
Analysis of multivariate hash functions

Jean-Philippe Aumasson, Willi Meier

1 / 20




3xy2 + zt = 0

x2z + 5xyt = 0
y3 + 7z + 11t = 0

x2t + 13yz = 0

Characteristics of multivariate systems:

I Base field: typically an extension of GF(2) for crypto.

I Nb. of unknowns n, nb. of equations m, ratio n/m.

For any field, when n ≈ m, solving a random quadratic system is
NP-hard (problem MQ).

Easier for sparse systems

2 / 20



SOLVING MULTIVARIATE SYSTEMS

I Linearization: needs #equations ≥ #monomials.
I Variants of Buchberger’s algorithm for Groebner bases:

I F4 and F5 [Faugère 99, 02],
I XL & co [Lazard 83, Courtois-Klimov-Patarin-Shamir 99],

I SAT-solvers with ANF↔SAT conversion
[Massaci-Marraro 00, Courtois-Bard 06],

I Dedicated methods for under-/over-defined or sparse systems.

Ex: GF(256) system with 40 eq. and 20 unknowns, solved by
XL-Wiedemann within < 245 Opteron cycles (“a few hours”)
[Yang-Chen-Bernstein-Chen 07].

3 / 20



MULTIVARIATE CRYPTOGRAPHY

Mainly asymmetric schemes (signature, encryption).

Pioneering works with C? [Matsumoto-Imai 88]
and HFE [Patarin 96].
Subsequent variants (PMI, QUARTZ, SFLASH, TTS, etc.), and a
stream cipher construction (QUAD).

Advantages:

I Fast in cheap hardware and smart-cards, short signatures.

I Reduction to a hard problem (MQ, IP, Minrank, etc.).

But many designs and/or instances broken with differential
attacks, rank attacks, system solvers, etc.

4 / 20



MULTIVARIATE HASH FUNCTIONS

Merkle-Damg̊ard construction with m-field-element message blocks
and n-field-element chaining value.

Compression function

h : Km+n 7→ Kn, m ∈ Z

explicitly defined as n algebraic equations

{hi : Km+n 7→ K}0≤i<n.

For a given set of parameters (m, n, degree, density, etc.) we
consider families indexed by the equation system.

Security reduction for preimage only, for a random instance h.

(We’ll also call h a “hash function”.)

5 / 20



SECURITY DEFINITIONS

For hash function families F = {h(i)}i .

Preimage

I Input a random function h ∈ F , a random image y

I Output x such that h(x) = y

Collision

I Input a random function h ∈ F
I Output x , x ′ such that h(x) = h(x ′).

Family ε-universal if ∀(x , x ′),

Pr
h∈F

[h(x) = h(x ′)] ≤ ε.

6 / 20



QUADRATIC HASH (DEGREE 2)

Quadratic components (deg(hi ) = 2, 0 ≤ i < n).

Can find collisions efficiently by solving the linear system

h(x)− h(x −∆) = 0

for an arbitrary fixed and known difference ∆ 6= 0.

Time cost in O(m3).

Generally, finding collisions in a degree-d system essentially reduces
to solving a degree-(d − 1) system.

7 / 20



SPARSE CUBIC HASH (DEGREE 3)

[Ding-Yang 07]

Cubic components (deg(hi ) = 3, 0 ≤ i < n), with

h : K2n 7→ Kn

of fixed density δ = 0.1% (vs. expected density 50% for a random
system).

Low density ⇒ less storage requirements, faster, etc.
but no longer reduction to a NP-hard problem.

8 / 20



QUARTIC HASH (DEGREE 4)

[Billet-Robshaw-Peyrin 07]

Two composed quadratic systems:

h = g ◦ f

with
f : Km+n 7→ Kr , g : Kr 7→ Kn, r > m + n.

Security reduction to MQ for preimage.

Large memory requirements,
e.g. ≈ 3 Mb for SHA-1 parameters over GF(2)

9 / 20



HOW SECURE IS IT ?

