see the instructions vperm* and vpgatherd* in
§§3.2). AVX2 was recently proposed to optimize SHA-2 implementations [5].

AVX is supported by Intel processors based on the Sandy Bridge microarchitecture (and future
ones). The first processors commercialized were Core i7 and Core i5 in January 2011. AVX2 will
be introduced in Intel’s Haswell 22 nm architecture, to be released in 2013.

3.2 Relevant AVX2 instructions

We focus on a small subset of the AVX2 instructions, with for each a brief explanation of what it
does. For a better understanding, the most sophisticated instructions are also described with an
equivalent description in C syntax using only general-purpose registers. Table 1 summarizes the
main instructions along with their C intrinsic functions.

Table 1. Intrinsics of main AVX2 instructions useful to implement BLAKE.

Assembly Intrinsic Description

vpaddd mm256 add epi32 8-way 32-bit integer addition
vpaddq mm256 add epi64 4-way 64-bit integer addition
vpxor mm256 xor si256 XOR of the two 256-bit values
vpsllvd mm256 sllv epi32 8-way 32-bit left-shift
vpsllvq mm256 sllv epi64 4-way 64-bit left-shift
vpsrlvd mm256 srlv epi32 8-way 32-bit right-shift
vpsrlvq mm256 srlv epi64 4-way 64-bit right-shift
vpermd mm256 permute8x32 epi32 Shuffle of the eight 32-bit words
vpermq mm256 permute4x64 epi64 Shuffle of the four 64-bit words
vpgatherdd mm256 i32gather epi32 8-way 32-bit table lookup
vpgatherdq mm256 i32gather epi64 4-way 64-bit table lookup

ARX SIMD. To implement add-rotate-xor (ARX) algorithms with AVX2, the following in-
structions are available: vpaddd for 8-way 32-bit integer addition, vpaddq for 4-way 64-bit integer
addition, vpxor for 256-bit wide XOR, and vpsllvd, vpsrlvd, vpsllvq, and vpsrlvq for variable
left and right shift of 32- and 64-bit words (that is, each word within a YMM register may be
shifted of a different value).



Cross-lane permutes. AVX2 provides instructions to realize any permutation of 32- and 64-bit
words within a YMM register, through the following instructions: vpermd shuffles 32-bit words of
a full YMM register across lanes using two YMM registers as inputs: one as source, the other as
the permutation’s indices:

uint32_t a[8],b[8],c[8];

for(i=0; i < 8; ++i) c[i] = a[b[i]];

vpermq is similar to vpermd but shuffles 64-bit words and takes an immediate operand instead as
the permutation:

uint64_t a[4],c[4]; int b;

for(i=0; i < 4; ++i) c[i] = a[(b>>(2*i))%4];

Vectorized table look-ups. The “gather” instructions are among the most remarkable of the
AVX2 extensions: vpgatherdd performs eight table lookups in parallel, as in the code below:

uint8_t *b; uint32_t scale , idx[8], c[8];

for(i=0; i < 8; ++i) c[i] = *( uint32_t )(b + idx[i]* scale);

vpgatherdq is quite similar to vpgatherdd, but works on four 64-bit words:

uint8_t *b; uint32_t scale , idx [4]; uint64_t c[4];

for(i=0; i < 4;++i) c[i] = *( uint32_t )(b + idx[i]* scale);

Insertion/extraction. AVX2 offers a number of instructions to manipulate words and YMM
registers, of which the most relevant for us are the following.

The vpinsrd instruction (already in AVX), also accessible by its intrinsic mm insert epi32,
inserts one 32-bit word into a specified position in a XMM register, as follows:

uint32_t c[8], a; int imm;

c[imm] = a;

vpblendd ( mm256 blend epi32), similar to the SSE4.1 pblendw instruction, permits the selec-
tion of words from 2 different sources according to an immediate index, placing them in a third
destination register:

uint32_t a[8], b[8], c[8]; int sel;

for(i=0; i < 8; ++i)

if((sel >>i)&1) c[i] = b[i];

else c[i] = a[i];

vextracti128 ( mm256 extracti128 si256) and vinserti128 ( mm256 inserti128 si256) ex-
tract and insert an XMM register into the lower or upper halves of a YMM register. vextracti128
is equivalent to:

uint32_t a[8], c[4]; int imm;

for(i=0; i < 4; ++i) c[i] = a[i + 4*imm];

while vinserti128 is equivalent to

uint32_t a[8], b[4], c[8]; int imm;

for(i=0; i < 8; ++i) c[i] = a[i];

for(i=0; i < 4; ++i) c[i+4* imm] = b[i];



3.3 AVX2 performance

Processors carrying the AVX2 instruction set are only expected to be available in 2013. There is
currently no hard data on the performance of the instructions described above; one can, however,
make some educated guesses, by using the Sandy Bridge as starting point.

The vpaddd, vpaddq, vpsllvd, vpsllvq, vpsrlvd, vpsrlvq, and vpxor instructions’ perfor-
mance can be expected to be on-par with Sandy Bridge’s vpxor instruction, which requires a single
cycle to complete. The vpermd and vpermq instructions cross register lanes; on Sandy Bridge, this
adds one extra cycle of latency. We can estimate that this penalty gets no worse on Haswell, and
that vpermd and vpermq require two cycles to complete. The gather instructions remain the most
elusive; it is unknown whether this consists of a large number of micro-ops, or uses dedicated
circuitry. Assuming only one cache-line is accessed, one can expect at least four cycles of latency
for the memory load, plus two for the extra logic.

