
Efficient FPGA implementations of
high-dimensional cube testers on the stream

cipher Grain-128

Jean-Philippe Aumasson Itai Dinur Luca Henzen
Willi Meier Adi Shamir

SHARCS ’09

Agenda

Grain-128

Cube testers

Software precomputations

FPGA implementation

Results and extrapolation

Conclusions

2 / 20

Grain-128

State-of-the-art stream cipher developed within

’s eSTREAM Project (04-08)

• designed by Hell, Johansson, Maximov, Meier (2007)
• 128-bit version of the eSTREAM cowinner Grain-v1 (2005)
• 128-bit key, 96-bit IV, 256-bit state
• previous DPA and related-key attacks
• standard-model attack on round-reduced version (192/256)

3 / 20

Grain-128

NFSR LFSR

h

g f

i
?

?
- �

- �

- -

?i� � �

7 2 7 1

19 1 6 1

deg f = 1, deg g = 2, deg h = 3

Initalization: key in NFSR, IV in LFSR, clock 256 times

Then 1 keystream bit per clock
4 / 20

Cube testers (simple version)

Key

IV

f ()

..

.

0
1
1..

.

1. pick a random key and fix (96− n) IV bits
2. vary n IV bits to obtain the evaluation of order-n derivative⊕

(x0,...,xn−1)∈{0,1}n
f(x) =

∂nf

∂x0 . . . ∂xn−1

for well-chosen cube (=variables), statistical bias detectable

ex: f of degree n⇒ constant derivative

5 / 20

Comparison. . .

Cube attacks. . .
1. find 128 cubes whose order-n derivative has degree 1
2. recontruct their derivatives via black-box linearity tests
3. evaluate derivatives and solve linear system to recover the key

Cube testers. . .
• distinguishers rather than key-recovery
• need less precomputation than cube attacks
• don’t require derivatives of degree-1, but with any unexpected

and testable property

6 / 20

How to determine variable bits?

Complexity bottleneck, and main distinction with previous high-order
differential attacks

Analytically: find “weak” variables by analyzing the algorithm

Ex: Trivium

Empirically: explore the search space to find good sets of variables
with discrete optimization tools

7 / 20

What about cube testers?

8 / 20

Going against the Grain

Method:

1. select n variable IV bits
2. set the remaining IV bits to zero
3. set the key bits randomly
4. run Grain-128 for all the 2n values and collect results
5. repeat steps 3-4 N times and make statistics

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like x0x1x2 + x1x2x3x4x5

Problem 1: finding good cubes/variables (SW: C code + gcc *.c)
Problem 2: implementing the attack (HW: VHDL + FPGA)

9 / 20

Going against the Grain

Method:

1. select n variable IV bits
2. set the remaining IV bits to zero
3. set the key bits randomly
4. run Grain-128 for all the 2n values and collect results
5. repeat steps 3-4 N times and make statistics

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like x0x1x2 + x1x2x3x4x5

Problem 1: finding good cubes/variables (SW: C code + gcc *.c)

Problem 2: implementing the attack (HW: VHDL + FPGA)

9 / 20

Going against the Grain

Method:

1. select n variable IV bits
2. set the remaining IV bits to zero
3. set the key bits randomly
4. run Grain-128 for all the 2n values and collect results
5. repeat steps 3-4 N times and make statistics

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like x0x1x2 + x1x2x3x4x5

Problem 1: finding good cubes/variables (SW: C code + gcc *.c)
Problem 2: implementing the attack (HW: VHDL + FPGA)

9 / 20

Software precomputation

Bitsliced implementation

• 64 instances in parallel with different keys and IVs
• tester using order-30 derivatives in ≈ 45min

Evolutionary algorithm
• generic discrete optimization tool
• search variables that maximize the number of rounds attackable
• huge search space, e.g.

(
96
32

) ≥ 284

• quickly converges into local optima

Cube dimension 6 10 14 18 22 26 30 . . . ?
Rounds 180 195 203 208 215 222 227 . . . 256

To evaluate larger cubes we need more computational power

10 / 20

Software precomputation

Bitsliced implementation

• 64 instances in parallel with different keys and IVs
• tester using order-30 derivatives in ≈ 45min

Evolutionary algorithm
• generic discrete optimization tool
• search variables that maximize the number of rounds attackable
• huge search space, e.g.

