Efficient FPGA implementations of high-dimensional cube testers on the stream cipher Grain-128

Jean-Philippe Aumasson Itai Dinur Luca Henzen Willi Meier Adi Shamir

SHARCS '09

Grain-128

Cube testers

Software precomputations

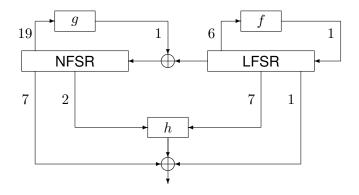
FPGA implementation

Results and extrapolation

Conclusions

State-of-the-art stream cipher developed within

- · designed by Hell, Johansson, Maximov, Meier (2007)
- 128-bit version of the eSTREAM cowinner Grain-v1 (2005)
- 128-bit key, 96-bit IV, 256-bit state
- previous DPA and related-key attacks
- standard-model attack on round-reduced version (192/256)



 $\deg f = 1, \deg g = 2, \deg h = 3$

Initalization: key in NFSR, IV in LFSR, clock 256 times

Then 1 keystream bit per clock

$$\begin{array}{c} \mathsf{Key} \longrightarrow f() \longrightarrow \mathbf{0} \\ \vdots \longrightarrow \mathbf{1} \\ \mathsf{IV} \longrightarrow \vdots \longrightarrow \mathbf{1} \\ \vdots \longrightarrow \mathbf{1$$

1. pick a random key and fix (96 - n) IV bits

2. vary n IV bits to obtain the evaluation of order-n derivative

$$\bigoplus_{(x_0,\dots,x_{n-1})\in\{0,1\}^n} f(x) = \frac{\partial^n f}{\partial x_0\dots\partial x_{n-1}}$$

for **well-chosen cube** (=variables), statistical bias detectable

ex: f of degree $n \Rightarrow$ constant derivative

Cube attacks...

- 1. find 128 cubes whose order-n derivative has degree 1
- 2. recontruct their derivatives via black-box linearity tests
- 3. evaluate derivatives and solve linear system to recover the key

Cube testers...

- distinguishers rather than key-recovery
- need less precomputation than cube attacks
- don't require derivatives of degree-1, but with any unexpected and testable property

Complexity bottleneck, and main distinction with previous high-order differential attacks

Analytically: find "weak" variables by analyzing the algorithm

 $\begin{array}{l} t_1 \leftarrow s_{66} + s_{91} \cdot s_{92} + s_{93} + s_{171} \\ t_2 \leftarrow s_{162} + s_{175} \cdot s_{176} + s_{177} + s_{264} \\ t_3 \leftarrow s_{243} + s_{286} \cdot s_{287} + s_{288} + s_{69} \\ (s_1, s_2, \dots, s_{93}) \leftarrow (t_3, s_1, \dots, s_{92}) \\ (s_{94}, s_{95}, \dots, s_{177}) \leftarrow (t_1, s_{94}, \dots, s_{176}) \\ (s_{178}, s_{279}, \dots, s_{288}) \leftarrow (t_2, s_{178}, \dots, s_{287}) \end{array}$

Empirically: explore the search space to find good sets of variables with discrete optimization tools

Why haven't cube attacks broken anything? - Mozilla Firefox
File Edit View History Bookmarks Tools Help
File Edit View

Why haven't cube attacks broken anything?

The talk and the paper

Hash functions and ciphers

Hundreds of cryptographers were sitting in a dark lecture room at the University of California at Santa Bar "How to solve it: new techniques in algebraic cryptanalysis."

Shamir had already advertised his talk as introducing "cube attacks," a powerful new attack technique that describing a stream cipher with an extremely large key, many S-boxes, etc. David Wagner later wrote that laugh -- since it seemed ridiculous to imagine an attack on the design, yet I knew if he was describing this (

What about cube testers?

Method:

- 1. select n variable IV bits
- 2. set the remaining IV bits to zero
- 3. set the key bits randomly
- 4. run Grain-128 for all the 2^n values and collect results
- 5. repeat steps 3-4 N times and make statistics

we try to detect for *imbalance* in the distribution of the results e.g., if derivatives look like $x_0x_1x_2 + x_1x_2x_3x_4x_5$

Method:

- 1. select n variable IV bits
- 2. set the remaining IV bits to zero
- 3. set the key bits randomly
- 4. run Grain-128 for all the 2^n values and collect results
- 5. repeat steps 3-4 N times and make statistics

we try to detect for *imbalance* in the distribution of the results e.g., if derivatives look like $x_0x_1x_2 + x_1x_2x_3x_4x_5$

Problem 1: finding good cubes/variables (SW: C code + gcc *.c)

Method:

- 1. select n variable IV bits
- 2. set the remaining IV bits to zero
- 3. set the key bits randomly
- 4. run Grain-128 for all the 2^n values and collect results
- 5. repeat steps 3-4 N times and make statistics

we try to detect for *imbalance* in the distribution of the results e.g., if derivatives look like $x_0x_1x_2 + x_1x_2x_3x_4x_5$