We speculate that instruction parallelism in AVX2-compatible processors will resemble existing
SSE2 parallelism available in current processors. Current Sandy Bridge processors are capable of
executing three AVX instructions per cycle, namely one floating-point multiply, one floating-point
add, and one logical operation. We expect future processors to be able to sustain such throughput
with integer instructions, as it happens today with XMM registers.

3.4 XOP

In 2007, AMD announced its SSE5 set of new instructions. These featured 3-operand instruc-
tions, more powerful permutations, native integer rotations, and fused-multiply-add capabilities.
After the announcement of AVX, however, SSE5 was shelved in favor of AVX plus XOP, FMA4,
and CVT16. The XOP instruction set [4] extends AVX with new integer multiply-and-accumulate
(vpmac*), rotation (vprot*), shift (vpsha*, vpshl*), permutation (vpperm), and conditional move
(vpcmov) instructions working on XMM registers. These instructions have latency at least two cy-
cles. XOP instructions are integrated in AMD’s Bulldozer microarchitecture, which first appeared
in the FX-series 32 nm processors released in on October 2011.

Below we present the most useful XOP instructions for BLAKE:

Rotate instructions. Whereas SSE and AVX requires rotations to be implemented with a
combination of two shifts and an XOR, XOP introduces rotate instructions with either fixed or
variable counts: the 3-operand vprotd (intrinsics mm roti epi32 and mm rot epi32) sets its
destination XMM register to the four 32-bit words from a source register rotated by possibly
different counts (positive for left rotation, negative for right); vprotq (intrinsics mm roti epi64

and mm rot epi64) is the equivalent instruction for 2-way 64-bit vectorized rotation.

Conditional move. The vpcmov instruction takes four operands among which a destination
register has each of its bits set to the corresponding bit of either the first or the second source
operand, depending on a selector third operand; this is similar to the “?” ternary operator in C.
vpcmov. accepts XMM or YMM registers as operands; for the latter, the instruction is equivalent
to

uint64_t a[4],b[4],c[4],d[4];

for(i=0; i < 4; ++i) d[i] = (a[i] & c[i]) | (b[i] & ~c[i]);

Byte permutation. With the vpperm instruction, XOP offers more than a simple byte permu-
tation: given two source XMM registers (that is, 256 bits) and a 16-byte selector, vpperm fills the
destination XMM register with bytes that are either a byte chosen from the two source registers,
or a constant 00 or ff. Furthermore, bit-wise logical operations can be applied to source bytes
(invert, reverse, etc.).



4 Implementing BLAKE-512 with AVX2

This section first presents a basic SIMD implementation of BLAKE-512, using AVX2’s 4-way
64-bit SIMD instructions exactly in the same way that BLAKE-256 uses SSE2’s 4-way 32-bit
instructions. We then discuss optimizations exploiting instructions proper to AVX2. For ease of
understanding, we present C code using intrinsics for AVX2 instructions; excerpts of our assembly
implementation can be found in Appendix B.1, and the full assembly will be publicly available.

We used Intel’s Software Development Emulator3 to test the correctness of the AVX2 im-
plementations, and the latest trunk build of the Yasm assembler4 (as the latest release did not
support AVX2) to compile them.

4.1 Basic SIMD C implementation

AVX2 provides instructions to write a straightforward SIMD implementation of BLAKE-512 simi-
lar to the sse2 implementation of BLAKE-256 in Appendix A, except that 256-bit YMM registers
are used to hold four 64-bit words instead of 128-bit XMM registers being used to hold four 32-bit
words.

The code below implements the column step of BLAKE-512’s round function, that is, it com-
putes the first four instance of G in parallel. The 4×4 state of 64-bit words is stored in four YMM
registers defined as m256i type and aliased row1, row2, row3, and row4.

buf1 = _mm256_set_epi64x(m[sig[r][6]], m[sig[r][4]],

m[sig[r][2]] , m[sig[r][0]]);

buf2 = _mm256_set_epi64x(u[sig[r][7]], u[sig[r][5]],

u[sig[r][3]] , u[sig[r][1]]);

buf1 = _mm256_xor_si256(buf1 , buf2);

row1 = _mm256_add_epi64(_mm256_add_epi64( row1 , buf1), row2);

row4 = _mm256_xor_si256(row4 , row1);

row4 = _mm256_xor_si256(_mm256_srli_epi64(row4 , 32),

_mm256_slli_epi64(row4 , 32));

row3 = _mm256_add_epi64(row3 , row4);

row2 = _mm256_xor_si256(row2 , row3);

buf1 = _mm256_set_epi64x(u[sig[r][6]], u[sig[r][4]],

u[sig[r][2]] , u[sig[r][0]]);

buf2 = _mm256_set_epi64x(m[sig[r][7]], m[sig[r][5]],

m[sig[r][3]] , m[sig[r][1]]);

buf1 = _mm256_xor_si256(buf1 , buf2);

row2 = _mm256_xor_si256(_mm256_srli_epi64(row2 , 25),

_mm256_slli_epi64(row2 , 39));

row1 = _mm256_add_epi64(_mm256_add_epi64(row1 , buf1), row2 );

row4 = _mm256_xor_si256(row4 , row1);

row4 = _mm256_xor_si256(_mm256_srli_epi64(row4 , 16),

_mm256_slli_epi64(row4 , 48));

row3 = _mm256_add_epi64(row3 , row4);

row2 = _mm256_xor_si256(row2 , row3);

row2 = _mm256_xor_si256(_mm256_srli_epi64(row2 , 11),

_mm256_slli_epi64(row2 , 53));

row2 = _mm256_permute4x64_epi64(row2 , _MM_SHUFFLE (0,3,2,1));

row3 = _mm256_permute4x64_epi64(row3 , _MM_SHUFFLE (1,0,3,2));

row4 = _mm256_permute4x64_epi64(row4 , _MM_SHUFFLE (2,1,0,3));