(
96
32

) ≥ 284

• quickly converges into local optima

Cube dimension 6 10 14 18 22 26 30 . . . ?
Rounds 180 195 203 208 215 222 227 . . . 256

To evaluate larger cubes we need more computational power

10 / 20

Grain-128 in FPGA

• 32× parallelization (32 cipher clocks/system clock)
• on Xilinx Virtex-5 LX330: 180 slices for 1 instance at 200 MHz
• 256 instances: 46080 slices, of available 51 840 slices available

NFSR LFSR

32-63

0-31

96-127

64-95

Output

g’ h’ f

32-63

0-31

96-127

64-95

k0,...,31

k32,...,63

k64,...,95

k95,...,127

IV0,...,31

IV32,...,63

IV64,...,95

1,1,...,1

11 / 20

Cube testers in FPGA

• exploit (almost) all the slices available
• 256 Grain-128 modules work on distinct IVs
• additional units to generate inputs and to store results

simulation controller
input generator
output collector

• evaluation of cubes for 32 consecutive rounds
• LSFR to generate keys efficiently

12 / 20

FPGA parallel cube tester core

Grain_1 Grain_2 Grain_3 Grain_2m

s_inst

Output collection
u_inst

96 96 96 96

32 32 32 32

Out2m−1Out0 Out1 Out2

IV2m
−1IV0

eq=
\LARGE
\[
 \textnormal{IV}_0
\]

IV1

eq=
\LARGE
\[
 \textnormal{IV}_1
\]

IV2

eq=
\LARGE
\[
 \textnormal{IV}_2
\]

e_inst

Key and IV generationLFSR incrementer

partial IV n-m128

CV
router

CV
router

CV
router

CV
router

m m m m

offset2m
−1offset0 offset1 offset2

Si
m

ul
at

io
n

co
nt

ro
lle

r

AR
RA

Y

Key

13 / 20

Performance and results

• evaluation of (n + 8)-dimensional cubes as fast as for
n-dimensional cubes with a single instance

• approx. 10 seconds for a cube of degree 30 (64 runs)
• approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension 30 35 37 40 44 46 50

Nb. of queries 222 227 229 232 236 238 242

Time 0.17 sec 5.4 sec 21 sec 3 min 45 min 3 h 2 days

Found a distinguisher on 237 rounds in 254 clocks
• #samples×#cipher clocks×#evaluations= 64× 256× 240 = 254

14 / 20

Performance and results

• evaluation of (n + 8)-dimensional cubes as fast as for
n-dimensional cubes with a single instance

• approx. 10 seconds for a cube of degree 30 (64 runs)
• approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension 30 35 37 40 44 46 50

Nb. of queries 222 227 229 232 236 238 242

Time 0.17 sec 5.4 sec 21 sec 3 min 45 min 3 h 2 days

Found a distinguisher on 237 rounds in 254 clocks
• #samples×#cipher clocks×#evaluations= 64× 256× 240 = 254

14 / 20

Extrapolation

Logarithmic extrapolation with standard linear model

In
iti

al
iz

at
io

n
ro

un
ds

Cube size
0 20 40 60 80 100

160

180

200

220

240

260

280

In
iti

al
iz

at
io

n
ro

un
ds

Cube size
70 72 74 76 78 80

250

251

252

253

254

255

256

257

258

259

260

cubes of degree 77 conjectured sufficient for the full Grain-128
⇒ attack in 283 initializations vs. 2128 ideally

15 / 20

Conclusions

First dedicated hardware for cube attacks/testers

Cube attacks/testers seem to have eventually broken something

High variance of cubes’ efficiency; preliminary discrete optimization
step essential

Software experiments on Grain-v1: much more resistant (higher
degree g)

16 / 20

The end

Thanks for your attention

Questions?

17 / 20

Search for good cubes

Evolutionary algorithm: generic discrete optimization tool

In a nutshell: population = subset of variables

1. initialize population pseudorandomly
2. reproduction (crossover + mutation)
3. selection of best fitting individuals
4. go to 2.

#generations (steps 2-4) before halting = parameter

18 / 20

Key-recovery attacks

• Search for IV terms with linear superpoly in the key bits (or
maxterms)

• Search for maxterms is difficult for reduced variants of Grain-128

• Key bits mix non-linearly together before mixing with the IV bits
• Output bits polynomials contain few IV terms whose superpoly is

linear in the key bits
• Applying linearization techniques becomes a complicated task

19 / 20

Observations on Grain-v1

Differences:
• The size of the LFSR and the NFSR is 80-bit
• 80-bit keys, 64-bit IVs, and 160 initialization rounds
• Feedback polynomial of NFSR has degree six and is less sparse
• Filter function h is denser
• Algebraic degree and density converge faster towards ideal ones

Rounds 64 70 73 79 81
Cube dimension 6 10 14 20 24

Grain-v1 seems to resist cube testers and basic cube attack
techniques

20 / 20

