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ASYMMETRIC ENCRYPTION

There are “security proofs” for public-key encryption: reductions to
integer factorization, discrete log, lattice problems, etc.

But. . .

1) on quantum computers, RSA, ECC, ElGamal, etc. are broken

2) on hardware, slow and difficult to implement

On the other hand, LFSR-based stream ciphers fit well lightweight
environments.

TCHo

I encrypts with only a LFSR and pseudorandom bits

I decrypts with simple linear algebra over GF(2)

I is semantically secure

I is not known to be harmed by quantum computers
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TCHo AND RSA

Public key:

I TCHo: irreducible polynomial P

I RSA: composite integer n = pq

Private key:

I TCHo: a sparse multiple of P

I RSA: the prime factors of n

Hard problem:

I TCHo: finding a sparse multiple (polynomial)

I RSA: finding a prime factor (integer)

Encryption:

I TCHo: probabilistic

I RSA: deterministic
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DESCRIPTION OF TCHo
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ENCRYPTION

10101001 . . . 10101001 repetition of m||m|| . . . ||m
⊕

01110110 . . . 01101110 output of a LFSR with random state
⊕

00100100 . . . 00100010 random bits with bias γ = Pr(0)− Pr(1)

such that

I LFSR feedback polynomial is the public key P

I γ > 0 (more zeros than ones)

I the ciphertext is a `-bit string, with ` ≥ deg(K )

Enc(m) = m|| . . . ||m ⊕ LFSR(P)⊕ rand(γ)
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ENCRYPTION

Implementation is built on three independent components, fed with
two random (unbiased) samples R1 and R2

⇒ parallelizable

R1
-

m -

R2
-

repeat - ⊕
6

rand(γ)

- Enc(m)
?

LFSR(P)
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DECRYPTION

K private key, sparse multiple of P
⊗

10011011 . . . 10101011 c = m|| . . . ||m ⊕ LFSR(P) ⊕ rand(γ)

= 0100 . . . 1101 m′|| . . . ||m′ ⊕ rand(γw(K))

⇒ can compute m′ (count majority), and recover m:

m← ψ(m′)

ψ is a linear mapping defined by K
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PRODUCT POLYNOMIAL⊗BITSTRING

Let K =
∑

kix
i , and a bitstring u = (u0, . . . , u`−1), then

K ⊗ u = v , with v of `− deg(K ) bits, and

vi = uik0 + · · ·+ ui+deg(K)kdeg(K)

≈ sequence of dot products

Properties exploited in decryption (recall K = P × P ′)

I K⊗
(
output of LFSR with feedback P

)
= 0 . . . 0

I K⊗
(
output. . .⊕ rand(γ)

)
≈ rand(γw(K))
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DECRYPTION

K private key, sparse multiple of P
⊗

10011011 . . . 10101011 c = m|| . . . ||m ⊕ LFSR(P) ⊕ rand(γ)

= 0100 . . . 1101 m′|| . . . ||m′ ⊕ rand(γw(K))

⇒ can compute m′ (count majority), and recover m:

m← ψ(m′)

ψ is a linear mapping defined by K
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DECRYPTION RELIABILITY

ψ(m) repeated

N =
`− deg(K )

|m|
times

Decrypt incorrectly ⇔ majority logic fails ⇔ at least one bit of
ψ(m) is noised more than half the times.

Pr[bad decryption] ≈ |m| · ϕ
(
−

√
Nγ2w

1− γ2w

)
with ϕ the cumulative distribution of N (0, 1).
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KEY GENERATION

Problem: find a pair (K ,P), with K a sparse multiple of P, of
given degree and weight, and P of degree in [dmin, dmax].

Until a suitable P is found, repeat

I pick a random K of given degree and weight

I factorize it

I look for an irreducible P of suitable degree in K ’s factors

(in practice large degrees: deg(K ) > 15 000, deg(P) > 5 000)
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EXAMPLE OF PARAMETERS

For 80-bit security,

I plaintext of |m| = 128 bits

I ciphertext of ` = 56 000 bits

I public-key is polynomial P of degree ∈ [7 150, 8 000]

I private-key is polynomial K of degree 24 500 and weight 51

I noise has bias 0.98

I decryption fails with probability 2−23
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SECURITY OF TCHo
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PRIVATE KEY RECOVERY

We can decrypt

I if we recover K , sparse multiple of the polynomial P, OR

I if we find another sparse multiple of degree ≤ deg(K )

Computational problem LWPM

I Parameters: w , d , dP , 0 < dP < d and w � d .

