
Lessons from 3 years of 
crypto and blockchain  

security audits
JP Aumasson

Crypto audits lead @

I do crypto, live in Switzerland

https://aumasson.jp @veorq

We look for security issues and help fix them

In source code, mainly C(++), JS, Rust, Java, Go

Sometimes documentation is available

We get paid for it (unless we do it for fun)

Reports are sometimes published

Include findings, recommendations, status

1. Common crypto bugs from real audits

2. The case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers 

Agenda

1. Common crypto bugs from real audits

2. The case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers 

Agenda

1. Common crypto bugs from real audits

2. The case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers 

Finding bugs is easy  
Writing bug-free code is hard 
Writing bug-free crypto is harder

Agenda

Found in a major cryptocurrency wallet, totally defeats encryption

Bug#1  
Strong cipher yet weak encryption

Bug#2  
Weak key derivation from a password

encryption_key = SHA-256(password)

 
Encryption key then easy to break

Need to use a password hash with salt and cost

Found in several audits (with various hash functions)

Bug#3  
Hijacking accounts in a $3B cryptocurrency

(publicKey, privateKey) = deriveKey(seed)

address = hash(publicKey)

 
With 64-bit address, what can go wrong?

Bug#3  
Hijacking accounts in a $3B cryptocurrency

(publicKey, privateKey) = deriveKey(seed)

address = hash(publicKey)

 
With 64-bit address, what can go wrong?

Find another key pair with the same address in 264 elliptic curve
operations, exploitable to hĳack accounts, unfixable

Bug#4  
Weak encryption in credentials store

 
Found in an anonymous cryptocurrency wallet

Bug#5  
Flaws in NFC cryptocurrency wallet

Symmetric key sent in clear

Hash(PIN) sent to unauthenticated receivers

Default PIN length of 3 digits

Control commands sent without authentication (spoofable)

Bug#6  
Entropy data ignored in key generation

In a BIP32 hierarchical key derivation software

Generating an address from a 64-byte seed:

 $ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

Bug#6  
Entropy data ignored in key generation

In a BIP32 hierarchical key derivation software

Generating an address from a 64-byte seed:

 

When truncating the seed to 32 bytes, same result. 🤔
$ echo bc0ef283f57fd5e4f36657053228eae8 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

1. Common crypto bugs from real audits

2. The case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers 

Agenda

Memory-safe system language, using reference counting (no GC)

Used more and more for crypto, for its safety and performance

Example: a large part of Zcash's reference code is in Rust

cargo test

cargo clippy

cargo audit

rg unsafe

Pre-auditing

unsafe blocks of code can break memory safety — typically used
when using raw pointers in FFI calls

Review all unsafe blocks for e.g. out-of-bound read/write

unsafe can be unsafe

unwrap() will panic if the Option/Result processed is None/Err

To avoid DoS, panic should be reserved for unrecoverable errors

Example from an audit, where deserialize() can return Err

Careful with unwrap()

Sensitive values can be reliably erased/zeroized in C(++)

Usually not in garbage-collected languages (e.g. Go, Java, JS)

What about Rust?

Zeroize or not zeroize?

More reliable for heap than stack (no control on stack allocator)

Caveats: moves, copies, heap reallocations, etc.

Consider using the crate zeroize

Zeroize or not zeroize?

Rust programmers tend to be good programmers – fewer bugs per LoC

Fewer tools available than for C, but these are mostly useless anyway :)

Potential timing leaks usually easy to notice…

Crypto and Rust

There’s much more to say about Rust and its security

https://tonyarcieri.com/rust-in-2019-security-maturity-stability

 https://github.com/rust-secure-code/

References

https://tonyarcieri.com/rust-in-2019-security-maturity-stability
https://github.com/rust-secure-code/wg/

1. Common crypto bugs from real audits

2. The case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers 

Agenda

The situation is much better than 10 years ago

Cryptography is easier to use, the average developers
understands more crypto, more resources and software

Many crypto audits are not much about crypto

Language knowledge and familiarity with all classes of
bugs at least as important as pure crypto knowledge

Both sides must be prepared

Auditor: Be familiar with the kind of system/protocol audited, its
components, security notions, language/frameworks

Customer: Provide a description of critical assets and
functionalities, intended behavior, documentation, security model

Scoping and effort estimate is hard

There are trade-offs between completeness, flexibility, and cost

cloc results are useful but not sufficient

Distribution of the time of findings’ varies

Sometimes most issues found at the beginning of the audit; 
low-hanging fruits then diminishing returns  
 
Sometimes later, because of the learning curve

(Depends on the functionality, code and system complexity)

Severity ratings is not always easy

Should be risk-based (impact × exploitability), as in CVSS

Overestimation is more common than underestimation

A cryptographer may cringe if they see MD5 or AES-ECB used,
but these may not be actual security issues

Understand the security model

For example, when reviewing a proof-of-work, consider attacks
by both block authors and miners

Empathize with developers

After writing the report, read it and imagine that you’re the
developer who wrote the code, and revise the tone accordingly

Provide a clear description, mitigation suggestions, links to
relevant documentation/articles, review the patch

Communicate, report findings

Establish a group chat with developers, ask questions, report
findings to 1) know if relevant or FP/incorrect, 2) help developers
mitigate earlier

Audits are no security guarantee

Security audits tend to be broader than they’re deep

Different teams/persons have different fields of expertise

Audit limited in time/scope/budget

Vulnerabilities can be in dependencies/runtime/platform

Thank you!
jpa@pm.me @veorq

kudelskisecurity.com