1. Universality and collisions for sparse systems

2. Collisions for semi-sparse systems

3. Pseudo-randomness and unpredictability

4. HMAC and NMAC

10 / 20



COLLISIONS IN SPARSE SYSTEMS

Key fact: for a random h of low density, there exists with high
probability a collision of the form

h(0, . . . , 0) = h(0, . . . , 0, xi 6= 0, 0, . . . , 0).

Ex:

h(x , y , z) :


xyz + xy + z = 0
xz + yz + y = 0
xyz + y + z = 0

⇒ h(0, 0, 0) = h(1, 0, 0)

⇒ universality and collision resistance broken for sparse systems.
(degree-independent.)

Solution: don’t choose a low density for linear terms (semi-sparse
systems).

11 / 20



COLLISIONS IN SEMI-SPARSE SYSTEMS

Consider cubic hash over GF(2), low density for cubic monomials
only.

Idea: find a collision for the system without cubic monomials,
such that the collision holds for the complete system with
non-negligible probability.

12 / 20



COLLISIONS IN SEMI-SPARSE SYSTEMS

Algorithm for collision search, given a semi-sparse cubic system
h(x) = 0:

1. Compute the (quadratic) differential system

h′(x) = h(x)− h(x −∆)

2. Remove quadratic monomials in h′(x), get h′′(x)

3. Compute the generating matrix of the corresponding linear
code

4. Find a low-weight word of this code (a solution of h′′(x) = 0)

The low-weight word will be a solution of h′(x) = 0 iff all sums of
quadratic monomials vanish.
(A solution of h′(x) = 0 gives a collision for h)

13 / 20



COLLISIONS IN SEMI-SPARSE SYSTEMS

Bottleneck: find low-weight words in a random linear code;
fastest algorithm in [Canteaut-Chabaud 98].

For realistic parameters: GF(2) system with 160 equations and 320
unknowns, density 0.1% for cubic monomials only:

Ratio time/success ≈ 252,

against ≈ 280 for a birthday attack.

⇒ semi-sparse better than sparse systems, but still insecure.

14 / 20



DISTRIBUTIONS QUALITY

Definitions for function families [Naor-Reingold 98], for a
black-box random instance h over GF(2):

I Pseudo-randomness: hard to distinguish from a random
function.

I Unpredictability: for all x , hard to compute h(x) without
querying the box with x .

15 / 20



DISTRIBUTIONS QUALITY

Key fact: given h as a black box, one can reconstruct the ANF
within

d∑
i=0

(
m + n

i

)
queries to the box,

with queries of increasing weight.

⇒ breaks pseudo-randomness and unpredictability for
low-degree functions

For parameters proposed of cubic and quartic functions, < 226

queries for both schemes.

Can fix this with some padding rule and/or output filter ?

16 / 20



KEY RECOVERY IN HMAC AND NMAC

HMACk(x) = h (k ⊕ OPAD‖h(k ⊕ IPAD‖x))
⇒ can get equations of degree d3 (d = deg(h)).

NMACk1,k2(x) = hk1 (hk2(x))
⇒ can get equations of degree d2.

Depending on parameters, linearization and/or system solvers may
outperform brute force. . .

Ex: NMAC with sparse cubics over GF(256) with 20 equations
and 40 variables. 223 queries are sufficient to run linearization
(time cost C · 274 vs. 2160 by brute force).

17 / 20



FIXES ?

We studied compression functions. . . can iterated hash be
secured with convenient

I padding rule ?

I output filter ?

I operating mode ?

I high degree system ?

18 / 20



SUMMARY

Multivariate hash provide

I speed in HW (presumably, need benchmarks),

I security reduction for preimage,

but

I give no argument for collision resistance,

I do not provide pseudo-random function families,

I sparse equations can lead to trivial collisions,

I NMAC potentially weaker than HMAC,

19 / 20



Analysis of multivariate hash functions

Jean-Philippe Aumasson, Willi Meier

20 / 20


