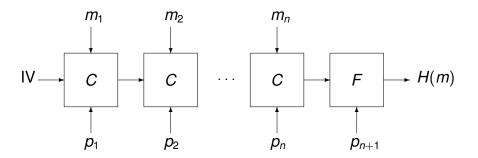
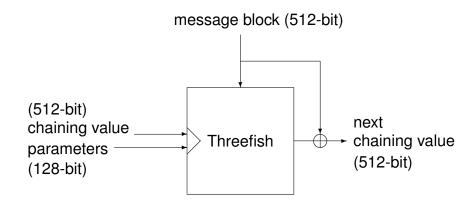
Improved cryptanalysis of Skein

Jean-Philippe Aumasson Çağdaş Çalık Willi Meier Onur Özen Raphael C.-W. Phan Kerem Varıcı (FHNW, Switzerland) (METU, Turkey) (FHNW, Switzerland) (EPFL, Switzerland) (Loughborough Uni, UK) (KU Leuven, Belgium)

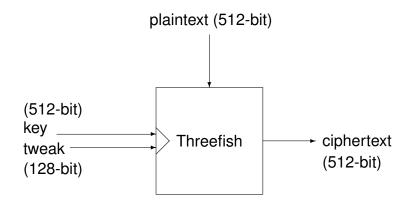
The Skein Hash Function Family

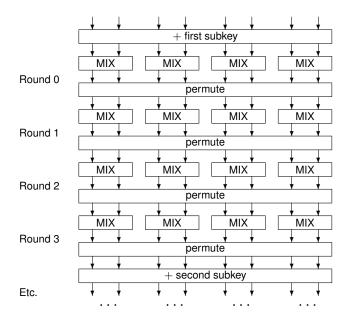

Fast, Secure, Simple, Flexible, Efficient. And it rhymes with "rain."

Design by Ferguson, Lucks, Schneier, Whiting, Bellare, Kohno, Callas, Walker

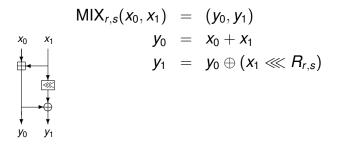

2nd round candidate in the SHA-3 competition

Iterated hash


Compression function *C*, finalization function *F* Process message $m = m_1 \| \dots \| m_n$ Parameters p_1, \dots, p_{n+1}


Block cipher-based compression function

The tweakable block cipher Threefish



Substitution-permutation network with **72 rounds** Subkeys words are XOR of key and tweak words

The MIX function

At round $r \in \{0, 1, ..., 71\}$ and position $s \in \{0, 1, 2, 3\}$:

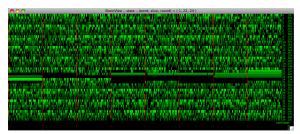
 \Rightarrow Skein: Add-Xor-Rotate (AXR) algorithm

Basic properties

Full diffusion in 10 rounds

Simple and **linear key schedule**: subkeys $k_{s,0}, \ldots, k_{s,7}$ are derived from the key k_0, \ldots, k_7 and from the tweak t_0, t_1 as

Basic properties

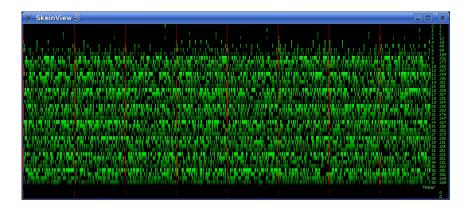

Full diffusion in 10 rounds

Simple and **linear key schedule**: subkeys $k_{s,0}, \ldots, k_{s,7}$ are derived from the key k_0, \ldots, k_7 and from the tweak t_0, t_1 as

- \Rightarrow "Subkey collisions" easy to find, but...
 - Impossible to find two consecutive collisions
 - At least 7 subkeys between two collisions

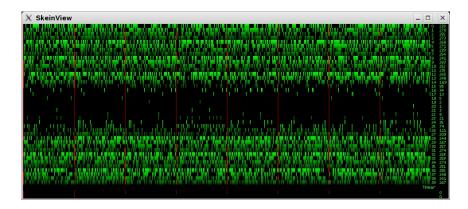
Using differences in the plaintext, can delay full diffusion 8 rounds (then need 18 rounds for diffusion of differences)

SkeinView

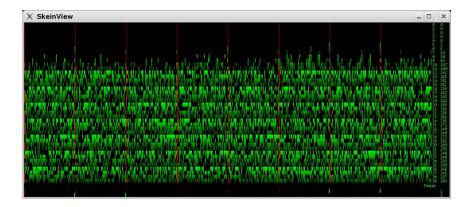


C++ program for Linux/Mac/Windows for studying Skein

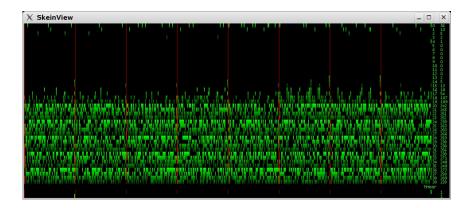
- Visualization of differential trails
- Interactive choice of differences
- Differences in key, tweak, state
- Search for trails given conditions
- Normal and linearized modes
- LaTeX output of the trails


Threefish's diffusion of differences (1/2)

1-bit difference in the plaintext


Threefish's diffusion of differences (2/2)

1-bit difference in the internal state


Subkey collision (initial subkey)

- No difference in the plaintext
- Difference introduced in the state at round 4
- \blacktriangleright Bias observable until round \approx 13

Subkey collision (third subkey)

- Difference in the plaintext
- Difference introduced in the state at round 12
- \blacktriangleright Bias observable until round ≈ 21

Exploiting subkey collisions

- ▶ Distinguisher on 21 rounds with < 16 samples
- Near collisions on 17 rounds for the compression function in 2²⁴
- ► Impossible differentials...
- Boomerang attacks...