A simple optimization consists in implementing the rotation by 32 bits using the vpshufd instruc-
tion, which implements “in-lane” shuffle of 32-bit words. That is, the line

3http://software.intel.com/en-us/articles/intel-software-development-emulator/
4http://yasm.tortall.net/

http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://yasm.tortall.net/


row4 = _mm256_xor_si256(_mm256_srli_epi64(row4 , 32),

_mm256_slli_epi64(row4 , 32));

can be replaced by

row4 = _mm256_shuffle_epi32(row4 , _MM_SHUFFLE (2,3,0,1));

Similarly, the rotations by 16 bits can be implemented using vpshufb in a similar fashion as the
ssse3 implementation (see Appendix A.3):

row4 = _mm256_shuffle_epi8(row4 , r16);

where r16 is the alias of a YMM register containing the index values for the byte of row4 at its
respective lane and position.

Based on the estimates in §§3.3, we expect to save at least one cycle per rotation of 16 or 32
bits, thus four cycles per round, 64 cycles per compression function, that is, at least 0.5 cycle per
byte.

4.2 Parallelized message loading

As observed in §§3.2, the vpgatherdq instruction can be used to load words from arbitrary memory
addresses. To load message words according to the σr permutation, one would thus write the
following C code:

_m256i m0 = _mm_i32gather_epi64(m, sigma[r][0], 8);

_m256i m1 = _mm_i32gather_epi64(m, sigma[r][1], 8);

_m256i m2 = _mm_i32gather_epi64(m, sigma[r][2], 8);

_m256i m3 = _mm_i32gather_epi64(m, sigma[r][3], 8);

where sigma[r][i]’s are m128i type, and where each 32-bit word holds an index of the permu-
tation. As each sigma[r][i] holds four indices, sigma[r][0] to sigma[r][3] hold the 16 indices
of the σr permutation.

Such a sequential implementation of four vpgatherdq’s is expected to only add an extra latency
equivalent to that of a single vpgatherdq, since the subsequent instructions (XOR, etc.) only
depend on the first call, and therefore may not stall while the three others loads are executed.
This assumes, of course, that vpgatherdq is pipelined, and the subsequent loads can start 1 cycle
after the first one.

4.3 Message caching

As discussed in the previous section, loading the message words according to the σ permutations
takes a considerable number of cycles, compared to an arithmetic operation. A potential optimiza-
tion consists in eliminating redundancies due to the reuse of six of the ten σ permutations, in the
first and last six rounds. That is, a same permuted message is used twice for the permutations
σ0, σ1, . . . , σ5. An implementation strategy could thus be:

1. in rounds 0 to 5: compute the permuted messages, and store the result in memory (preferably
in unused YMM registers)

2. in rounds 6 to 9: compute the permuted messages without storing the result
3. in rounds 10 to 15: do not compute the permuted messages, but rather use the registers set in

step 1

To save six vectorized XOR’s, one should store the permuted message already XORed with the
constants, as the latter are reused as well.

The above strategy would require 24 YMM registers only to store the permuted message—as
a BLAKE-512 message block is 1024-bit, occupying four YMM registers—whereas only 16 are
available and at least six are necessary to implement the round function. Nevertheless, 24 YMM
registers represent 768 bytes of memory, which fits comfortably in most processors’ L1 cache. The
≈ 4-cycle penalty for L1 accesses should be easily avoidable by loading the messages early. In
anything other than synthetic benchmarks, it is possible that the resulting cache evictions can
diminish the overall performance.



4.4 Performance estimates

Based on estimations in §§3.3, one can attempt to predict the speed of an implementation of
BLAKE-512 with AVX2. For simplicity, we assume that no message caching is used (as we’ll see
later, this seems to be a reasonable assumption). An attempt of a rough performance estimate
may consider the following assumptions:

• Message loading takes 5 cycles per step (latency of one vpgatherdq).

• Each addition or XOR consumes one cycle, and all are computed serially.

• XORs between message and constants are computed in parallel to other operations (message
loads or shuffles), and thus are not counted.

• Rotations by 32 or 16 bits take one cycle, while those by 25 or 11 bits take three cycles.

• Of the three shuffles performed for (un)diagonalization, two are computed in parallel to addi-
tions or XORs.

• Initialization and finalization of the compression function add an overhead of respectively 10
and 6 cycles.

This estimates each round to 2× (5 + 10 + 2 + 6 + 2) = 52 cycles, thus 52× 16 + 16 = 848 cycles
for the compression function, that is, 6.63 cycles per byte of message. We stress that that only
benchmarks on real hardware would provide reliable speed figures. We only make that estimate
as an attempt to predict the real speed based on the data available and on our experiments with
AVX.