I Instance: P of degree dP

I Question: find a multiple of P of degree ≤ d and weight ≤ w .

Strategies: exhaustive search, generalized birthday paradox,
syndrome decoding.

In TCHo, the existence of a solution is guaranteed !
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PRIVATE KEY RECOVERY

Computational problem LWPM

I Parameters: w , d , dP , 0 < dP < d and w � d .

I Instance: P of degree dP

I Question: find a multiple K of P, s.t. deg(K ) ≤ d AND
w(K ) ≤ w .

Strategies: exhaustive search, generalized birthday paradox,
syndrome decoding.

In TCHo, the existence of a solution is guaranteed !

LWPM requires Ω(2λ) operations if(
d

w − 1

)
≤ 2dP and w log

d

dP
≥ λ
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BASIC SECURITY PROPERTIES

TCHo is trivially malleable,

Enc(m)⊕∆ = Enc(m ⊕∆)

TCHo can be inverted by a CCA adversary: given challenge
ciphertext c , just query for m← Dec(c ⊕∆), and recover original
message m ⊕∆.

TCHo can be used as a KEM in hybrid encryption scheme, to
provide IND-CCA security.
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SEMANTIC SECURITY

Consider the problem of distinguishing

c = LFSR(P)⊕ rand(γ)⊕ (m|| . . . ||m)

for a chosen m, from
rand(0)

(real-or-random game)

challenge XORed with m gives either

LFSR(P)⊕ rand(γ) OR rand(0)

Reduction to Noisy LFSR: distinguish (`-bit strings)

I LFSR(P) ⊕ rand(β) from

I rand(0)
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SEMANTIC SECURITY

Noisy LFSR: distinguish

I LFSR(P) ⊕ rand(β) from

I rand(0)

P⊗challenge= either rand(γw(P)) or rand(0).

⇒ Noisy LFSR solvable if can distinguish rand(γw(P)) from
rand(0)

If we know P ′ such that w(PP ′) < w(P),
(PP ′)⊗challenge= either rand(γw(PP′)) or rand(0).

⇒ Noisy LFSR solvable if can distinguish rand(γw(PP′)) from
rand(0)

but less bits than with P!
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SEMANTIC SECURITY

With the previous method, we get a ratio advantage
complexity

max
w∈[0,dP ],N≥1

√
N

2π

γw

wN + 2deg(P)
(

`
dP

)w−1 (
`
w

)−1

with N the number of bits with bias γw(PP′) used,

Theorem
Assuming the hardness of LWMP and Noisy LFSR,
TCHo is semantically secure.
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PERFORMANCES OF TCHo
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PERFORMANCES

Recall parameters: |m| = 128, |Enc(m)| = 56 000,
deg(P) ∈ [7 150, 8 000], deg(K ) = 24 500, w(K ) = 51, γ = 0.98.

Average timings with C++ & NTL, gcc 3, over Intel P4 1.5GHz.
NTL used for matrix inversion and polynomial factorization
(Cantor-Zassenhaus).
Biased random bits generated in 2 steps: 1) pick weight k w.r.t. γ,
2) pick word of weight k.

Timings:

I Encryption: 90ms (bottleneck = LFSR output computation)

I Decryption: 65ms (bot. = product ciphertext⊗K )

I Key generation: 30min (bot. = factorization)

(timings include precomputation of ψ)
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PERFORMANCES

Flexible parameters (trading-off ciphertext length, key gen. time,
enc/dec. time, etc.). For example with parameters |m| = 128,
|Enc(m)| = 150 000, deg(P) ∈ [6 000, 8 795], deg(K ) = 17 600,
w(K ) = 81, γ = 0.9766.

I Encryption: 228ms

I Decryption: 424ms

I Key generation: 2min20s

These are software timings, TCHo is for hardware!
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PERFORMANCES

“Why do you give software timings for a hardware cipher??”
→ did not have the opportunity to implement HW.

Expected much faster on hardware devices, because of

I efficient LFSR

I only GF(2) linear algebra

I parallelization

but key generation. . .
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CONCLUSION

24 / 1



SUMMARY

TCHo is. . .

I based on the hardness of recovering a sparse polynomial
multiple

I semantically secure

I post-quantum

I flexible

I fast in hardware (except key gen.)
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FURTHER WORK

more experiments. . .

I benchmarks on FPGA, ASIC, etc.

I suitable for passive RFID tags ?

more analysis. . .

I speed-up key generation

I replace huge LFSR by. . . ?

I weak instances ?

I solve LWPM efficiently ?

I solve Noisy LFSR efficiently ?
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