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Cube attacks
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Timeline

Aug 08: Shamir presents cube attacks at CRYPTO

Sep 08: Dinur/Shamir paper on ePrint,
attack on 771-round Trivium

Oct 08: cube attacks reported on 14-round MD6

Oct 08: cube testers reported on 18-round MD6

Dec 08: Dinur/Shamir paper accepted to EUROCRYPT

Jan 09: cube testers reported on Shabal
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Cube attacks in a nutshell

Can attack any primitive with secret and public variables

I keyed hash functions
I stream ciphers
I block ciphers
I MACs

Target algorithms with low-degree components

I stream ciphers based on low-degree NFSR
I hash functions with only XORs and a few ANDs
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Cube attacks in a nutshell

Requirements of the attacker:

I only black-box access to the function
I negligible memory

Cube attacks work in 2 phases

I precomputation: chosen keys and chosen IVs
I online: fixed unknown key and chosen IVs
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Key observation 1

Any function
f : {0, 1}m 7→ {0, 1}n

admits an algebraic normal form (ANF)

Example: f : {0, 1}10 7→ {0, 1}4

f1(x) = x1x2 + x2x8x9 + x3x4x5x6x7

f2(x) = x2x4 + x6x8x9 + x5x6x7x8x9x10

f3(x) = 1
f4(x) = 1 + x1 + x3 + x5
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Key observation 2

Computation of the largest monomial’s coefficient

f (x1, x2, x3, x4) = x1 + x3 + x1x2x3 + x1x2x4

= x1 + x3 + x1x2x3 + x1x2x4 + 0× x1x2x3x4

Sum over all values of (x1, x2, x3, x4):

f (0, 0, 0, 0)+f (0, 0, 0, 1)+f (0, 0, 1, 0)+· · ·+f (1, 1, 1, 1) = 0
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Key observation 3

Evaluation of factor polynomials

f (x1, x2, x3, x4) = x1 + x3 + x1x2x3 + x1x2x4

= x1 + x3 + x1x2(x3 + x4)

Fix x3 and x4, sum over all values of (x1, x2):∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = 4× x1 + 4× x3 + 1× (x3 + x4)

= x3 + x4
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Key observation 3

Evaluation of factor polynomials

f (x1, x2, x3, x4) = · · ·+ x1x2(x3 + x4)

Fix x3 and x4, sum over all values of (x1, x2):∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = x3 + x4
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Terminology

f (x1, x2, x3, x4) = x1 + x3 + x1x2(x3 + x4)

(x3 + x4) is called the superpoly of the cube x1x2
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Evaluation of a superpoly

x3 and x4 fixed and unknown

f (·, ·, x3, x4) queried as a black box

ANF unknown, except: x1x2’s superpoly is (x3 + x4)

f (x1, x2, x3, x4) = · · ·+ x1x2(x3 + x4) + · · ·

Query f to evaluate the superpoly:∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = x3 + x4
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Key-recovery attack

On a stream cipher with key k and IV v

f : (k , v) 7→ first keystream bit

Offline: find cubes with linear superpolys

f (k , v) = · · ·+ v1v3v5v7(k2 + k3 + k5) + · · ·
f (k , v) = · · ·+ v1v2v6v8v12(k1 + k2) + · · ·
· · · = · · ·

f (k , v) = · · ·+ v3v4v5v6(k3 + k4 + k5) + · · ·

(reconstruct the superpolys with linearity tests)

Online: evaluate the superpolys, solve the system
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Cube testers
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Cube testers in a nutshell

Like cube attacks:

I need only black-box access
I target primitives with secret and public variables and
I built on low-degree components

Unlike cube attacks:

I give distinguishers rather than key-recovery
I don’t require low-degree functions
I need no precomputation
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Basic idea

Detect structure (nonrandomness) in the superpoly,

using algebraic property testers

A tester for property P on the function f :

I makes (adaptive) queries to f
I accepts when f satisfies P
I rejects with bounded probability otherwise
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Examples of efficiently testable properties

I balance
I linearity
I low-degree
I constantness
I presence of linear variables
I presence of neutral variables

General characterization by Kaufman/Sudan, STOC’ 08
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Superpolys attackable by testing...

. . . low-degree (6)

· · ·+ x1x2x3(x5x6 + x7x21 + x6x9x20x30x40x50) + · · ·

. . . neutral variables (x6)

· · ·+ x1x2x3x4x5 · g(x7, x8, . . . , x80) + · · ·

. . . linear variables (x6)

· · ·+ x1x2x3x4x5 · (x6 + g(x7, x8, . . . , x80)) + · · ·

17 / 27



Results
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MD6

Presented by Rivest at CRYPTO 2008

Submitted to the SHA-3 competition

I quadtree structure
I construction RO-indifferentiable
I low-degree compression function
I at least 80 rounds
I best attack by the designers: 12 rounds
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MD6’s compression function

{0, 1}64×89 7→ {0, 1}64×16

Input: 64-bit words A0.A1, . . . , A88

Compute the Ai ’s with the recursion

x ← Si ⊕Ai−17⊕Ai−89⊕ (Ai−18∧Ai−21)⊕ (Ai−31∧Ai−67)

x ← x ⊕ (x � ri)

Ai ← x ⊕ (x � `i)

I round-dependent constant Si

I quadratic step, at least 1280 steps
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Results on MD6

Cube attack (key recovery)

I on the 14-round compression function
I recover any 128-bit key
I in time ≈ 222

Cube testers (testing balance)

I detect nonrandomness on 18 rounds
I detect nonrandomness on 66 rounds when Si = 0
I in time ≈ 217, 224, resp.
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Trivium

Stream cipher by De Cannière and Preneel, 2005

eSTREAM HW portfolio

I 80-bit key and IV
I 3 quadratic NFSRs
I 1152 initialization rounds
I best attack on 771 rounds (cube attack)
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Cube testers on Trivium

Test the presence of neutral variables

Distinguishers (only choose IVs)

I 224: 772 rounds
I 230: 790 rounds

Nonrandomness (assumes some control of the key)

I 224: 842 rounds
I 227: 885 rounds

Full version: 1152 rounds
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Conclusions
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Cube testers

+
I more general than classical cube attacks
I no precomputation
I “polymorphic”

–
I only gives distinguishers
I only finds feasible attacks
I relevant for a minority of functions (like cube attacks)
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Open issues

How to predict the existence of unexpected properties?

How to find the best cubes?

Attack on (reduced versions of) other algorithms:

Grain, ESSENCE, Keccak, Luffa, Shabal,. . .
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