Efficient FPGA implementations of
high-dimensional cube testers on the stream
cipher Grain-128

Jean-Philippe Aumasson Itai Dinur Luca Henzen
Willi Meier Adi Shamir

SHARCS '09

Agenda

Grain-128

Cube testers

Software precomputations
FPGA implementation
Results and extrapolation

Conclusions

2/20

Grain-128

State-of-the-art stream cipher developed within

ECRYPT

HZO2O™ 5 eSTREAM Project (04-08)

+ designed by Hell, Johansson, Maximov, Meier (2007)

+ 128-bit version of the eSTREAM cowinner Grain-v1 (2005)
+ 128-bit key, 96-bit IV, 256-bit state

+ previous DPA and related-key attacks

+ standard-model attack on round-reduced version (192/256)

3/20

Grain-128

T e Y

deg f=1,degg=2,degh =3
Initalization: key in NFSR, IV in LFSR, clock 256 times

Then 1 keystream bit per clock

4/20

Cube testers (simple version)

Key —.1 fO0 —=

¥
i

v —~

1. pick a random key and fix (96 — n) IV bits
2. vary n |V bits to obtain the evaluation of order-n derivative

2SR |

(%0,...,xn—1)€{0,1}7 Oz ... 0Tn—1

for well-chosen cube (=variables), statistical bias detectable

ex: f of degree n = constant derivative

5/20

Comparison. ..

Cube attacks. ..
1. find 128 cubes whose order-n derivative has degree 1
2. recontruct their derivatives via black-box linearity tests
3. evaluate derivatives and solve linear system to recover the key

Cube testers. ..
+ distinguishers rather than key-recovery
* need less precomputation than cube attacks

+ don’t require derivatives of degree-1, but with any unexpected
and testable property

6/20

How to determine variable bits?

Complexity bottleneck, and main distinction with previous high-order
differential attacks

Analytically: find “weak” variables by analyzing the algorithm

t1 + §a6 + Su1 - S92 + S03 + S1T1
ta +— Sz + 8175 - S176 T S177 T Sz6d
s +— Saqz + Szms - Suer T Szes T Sen

(31,82,...,903) «— (ts,81,..., 902)
C ...!.?-_“:I0—[:1:-_,55.,.|.....S[,-r::|
. [8178, 8979, . .., S2ss) — (t2, 8178, .. ., 8287
EX. Trlv'um [_]_:1_ 274, s S2BKE) \T2, 8174, s S28T)

Empirically: explore the search space to find good sets of variables
with discrete optimization tools

7/20

@ Why haven't cube attacks broken anything? - Mozilla Firefox
File Edit View History Bookmarks Tools Help

€ - 5 {‘J ﬁ:‘ LI http://cr.yp.to/cubeattacks.html

D. J. Bemstein
Hash functions and ciphers

Why haven't cube attacks broken anything?

The talk and the paper

Hundreds of cryptographers were sitting in a dark lecture room at the University of California at Santa Bar
"How to solve it: new techniques in algebraic cryptanalysis.”

Shamir had already advertised his talk as introducing "cube attacks." a powerful new attack technique that
describing a stream cipher with an extremely large key, many S-boxes, etc. David Wagner later wrote that
laugh -- since it seemed ridiculous to imagine an attack on the design, yet I knew if he was describing this «

What about cube testers?

8/20

Going against the Grain

Method:

select n variable IV bits

set the remaining IV bits to zero

set the key bits randomly

run Grain-128 for all the 2™ values and collect results
repeat steps 3-4 IV times and make statistics

ok wpn =

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like xgx1z2 + 122237475

9/20

Going against the Grain

Method:

select n variable IV bits

set the remaining IV bits to zero

set the key bits randomly

run Grain-128 for all the 2™ values and collect results
repeat steps 3-4 IV times and make statistics

ok wpn =

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like xgx1z2 + 122237475

Problem 1: finding good cubes/variables (SW: C code + gcc *.c)

9/20

Going against the Grain

Method:

select n variable 1V bits

set the remaining IV bits to zero

set the key bits randomly

run Grain-128 for all the 2™ values and collect results
repeat steps 3-4 IV times and make statistics

ok wpn =

we try to detect for imbalance in the distribution of the results
e.g., if derivatives look like zox1ze + 2120231475

Problem 1: finding good cubes/variables (SW: C code + gcc *.c)
Problem 2: implementing the attack (HW: VHDL + FPGA)

9/20

Software precomputation

Bitsliced implementation

*+ 64 instances in parallel with different keys and Vs
* tester using order-30 derivatives in =~ 45min

Evolutionary algorithm
* generic discrete optimization tool
+ search variables that maximize the number of rounds attackable
- huge search space, e.g. (35) > 2%

