### On a bias of Rabbit

#### Jean-Philippe Aumasson



4 日 ト 4 目 ト 4 目 ト 4 目 - 9 4 (や)

# RABBIT

### Design

- ▶ Presented at FSE 2003 by Boesgaard *et al.*
- ▶ eSTREAM phase 2 candidate (SW & HW), report 2005/024.
- ▶ Patented by Cryptico (Denmark), described in RFC 4503.

### Analysis

- ▶ 9 white papers @ cryptico.com:
  - performance evaluation
  - ► analysis of key and IV setup
  - algebraic and mod n analysis
  - ▶ analysis of the core function g (differentials, etc.)
- SASC 2004 paper "The Rabbit Stream Cipher Design and Security Analysis".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### **KEYSTREAM GENERATION**

▶ 128-bit key, 64-bit IV, 513-bit state:

32-bit sequences  $\{x_{j,t}\}_{0 \le j \le 7}$  and  $\{c_{j,t}\}_{0 \le j \le 7}$  + carry bit

• Each round outputs a 128-bit keystream block  $s_t$ , e.g.

$$s_t^{[15...0]} = x_{0,t}^{[15...0]} \oplus x_{5,t}^{[31...16]}.$$

State update:

$$\begin{array}{rcl} x_{0,t+1} & = & g_{0,t} + (g_{7,t} \lll 16) + (g_{6,t} \lll 16), \\ x_{5,t+1} & = & g_{5,t} + (g_{4,t} \lll 8) + g_{3,t}. \end{array}$$

► The main function g:

$$g_{j,t} = (x_{j,t} + c_{j,t+1})^2 \oplus [(x_{j,t} + c_{j,t+1})^2 \gg 32] \mod 2^{32}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## THE FUNCTION g

$$g_{j,t} = (x_{j,t} + c_{j,t+1})^2 \oplus [(x_{j,t} + c_{j,t+1})^2 \gg 32] \mod 2^{32}.$$

► g's distribution with random state = distribution of

$$x \to x^2 \oplus (x^2 \gg 32)$$

with random  $x \in \{0, 1\}^{32}$ .

• Consider the function  $G_n: \{0,1\}^n \to \{0,1\}^n$ ,

$$x \to x^2 \oplus (x^2 \gg n).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

PROPERTIES OF  $G_n : x \to x^2 \oplus (x^2 \gg n)$ 

Property 1

For all even  $n \ge 2$ ,  $G_n(1) = G_n(2^{n/2}) = 1$ , so  $G_n$  is not bijective for even n's.

Property 2

For all even  $n \ge 2$ , if  $x < 2^{n/2}$ , then  $G_n(x) = x^2$ .

Property 4

For all  $n \ge 2$ ,  $G_n(0) = 0$  and  $G_n(2^n - 1) = 2^n - 1$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROPERTIES OF  $G_n : x \to x^2 \oplus (x^2 \gg n)$ 

Property 5

For all even 
$$n \ge 4$$
, if  $x = \sum_{k=n/2-1}^{n-2} 2^k$ , then  $G_n(x) = x$ .

#### Property 6

For all  $n \ge 2$ , the number  $2^n + 1$  is square-free if and only if any non-null x verifies  $G_n(x) \ne 0$ .

### DISTRIBUTION OF G<sub>8</sub> & G<sub>32</sub>

• Distribution of  $G_8(x)$ :

| offset                                                                 | 0                 | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 | 7     |  |  |  |
|------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|--|--|--|
| bias                                                                   | 2 <sup>-5.0</sup> | 2 <sup>-5.0</sup> | 2 <sup>-5.2</sup> | 2 <sup>-5.0</sup> | 2 <sup>-4.7</sup> | <sub>2</sub> -5.0 | <sub>2</sub> -5.0 | 2-5.0 |  |  |  |
| (bias at position $i=rac{1}{2}-P\left(\mathcal{G}(x)^{[i]}=1 ight)$ ) |                   |                   |                   |                   |                   |                   |                   |       |  |  |  |

► For *G*<sub>32</sub>'s offsets:

$$2^{-17.35} < \text{bias} < 2^{-16.40}$$
.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Only positive biases
  - $\Rightarrow$  "more zeros than ones" in g's images
  - $\Rightarrow$  bias in the keystream  $\{s_t\}_{t>0}$ .