The lower bound, of course, is much lower: if one simply considers the cost of the Gi functions,
the speed of BLAKE-512 on AVX2 can become as low as (16× 2× (4 + (3 + 3 + 1 + 1) + 4))/128,
or 4.00 cycles per byte.

5 Implementing BLAKE-256 with AVX2

This section shows how BLAKE-256 can benefit of AVX2. Unlike BLAKE-512, BLAKE-256 is not
naturally adaptable to 256-bit vectors, as there is a maximum of four Gi independently-running
functions per round. Nevertheless, it is possible to take advantage of AVX2 to speedup BLAKE-256
(although the trick of message caching applies, we discuss it in §6, as it is not proper to AVX2).
Excerpts of our assembly implementation appear in Appendix B.2.

5.1 Optimizing message loads

The first way to improve message loads is by using the vpgatherdd instruction from the AVX2
instruction set. To perform the full 16-word message permutation required in each round, only
four operations are required:

_m128i m0 = _mm_i32gather_epi32(m, sigma[r][0], 4);

_m128i m1 = _mm_i32gather_epi32(m, sigma[r][1], 4);

_m128i m2 = _mm_i32gather_epi32(m, sigma[r][2], 4);

_m128i m3 = _mm_i32gather_epi32(m, sigma[r][3], 4);

This can be further improved by using only two YMM registers to store the permuted message:

_m256i m01 = _mm256_i32gather_epi32(m, sigma[r][0], 4);

_m256i m23 = _mm256_i32gather_epi32(m, sigma[r][1], 4);

The individual 128-bit blocks of message are then accessible through the vextracti128 instruction.

One must also consider the possibility that vpgatherdd will not have acceptable performance,
perhaps due to specific processor design idiosyncrasies; AVX2 can still help us, via the vpermd

and vpblendd instructions:



tmp0 = _mm256_permutevar8x32_epi32(m01 , sigma00 );

tmp1 = _mm256_permutevar8x32_epi32(m23 , sigma01 );

tmp2 = _mm256_permutevar8x32_epi32(m01 , sigma10 );

tmp3 = _mm256_permutevar8x32_epi32(m23 , sigma11 );

m01 = _mm256_blend_epi32(tmp0 , tmp1 , mask0);

m23 = _mm256_blend_epi32(tmp2 , tmp3 , mask1);

In the above code, we permute the elements from the first YMM register into their proper order in
the permutation, after which we permute the elements from the second. A simple blend instruction
suffices to obtain the correct permutation. We repeat the process for the second part of the
permutation. Once again, individual 128-bit blocks are available via vextracti128.

5.2 Tree hashing

Observe that AVX2 allows to use the 256-bit width of YMM registers to compute two keyed per-
mutations in parallel, that is, where each 128-bit lane of YMM registers processes an independent
block: the instruction vpaddd can perform the two 4-way additions in parallel, a single vpermd can
rotate two rows in the (un)diagonalization step, etc. Overall, it is easy to see that compressing
two blocks with this technique will be close to twice as fast as two single-stream compressions.

This technique may be exploited to implement a tree hashing mode, wherein two independent
nodes or leaves are processed in parallel. In particular, a binary tree hashing mode processing
a 2n−1-block message could be implemented with 2n−1 double-compressions rather than 2n − 1
compressions (if leaves are as large as a message block).

If the classical (non-tree) mode is used, BLAKE can also benefit of this technique to hash two
messages simultaneously. Note that the indices of the message blocks need not be synchronized,
as different counter values may be used for each of the two blocks processed in parallel.

When combined with multi-core and multithreading technologies (as implemented in new pro-
cessors), we expect this technique to allow extremely high speed for both tree hashing and multi-
stream processing.

6 Implementing BLAKE with AVX

We report on our efforts to optimize BLAKE-256 and BLAKE-512 for AVX, using 3-operand
instructions, manual rescheduling, and a number of minor tricks. Our assembly avxs (BLAKE-
256) and avx (BLAKE-512) implementations are available in SUPERCOP.

6.1 Message caching

Like BLAKE-512, BLAKE-256 reuses several permuted messages, namely four. Due to the smaller
number of redundant permuted messages and the smaller messages, this full state (4×4×128 bits)
can be stored in eight YMM registers. This leaves the possibility of either storing all entries, or to
keep some in registers. Permuted messages are easily stored using the vinserti128 instruction:

// First 4 permuted elements

cache_reg = _mm256_inserti128_si256(cache_reg , buf1 , 0);

...

// Second 4 permuted elements

cache_reg = _mm256_inserti128_si256(cache_reg , buf1 , 1);

_mm256_store_si256 (& cache[r], cache_reg );

In rounds 10 and above, we can retrieve the cached permutations with a simple load and extract:

cache_reg = _mm256_load_si256 (& cache[r]);

buf1 = _mm_extracti128(cache_reg , 0);

...

buf1 = _mm_extracti128(cache_reg , 1);

Like for BLAKE-512, one should store the message words already XORed with the constants.



6.2 Results

We ran benchmarks on an Intel Core i7 2630QM (2 GHz, Sandy Bridge), reusing tools from SU-
PERCOP [6] for measuring speed on long messages, and compiling our code with Intel’s icc com-
piler, with options -fast -xHost -funroll-loops -unroll-aggressive -inline-forceinline

-no-inline-max-total-size (that is, maximal code inlining and loop unrolling). BLAKE-256
was measured at 7.47 cycles per byte, and BLAKE-512 at 5.71 cycles per byte. Surprisingly,
message caching did not improve, nor degrade, performance.