Problem 1: finding good cubes/variables (SW: C code + gcc *.c) Problem 2: implementing the attack (HW: VHDL + FPGA)

Bitsliced implementation

- · 64 instances in parallel with different keys and IVs
- tester using order-30 derivatives in $\approx 45 \mathrm{min}$

Evolutionary algorithm

- · generic discrete optimization tool
- · search variables that maximize the number of rounds attackable
- huge search space, e.g. $\binom{96}{32} \geq 2^{84}$
- · quickly converges into local optima

Bitsliced implementation

- · 64 instances in parallel with different keys and IVs
- tester using order-30 derivatives in $\approx 45 \mathrm{min}$

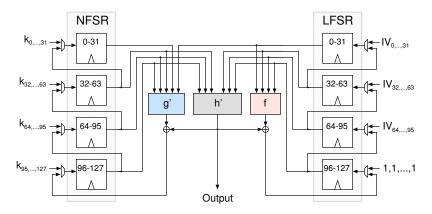
Evolutionary algorithm

- · generic discrete optimization tool
- · search variables that maximize the number of rounds attackable
- huge search space, e.g. $\binom{96}{32} \geq 2^{84}$
- · quickly converges into local optima

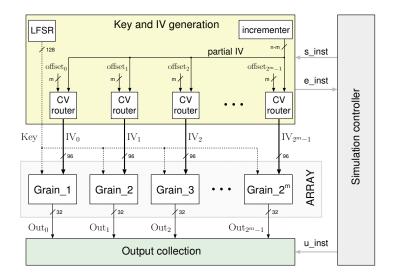
Cube dimension	6	10	14	18	22	26	30	 ?
Rounds	180	195	203	208	215	222	227	 256

To evaluate larger cubes we need more computational power

- $32 \times$ parallelization (32 cipher clocks/system clock)
- on Xilinx Virtex-5 LX330: 180 slices for 1 instance at 200 MHz
- 256 instances: 46080 slices, of available 51 840 slices available



- · exploit (almost) all the slices available
- 256 Grain-128 modules work on distinct IVs
- · additional units to generate inputs and to store results
 - simulation controller
 - input generator
 - output collector
- · evaluation of cubes for 32 consecutive rounds
- · LSFR to generate keys efficiently



- evaluation of (n+8)-dimensional cubes as fast as for n-dimensional cubes with a single instance
- approx. 10 seconds for a cube of degree 30 (64 runs)
- approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension	30	35	37	40	44	46	50
Nb. of queries	2^{22}	2^{27}	2^{29}	2^{32}	2^{36}	2^{38}	2^{42}
Time	0.17 sec	5.4 sec	21 sec	3 min	45 min	3 h	2 days

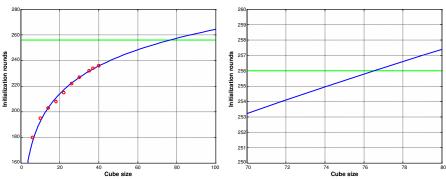
- evaluation of (n+8)-dimensional cubes as fast as for n-dimensional cubes with a single instance
- approx. 10 seconds for a cube of degree 30 (64 runs)
- approx. 3 hours for a cube of degree 40 (64 runs)

Cube dimension	30	35	37	40	44	46	50
Nb. of queries Time	2 ²² 0.17 sec						

Found a distinguisher on 237 rounds in 2^{54} clocks

• #samples×#cipher clocks×#evaluations= $64 \times 256 \times 2^{40} = 2^{54}$

Extrapolation



Logarithmic extrapolation with standard linear model

cubes of degree 77 conjectured sufficient for the full Grain-128 \Rightarrow attack in 2^{83} initializations vs. 2^{128} ideally

First dedicated hardware for cube attacks/testers

Cube attacks/testers seem to have eventually broken something

High variance of cubes' efficiency; preliminary discrete optimization step essential

Software experiments on Grain-v1: much more resistant (higher degree g)

Thanks for your attention

Questions?

Evolutionary algorithm: generic discrete optimization tool

In a nutshell: population = subset of variables

- 1. initialize population pseudorandomly
- 2. reproduction (crossover + mutation)
- 3. selection of best fitting individuals

4. go to 2.

#generations (steps 2-4) before halting = parameter

- Search for IV terms with linear superpoly in the key bits (or maxterms)
- Search for maxterms is difficult for reduced variants of Grain-128

- Key bits mix non-linearly together before mixing with the IV bits
- Output bits polynomials contain few IV terms whose superpoly is linear in the key bits
- Applying linearization techniques becomes a complicated task

Differences:

- The size of the LFSR and the NFSR is 80-bit
- · 80-bit keys, 64-bit IVs, and 160 initialization rounds
- Feedback polynomial of NFSR has degree six and is less sparse
- Filter function h is denser
- Algebraic degree and density converge faster towards ideal ones

Rounds	64	70	73	79	81
Cube dimension	6	10	14	20	24

Grain-v1 seems to resist cube testers and basic cube attack techniques