## BIAS OF THE KEYSTREAM $\{s_t\}_{t>0}$

Example of the first bit of a keystream block:

$$\begin{aligned} s_t^{[0]} &= \mathbf{x}_{0,t}^{[0]} \oplus \mathbf{x}_{5,t}^{[16]} \\ x_{0,t+1} &= g_{0,t} + (g_{7,t} \ll 16) + (g_{6,t} \ll 16) \\ x_{5,t+1} &= g_{5,t} + (g_{4,t} \ll 8) + g_{3,t} \end{aligned}$$

• Distribution of  $x_{0,t}^{[0]}$  easy to compute:

$${\mathcal P}(x_{0,t}^{[0]}=1)=p_0\cdot p_{16}^2+p_0\cdot q_{16}^2+2\cdot q_0\cdot p_{16}\cdot q_{16}\leq rac{1}{2}-2^{-47.85},$$

with  $p_i = P(i$ -th bit = 1),  $q_i = 1 - p_1$ .

• Distribution of  $x_{5,t}^{[16]}$ ?

# BIAS OF THE KEYSTREAM $\{s_t\}_{t>0}$

- ▶ Bias in the 17-th bit of  $x_{5,t+1} = g_{5,t} + (g_{4,t} \iff 8) + g_{3,t}$  computed by
  - 1. recursively expressing the distribution of  $(g_{3,t} + g_{5,t})$ ,
  - 2. computing carry bits distribution\*.

| 0      | 1                  | 2                  | 3                  | 4                  | 5                  | 6                  | 7                  |
|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 2-48.8 | <sub>2</sub> -63.3 | <sub>2</sub> -52.7 | <sub>2</sub> -55.3 | 2 <sup>-59.9</sup> | <sub>2</sub> -59.3 | <sub>2</sub> -60.2 | <sub>2</sub> -63.2 |
|        |                    |                    |                    | 16                 |                    |                    |                    |
|        |                    |                    |                    | 2 <sup>-76.7</sup> |                    |                    |                    |
| 24     | 25                 | 26                 | 27                 | 28                 | 29                 | 30                 | 31                 |
| 2-78.9 | 2-80.0             | <sub>2</sub> -79.4 | <sub>2</sub> -79.8 | 2 <sup>-87.8</sup> | 2-81.2             | <sub>2</sub> -79.6 | <sub>2</sub> -80.0 |

• Bias of  $x_{5,t}$ ,  $0 \le k < 4$ :

\* we assume independence between the (random variables of) the carry bit distribution at a given offset and the bits after this offset.

## BIAS OF THE KEYSTREAM $\{s_t\}_{t>0}$

From the previous results:

$$P(s_t^{[0]} = 1) pprox rac{1}{2} - 2^{-124.50}$$

- Same bias appears in  $s_t^{[k]}$ , for  $128 > k \equiv 0 \mod 16$ .
- ▶ Optimal distinguisher requires ≈ 2<sup>247</sup> blocks s<sub>t</sub>, with random keys & IV's (exh.search needs 2<sup>128</sup> blocks).

(日) (日) (日) (日) (日) (日) (日) (日)

### CONCLUSION

Rabbit is safe, but...

▶ its core function suffers of several non-desirable properties, and

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 a uniform distribution of initial states does not provide a uniform distribution of keystream bits.

## CONCLUSION

Rabbit is safe, but...

- ▶ its core function suffers of several non-desirable properties, and
- ► a random inital state does not produce a (uniform) random keystream.

Chase the Rabbit ! (see contest at www.cryptico.com).