7 Implementing BLAKE with XOP

This section shows the main XOP-specific optimizations for BLAKE-256 and BLAKE-512, with a
focus on the former. Although only a limited number of XOP instructions can be exploited, they
provide a significant speed-up compared to implementations using AVX but not XOP. The latest
version of our xop implementations can be found in SUPERCOP.

7.1 Faster rotations

The first optimization is straightforward, as it just consists in doing rotations with the dedicated
vprot* instruction. In BLAKE-256, rotations by 16 and 8, previously implemented with SSSE3’s
pshufb, can also be replaced with vprotd. The first half of G can thus be coded as

row1 = _mm_add_epi32( _mm_add_epi32( row1 , buf), row2 );

row4 = _mm_xor_si128( row4 , row1 );

row4 = _mm_roti_epi32(row4 , -16);

row3 = _mm_add_epi32( row3 , row4 );

row2 = _mm_xor_si128( row2 , row3 );

row2 = _mm_roti_epi32(row2 , -12);

Similarly, vprotq can be used in BLAKE-512.
For BLAKE-256, we save two instructions per 12 or 7 rotation, thus 8 instructions per round,

and 112 per compression. In the Bulldozer microarchitecture, shifts (vpslld and vpslrd) have a
latency of 3 cycles, and vpxor of 2: a rotation thus takes 6 cycles, as the shifts can be pipelined
within the execution unit (assuming a new instruction can start at every cycle). Since vprotd has
latency 2, we can expect to save 4 cycles per rotation, thus 4×4×14 = 224 cycles per compression,
that is, 3.5 cycles per byte. This figure may be slightly lower in practice, due to the pipelining of
other instructions during the execution of the shift-shift-xor.

For BLAKE-512, we save four instructions per 25 or 11 rotation, thus 16 instructions per
round, and 256 per compression. Now on Bulldozer, we can expect the rotations (without vprotq)
to complete in 8 cycles, due to the pipelining of the four 3-cycle latency shifts. Assuming the
two vprotq’s are pipelined as well to complete in 3 cycles, we save 5 cycles per rotation, thus
5 × 4 × 16 = 320 per compression, that is, 2.5 cycles per byte. Again, the context may slightly
lower this estimate in practice.

7.2 Optimizing message loads

XOP can be used to implement BLAKE’s message permutation without memory look-ups, that is,
by reorganizing the ordered words m0, . . . ,m15 within registers, similarly to the approach in §§5.1.
The key operation is vpperm’s conditional moves, that allow us to copy up to four arbitrary
message words out of eight into an XMM register. For example in the first column step of the
first round, an XMM register needs be loaded with m0,m2,m4,m6; with XMM registers m0 and
m1 respectively holding m0 to m3 and m4 to m7, this can be done as

selector = _mm_set_epi32( 0x1b1a1918 , 0x13121110 , 0xb0a0908 , 0x3020100 );

s0 = _mm_perm_epi8(m0, m1, selector );



A complete definition of the vpperm selector can be found in [4, p235]. Note that, unlike message
words, constant words can be loaded directly, to be XORed with the message:

s1 = _mm_set_epi32 (0xec4e6c89 ,0x299f31d0 ,0x3707344 ,0 x85a308d3 );

buf = _mm_xor_si128(s0 , s1);

A same procedure can be followed when the four message words to be loaded span three or four
message registers—where the i-th register, i = 0, 1, 2, 3, holds m4i to m4i+1. An example of the
latter case occurs in the first message load of the fourth round, where we need the following code:

s0 = _mm_perm_epi8(m0, m1, _mm_set_epi32(SEL(0),SEL(0),SEL(3),SEL (7)) );

s0 = _mm_perm_epi8(s0, m2, _mm_set_epi32(SEL(7),SEL(2),SEL(1),SEL (0)) );

s0 = _mm_perm_epi8(s0, m3, _mm_set_epi32(SEL(3),SEL(5),SEL(1),SEL (0)) );

s1 = _mm_set_epi32 (0x3f84d5b5 ,0xc0ac29b7 ,0x85a308d3 ,0 x38d01377 );

buf = _mm_xor_si128(s0 , s1);

where SEL is a macro that forms the appropriate selector.

Each round requires four message loads (two in each step). Of the ten permutations,

1. 6 use 2 message registers (thus one vpperm)

2. 30 use 3 message registers (thus two vpperm’s)

3. 4 use 4 message registers (thus three vpperm’s)

In total, 78 calls to vpperm are necessary to implement the first 10 permutations (e.g. when message
caching is used), and 94 if the first rounds’ loads are recomputed (see Table 2 for the detailed
distribution). These numbers may be reduced with new implementation techniques eliminating
redundancies, for example by reusing previously loaded messages to avoid 3-vpperm loads.

Note that one could use vpinsrd instead of vpperm for single-word insertions. This does not
improve speed, however, as vpinsrd has a latency of 12 cycles on Bulldozer, as opposed to simply
2 for the vpperm, due to the decoupling of integer and floating-point units.

Table 2. Number of message loads requiring either one, two, or three calls to vpperm, as a function
of the permutation.