* quickly converges into local optima

10/20

Software precomputation

Bitsliced implementation

*+ 64 instances in parallel with different keys and Vs
* tester using order-30 derivatives in =~ 45min

Evolutionary algorithm
* generic discrete optimization tool
+ search variables that maximize the number of rounds attackable
- huge search space, e.g. (35) > 2%
* quickly converges into local optima

Cube dimension 6 10 14 18 22 26 30 ... ?
Rounds | 180 195 203 208 215 222 227 ... 256

To evaluate larger cubes we need more computational power

10/20

Grain-128 in FPGA

+ 32x parallelization (32 cipher clocks/system clock)
» on Xilinx Virtex-5 LX330: 180 slices for 1 instance at 200 MHz
» 256 instances: 46080 slices, of available 51 840 slices available

NFSR LFSR
ko 31 0-31 0-31 Vo, a1
u ﬂ
ksz ,,,,, 63 32-63 32-63 |V32 63
M Al ﬂ
Kes,...05 64-95 64-95 |V54 ,,,,, 95
k95 127T:D_’96-127

A
96-127 1,1,...,1
A A

Output

11/20

Cube testers in FPGA

+ exploit (almost) all the slices available

256 Grain-128 modules work on distinct IVs
+ additional units to generate inputs and to store results

m simulation controller
m input generator
m output collector

+ evaluation of cubes for 32 consecutive rounds
+ LSFR to generate keys efficiently

12/20

FPGA parallel cube tester core

LFSR Key and IV generation incrementer
128 partial IV " s_inst
offsety offsety offsety offsetom
@ T '“i’ mf m{ e_inst
cv cv cv .. cv
router’ router router router’
Key IV, v, IV, Vam_,
96 9 96 96
? >
. . . . m <
Grain_1 Grain_2 Grain. 3| <<+ |Grain_2 E
<
32 32 32 32
Outg Outy Outy Outom_1q
u_inst

Output collection

Simulation controller

13/20

Performance and results

+ evaluation of (n + 8)-dimensional cubes as fast as for
n-dimensional cubes with a single instance

+ approx. 10 seconds for a cube of degree 30 (64 runs)
+ approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension | 30 35 37 40 44 46

50

Nb. of queries 222 227 229 232 236 938
Time | 0.17sec 5.4sec 21sec 3min 45min 3h

2days

14/20

Performance and results

+ evaluation of (n + 8)-dimensional cubes as fast as for
n-dimensional cubes with a single instance

+ approx. 10 seconds for a cube of degree 30 (64 runs)
+ approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension \ 30 35 37 40 44 46 50
Nb. of queries 222 227 229 232 236 938 242
Time | 0.17sec 5.4sec 21sec 3min 45min 3h 2days

Found a distinguisher on 237 rounds in 2°* clocks

- #samples x#cipher clocks x#evaluations= 64 x 256 x 240 = 254

14/20

Extrapolation

Logarithmic extrapolation with standard linear model

—

N
N
3

N
R
Q

N
R
3

s

4

N
N
3

Initialization rounds
Initialization rounds

/ 251
250
20 40 60 80 100 70 72 74 76 78 80

Cube size Cube size

N
5]
8

n
X X
iy

2
8

3
3

o

cubes of degree 77 conjectured sufficient for the full Grain-128
= attack in 283 initializations vs. 2!28 ideally

15/20

Conclusions

First dedicated hardware for cube attacks/testers
Cube attacks/testers seem to have eventually broken something

High variance of cubes’ efficiency; preliminary discrete optimization
step essential

Software experiments on Grain-v1: much more resistant (higher
degree g)

16/20

The end

Thanks for your attention

Questions?

17/20

Search for good cubes

Evolutionary algorithm: generic discrete optimization tool

In a nutshell: population = subset of variables
initialize population pseudorandomly
reproduction (crossover + mutation)
selection of best fitting individuals

goto 2.

A

#generations (steps 2-4) before halting = parameter

18/20

Key-recovery attacks

+ Search for IV terms with linear superpoly in the key bits (or
maxterms)

« Search for maxterms is difficult for reduced variants of Grain-128

+ Key bits mix non-linearly together before mixing with the IV bits

+ Output bits polynomials contain few IV terms whose superpoly is
linear in the key bits

+ Applying linearization techniques becomes a complicated task

19/20

Observations on Grain-v1

Differences:
+ The size of the LFSR and the NFSR is 80-bit
+ 80-bit keys, 64-bit IVs, and 160 initialization rounds
Feedback polynomial of NFSR has degree six and is less sparse
Filter function h is denser
Algebraic degree and density converge faster towards ideal ones

Rounds | 64 70 73 79 81
Cube dimension 6 10 14 20 24

Grain-v1 seems to resist cube testers and basic cube attack
techniques

20/20