Finding impossible differentials

Miss in the middle

Proof by contradiction that $(\alpha \rightarrow \gamma)$ cannot occur

$$\alpha \xrightarrow{\text{prob.1}} \beta \neq \delta \xleftarrow{\text{prob.1}} \gamma$$

In practice, β and δ are differences over a subset of the internal state (that is, truncated differentials)

Impossible differentials were previously found for

- ▶ 8 rounds of AES-192 (of 12)
- ► 5 rounds of Twofish (of 16)

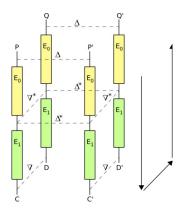
Miss in the middle of Threefish

We found probability-1 differentials:

► Forwards: on rounds 0 to 12, over 92 output bits

► Backwards: on rounds 20 to 13, over 134 output bits

 \Rightarrow Impossible differential for 21 rounds of Threefish


ブーメランattack (outside the box)

- 1. Pick 2 plaintexts with difference α
- 2. Encrypt the 2 plaintexts
- 3. Set a difference β to each ciphertext
- 4. Decrypt the 2 new ciphertexts
- 5. Check that the new plaintexts have difference α

For well-chosen (α, β), step 5 succeeds with prob. $\gg 2^{-n}$

ブーメランattack (inside view) 3-dimensional structure

Use of 2 differential characteristics

- 1. For the first half of the cipher
- 2. For the inverse second half

Differential trails used for Threefish

Differences in the key and the tweak

Use locally optimal differentials

First half (rounds 1,...,16)

- Difference in the plaintext
- ► Probability 2⁻⁸⁶

Second half (rounds 34,...,17)

- Difference in the ciphertext
- ▶ Probability 2⁻¹¹³ from round 34

Each trail needs to be followed twice

 \Rightarrow Distinguisher with complexity $\approx 2^{2\times 86+2\times 113}=2^{398}$

Variants

Key-recovery on 32 rounds

- ► Find inputs conforming to the boomerang relation
- ► Use them to determine half the whitening key
- ► 2³¹² decryptions, memory 2⁷¹ bytes

Variants

Key-recovery on 32 rounds

- Find inputs conforming to the boomerang relation
- ► Use them to determine half the whitening key
- ► 2³¹² decryptions, memory 2⁷¹ bytes

Known-key distinguisher on 35 rounds

- Key known but not chosen \Rightarrow "white-box" attack
- Distinguisher: exhibition of inputs conforming to the boomerang relation
- Start with decryption instead of encryption
- ► complexity: 2478 trials

Summary

Rounds	Time	Memory	Туре
16	2 ⁶	_	459-bit near-collision
17	2 ²⁴	-	434-bit near-collision
21	2 ^{3.4}	_	related-key distinguisher
21	-	-	related-key impossible differential
25	2 ^{416.6}	_	related-key key recovery
26	2 ^{507.8}	_	related-key key recovery
32	2 ³¹²	2 ⁷¹	related-key boomerang key recovery
34	2 ³⁹⁸	_	related-key boomerang distinguisher
35	2 ⁴⁷⁸	-	known-related-key boomerang distinguisher

Conclusion

At least 36 rounds needed for optimal security guarantees

The full Skein is not attacked (72 rounds)

Recent work by Chen and Jia: improved key-recovery using +-differences instead of ⊕-differences See http://eprint.iacr.org/2009/526

Open issues:

- How to better exploit key collisions?
- Distinguishers using +-differences?
- ► Tweak...

Conclusion

NIST authorized "tweaks" for the second SHA-3 round

We have submitted a Tweak to the Skein algorithm. Specifically, we have changed – improved –the rotation constants. (Schneier)

Do the known attacks work on the new version of Skein?

Conclusion

NIST authorized "tweaks" for the second SHA-3 round

We have submitted a Tweak to the Skein algorithm. Specifically, we have changed – improved –the rotation constants. (Schneier)

Do the known attacks work on the new version of Skein?

From the revised Skein documentation:

We are confident that one can easily adopt (sic) the attacks to Threefish-512 and its new rotation constants, mainly by finding new differential trails and performing new frequency tests.

The 32-round attack by Chen and Jia is even **faster** with the new constants

Improved cryptanalysis of Skein

Jean-Philippe Aumasson Çağdaş Çalık Willi Meier Onur Özen Raphael C.-W. Phan Kerem Varıcı (FHNW, Switzerland) (METU, Turkey) (FHNW, Switzerland) (EPFL, Switzerland) (Loughborough Uni, UK) (KU Leuven, Belgium)