Registers vpperm
Permutation (round) index

0 1 2 3 4 5 6 7 8 9

2 1 4 - - - - - - - 1 1
3 2 - 4 4 3 3 4 4 3 2 3
4 3 - - - 1 1 - - 1 1 -

A similar approach can be used to implement BLAKE-512 message loads, however it requires
about twice as many calls to vpperm, as this does not support 256-bit YMM registers.

7.3 Results

We present benchmarks of our C XOP implementation on our FX-8150 processor clocked at
3.6 GHz, after disabling automatic overclocking (AMD’s Turbo Core 2.0 technology) in the BIOS,
which proved more reliable than doing it temporarily in the OS (Ubuntu 11.10). Measurements
were realized for long messages with the same methodology as SUPERCOP. The compiler used is
gcc 4.6.1.

Besides optimizing rotations and message loads, as discussed above, XOP instructions can be
used to implement slightly faster endianness conversion (by swapping bytes with vpperm rather
than pshufb, saving one cycle), and to avoid a branching in the state initialization by using vpcmov.



BLAKE-256. On long messages, our xop implementation runs at 11.64 cycles per byte, against
15.06 for the fastest non-XOP implementation, namely the icc-compiled avxicc. The code was
compiled with options -mxop -fomit-frame-pointer -O -march=bdver1 -funroll-loops.

Note that a simple lower bound on the cycle-per-byte figure can be given for the Bulldozer
architecture: with 12 flow-dependent vector operations5 in a 4× G having latency at least 2, and
with 2× 14 steps, we obtain 12× 2× 2× 14/64 = 10.50 cycles per byte.

BLAKE-512. On long messages, our xop implementation runs at 6.95 cycles per byte, against
9.09 for the fastest non-XOP implementation (our AVX code). The code was compiled with options
-mxop -fomit-frame-pointer -O3 -funroll-loops.

As with BLAKE-256, one can attempt to lower bound the speed of BLAKE-512 on Bulldozer.
A straightforward bound assuming parallelism of each two 2-way vector operations is likely to be
too loose, as some operations share a single execution unit (namely, this approach gives a bound
of 6 cycles per byte). Assuming 1 cycle of penalty due to the rotations being bound to a single
execution unit, this leaves us at 13 cycles per Gi, or 6.5 cycles per byte.

8 Conclusion

We first considered the future AVX2 256-bit vector extensions, and identified the most useful
instructions to implement add-rotate-xor algorithms, and BLAKE in particular. We wrote assem-
bly implementations of BLAKE-256 and BLAKE-512 exploiting AVX2’s unique features, such
as SIMD memory look-up. Although we could test the correctness of our implementations using
Intel’s emulator, actual benchmarks will have to wait until 2013 for processors implementing the
Haswell microarchitecture. We observed that AVX2 may boost the performance of BLAKE-256
in tree and multistream mode, thanks to its ability to compute two instances with a single vector
state.

We then reviewed the applicability of the recent AVX and XOP advanced vector instructions, as
respectively found in Intel and AMD latest CPUs, to implementations of BLAKE-256. While AVX
provides a minor speed-up compared to SSE4 implementations, the powerful XOP instructions lead
to a considerable improvement of more than 3 and 2 cycles per byte for BLAKE-256 and BLAKE-
512, respectively. This is in mainly due to the dedicated rotation instructions, and to the vpperm

instruction, which allows permuted message blocks to be reconstructed very efficiently. Although
message loads take up a considerable amount of instructions, our proposed technique of message
caching doesn’t seem to improve (neither degrade) speed, be it on Intel’s or AMD’s hardware.
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A Previous SIMD implementations of BLAKE

A number of previous implementations of BLAKE (as included SUPERCOP [6]) have used Intel’s
Streaming SIMD Extensions (SSE) instruction sets to exploit the parallelism of BLAKE for im-
proved performance. This section gives a brief overview of those implementations, starting with a
presentation of the SSE2 instruction set.

A.1 Streaming SIMD Extensions 2 (SSE2)

Intel’s first set of instructions supporting all 4-way 32-bit SIMD operations necessary to implement
BLAKE-256 is the Streaming SIMD Extensions 2 (SSE2) set. SSE2 includes vector instructions on
4×32-bit words for integer addition, XOR, word-wise left and right shift, as well as word shuffle.
This is all one needs to implement BLAKE-256’s round function, as rotations can be simulated by
two shifts and an XOR. BLAKE-512 can also use SSE2 (though with less benefit than BLAKE-
256), thanks to the support of 2-way 64-bit SIMD operations.

SSE2 instructions operate on 128-bit XMM registers, rather than 32 or 64-bit general-purpose
registers. In 64-bit mode (x86-64 a/k/a amd64 architecture) 16 XMM registers are available,
whereas only eight are available in 32-bit mode. The SSE2 instructions are supported by all
recent Intel and AMD desktop and laptop processors (Intel’s Xeon, Celeron, Core X’s, etc.; AMD’s
Athlon 64, Opteron, etc.) as well as by common low-voltage processors, as found in netbooks (Intel’s
Atom; VIA’s C7 and Nano).

In addition to inline assembly, C(++) programmers can use SSE2 instructions via intrinsic
functions (or intrinsics), which are API extensions built into the compiler. Intrinsics allow to en-
force the use of SSE2 instructions by the processor, enable the use of C syntax and variables instead
of assembly language and hardware registers, and let the compiler optimize instruction scheduling
for better performance. Table 3 shows intrinsics corresponding to some assembly mnemonics used
to implement BLAKE-256. A complete reference to SSE2 intrinsics can be found in [7].

Table 3. Intrinsics of main SSE2 instructions used to implement BLAKE-256.

Assembly Intrinsic Description

paddd mm add epi32 4-way 32-bit integer addition
pshufd mm shuffle epi32 4-way 32-bit word shuffle
pslld mm srli epi32 4-way 32-bit left-shift
psrld mm srli epi32 4-way 32-bit right-shift
pxor mm xor si128 Bitwise XOR of two 128-bit registers

A.2 SIMD implementation of BLAKE-256 using SSE2

To help understand the principle of SIMD implementations of BLAKE, we first present a simple
SSE2 implementation of BLAKE-256’s column step, similar to the sse2 implementation in SU-
PERCOP. The v internal state is stored in four XMM registers defined as m128i type and aliased

http://eprint.iacr.org/
http://bench.cr.yp.to/
http://bench.cr.yp.to/


row1, row2, row3, and row4. These respectively correspond to the first four rows of the 4×4 array
representation described in §2.

First, one initializes a 128-bit XMM register aliased buf1 with the four message words mσr[2i].
Another XMM register aliased buf2 is initialized with the four constants uσr[2i+1]. buf1 and buf2

are XORed together into buf1 and the result is added to row1:

buf1 = _mm_set_epi32(m[sig[r][6]], m[sig[r][4]],

m[sig[r][2]] , m[sig[r][0]]);

buf2 = _mm_set_epi32(u[sig[r][7]], u[sig[r][5]],

u[sig[r][3]] , u[sig[r][1]]);

buf1 = _mm_xor_si128( buf1 , buf2 );

row1 = _mm_add_epi32( row1 , buf1 );

At this state, one can already prepare the XMM register containing the XOR of the permuted
message and constants for the next message input:

buf1 = _mm_set_epi32(m[sig[r][7]], m[sig[r][5]],

m[sig[r][3]] , m[sig[r][1]]);

buf2 = _mm_set_epi32(u[sig[r][6]], u[sig[r][4]],

u[sig[r][2]] , u[sig[r][0]]);

buf1 = _mm_xor_si128( buf1 , buf2);

The subsequent operations are only vectorized XOR, integer addition, and word-wise shifts:

row1 = _mm_add_epi32( row1 , row2 );

row4 = _mm_xor_si128( row4 , row1 );

row4 = _mm_xor_si128( _mm_srli_epi32( row4 , 16 ),

_mm_slli_epi32( row4 , 16 ));

row3 = _mm_add_epi32( row3 , row4 );

row2 = _mm_xor_si128( row2 , row3 );

row2 = _mm_xor_si128( _mm_srli_epi32( row2 , 12 ),

_mm_slli_epi32( row2 , 20 ));

row1 = _mm_add_epi32( row1 , buf1 );

row1 = _mm_add_epi32( row1 , row2 );

row4 = _mm_xor_si128( row4 , row1 );

row4 = _mm_xor_si128( _mm_srli_epi32( row4 , 8 ),

_mm_slli_epi32( row4 , 24 ));

row3 = _mm_add_epi32( row3 , row4 );

row2 = _mm_xor_si128( row2 , row3 );

row2 = _mm_xor_si128( _mm_srli_epi32( row2 , 7 ),

_mm_slli_epi32( row2 , 25 ));

At the end of a column step, each register is word-rotated to perform the diagonal step as a column
step on the rotated state, as observed in §2:

row2 = _mm_shuffle_epi32( row2 , _MM_SHUFFLE (0,3,2,1) );

row3 = _mm_shuffle_epi32( row3 , _MM_SHUFFLE (1,0,3,2) );

row4 = _mm_shuffle_epi32( row4 , _MM_SHUFFLE (2,1,0,3) );

The mm shuffle epi32 intrinsic takes as second argument an immediate value (a constant integer
literal) expressed as a predefined macro. We refer to [7, p.65] for details of the MM SHUFFLE macro.

A.3 Implementations using SSSE3 and SSE4.1

The SSE2 instruction set was followed by the SSE3, SSSE3, SSE4.1 and SSE4.2 extensions [7],
which brought additional instructions to operate on XMM registers. It was found that some of
those instructions could be of benefit to BLAKE, and implementations exploiting SSSE3 and
SSE4.1 instructions have been submitted to SUPERCOP:

• The ssse3 implementation of BLAKE-256 uses the pshufb instruction (intrinsic mm shuffle epi8)
to perform rotations of 16 and 8 bits, as well as the initial conversion of the message from



little-endian to big-endian byte order, since both can be expressed as byte shuffles (in the
sse2 implementations rotations were implemented as two shifts and an XOR). This brings
a significant speed-up on Core 2 based on the Penryn microarchitecture, which introduced a
dedicated shuffle unit to complete pshufb within one micro-operation, against four on the first
Core 2 chips [8].
• The sse41 implementation of BLAKE-256 uses the pblendw instruction ( mm blend epi16)

in combination with SSE2’s pshufd, pslldq, and others to load m and u words according to
the σ permutations without using table lookups.

In general, the ssse3 implementation is faster than sse2, and sse41 is faster than both6. For
example, the 20110708 measurements of SUPERCOP on sandy0 (a machine equipped with a
Sandy Bridge Core i7, without AVX activated) report sse41 as the fastest implementation of
BLAKE-256, with the ssse3 and sse2 implementations being respectively 4 % and 24 % slower.

Recently, SUPERCOP included the vect128 and vect128-mmxhack implementations of BLAKE-
256 by Leurent, which slightly outperform the sse41 implementation. The main singularity of
Leurent’s code is its implementation of the σ permutations: vect128 “byte-slices” each message
word accross four XMM registers and uses the pshufb instruction to reorder them according to
σ; vect128-mmxhack instead uses MMX and general-purpose registers to store and unpack the
message words in the correct order into XMM registers.

B AVX2 assembly implementations (excerpts)

This section presents excerpts from our assembly implementations. The full implementations will
be made publicly available.

B.1 BLAKE-512 assembly for AVX2

Implementation of G, with permuted message in %3 and %4:

; Helper word rotation macro

%macro VPROTRQ 2

vpsllq ymm8 , %1, 64-%2 ; x << 32-c

vpsrlq %1, %1, %2 ; x >> c

vpxor %1, %1, ymm8

%endmacro

; ymm0 -3: State

; ymm4 -7: m_{\ sigma} xor c_{\ sigma}

; ymm8 -9: Free temp registers

; ymm10 -13: m

%macro G 2

vpaddq ymm0 , ymm0 , %1 ; row1 + buf1

vpaddq ymm0 , ymm0 , ymm1 ; row1 + row2

vpxor ymm3 , ymm3 , ymm0 ; row4 ^ row1

vpshufd ymm3 , ymm3 , 10110001b ; row4 >>> 32

vpaddq ymm2 , ymm2 , ymm3 ; row3 + row4

vpxor ymm1 , ymm1 , ymm2 ; row2 ^ row3

VPROTRQ ymm1 , 25 ; row2 >>> 25

vpaddq ymm0 , ymm0 , %2 ; row1 + buf1

vpaddq ymm0 , ymm0 , ymm1 ; row1 + row2

vpxor ymm3 , ymm3 , ymm0 ; row4 ^ row1

vpshufb ymm3 , ymm3 , ymm15 ; row4 >>> 16

6See the benchmarks results on http://bench.cr.yp.to/results-sha3.html.

http://bench.cr.yp.to/results-sha3.html


vpaddq ymm2 , ymm2 , ymm3 ; row3 + row4

vpxor ymm1 , ymm1 , ymm2 ; row2 + row3

VPROTRQ ymm1 , 11 ; row2 >>> 11

%endmacro

Message loading:

%macro MSGLOAD 1

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm8 , [perm + %1*64 + 00]

vpgatherdq ymm4 , [rsp + 8*xmm8], ymm14

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm9 , [perm + %1*64 + 16]

vpgatherdq ymm5 , [rsp + 8*xmm9], ymm14

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm8 , [perm + %1*64 + 32]

vpgatherdq ymm6 , [rsp + 8*xmm8], ymm14

vpcmpeqq ymm14 , ymm14 , ymm14 ; FF..FF

vmovdqa xmm9 , [perm + %1*64 + 48]

vpgatherdq ymm7 , [rsp + 8*xmm9], ymm14

vpxor ymm4 , ymm4 , [const_z + 128*%1 + 00]

vpxor ymm5 , ymm5 , [const_z + 128*%1 + 32]

vpxor ymm6 , ymm6 , [const_z + 128*%1 + 64]

vpxor ymm7 , ymm7 , [const_z + 128*%1 + 96]

%ifdef CACHING

%if %1 < 6

vmovdqa [rsp + 128 + %1*128 + 00], ymm4

vmovdqa [rsp + 128 + %1*128 + 32], ymm5

vmovdqa [rsp + 128 + %1*128 + 64], ymm6

vmovdqa [rsp + 128 + %1*128 + 96], ymm7

%endif

%endif

%endmacro

Diagonalization, undiagonalization, and a round:

%macro DIAG 0

vpermq ymm1 , ymm1 , 0x39

vpermq ymm2 , ymm2 , 0x4e

vpermq ymm3 , ymm3 , 0x93

%endmacro

%macro UNDIAG 0

vpermq ymm1 , ymm1 , 0x93

vpermq ymm2 , ymm2 , 0x4e

vpermq ymm3 , ymm3 , 0x39

%endmacro

%macro ROUND 1

MSGLOAD %1

G ymm4 , ymm5

DIAG



G ymm6 , ymm7

UNDIAG

%endmacro

B.2 BLAKE-256 assembly for AVX2

AVX2 allows the use of vpgatherdd for direct load of permuted message words from memory:

%macro MSGLOAD 1

vpcmpeqd ymm12 , ymm12 , ymm12

vmovdqa ymm8 , [perm + %1*64 + 00]

vpgatherdd ymm4 , [ymm8 *4+rsp], ymm12

vpcmpeqd ymm13 , ymm13 , ymm13

vmovdqa ymm9 , [perm + %1*64 + 32]

vpgatherdd ymm6 , [ymm9 *4+rsp], ymm13

vpxor ymm4 , ymm4 , [const_z + %1*64 + 00]

vpxor ymm6 , ymm6 , [const_z + %1*64 + 32]

%ifdef CACHING

%if %1 < 4

vmovdqa [rsp + 16*4 + %1*64 + 00], ymm4

vmovdqa [rsp + 16*4 + %1*64 + 32], ymm6

%endif

%endif

; Unpack into XMM

vextracti128 xmm5 , ymm4 , 1

vextracti128 xmm7 , ymm6 , 1

%endmacro
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