| essons from 3 years of
crypto and blockchain
security audits

JP Aumasson

KUDELSKI
SEGURITY o

Crypto audits lead @ gggﬁﬁﬁ.‘v' @
| do crypto, live iIn Switzerland

https://aumasson.jp @veorq

& Teserakt | rrvrus

Serious
Cryptography

A Practical Introduction
to Modem Encryption

Jean-Philippe Aumasson
Foreword by Matthew 0. Green

People also ask

What does it mean to audit something?

an official examination and verification of financial accounts and records. 2. a final

report detailing an audit. 3. the inspection or examination of something, as a
building, to determine its safety, efficiency, or the like.

We ook for security issues and help fix them
In source code, mainly CG(++), JS, Rust, Java, Go

Sometimes documentation is available

KUDELSKI
We get paid for it (unless we do it for fun) SECURITY

RandomX Security Audit

Reports are sometimes published

Include findings, recommendations, status O
-

G = W N =

2.4 BEAM-F-004: Weak password key derivation

Severity: Medium

Description

The keystore encryption key is directly taken as the SHA-256 of the password, allowing
efficient bruteforce search of the password and possibly offline attacks if one of the

blocks is predictable:

void init_aes_enc(AES: :Encoder& enc, const void* password, size_t passwordLen) {

ECC: :NoLeak<ECC: :Hash: :Processor> hp;
ECC: :NoLeak<ECC: :Hash: :Value> key;
hp.V.Write(password, passwordLen);
hp.V >> key.V;

FOR PUBLIC RELEASE

Beam-mw Security Audit Beam-mw

enc.Init(key.V.m_pData) ;

Recommendation

We recommend to use a password hashing function that mitigates bruteforce attacks
by being slow, such as PBKDF2 (with at least 50000 iterations) or Argon2.

Status

Beam fixed this by removing the weak password derivation.

Agenda

1. Common crypto bugs from real audits
2. The case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers

Agenda

1. Common crypto bugs from real audits
2. Ihe case of Rust: typical bugs and recommendations

3. What we've learnt; tips for auditors and customers

Agenda

1. Common crypto bugs from real audits

Finding bugs Is easy
Writing bug-free code is hard
Wiriting bug-free crypto is harder

BUg#]T
Strong cipher yet weak encryption

addrAttrNonce :: ByteString
addrAttrNonce = "serokellfore"

—— | Serialize tree path and encrypt it using HDPassphrase via ChaChaPoly1305.
packHDAddressAttr :: HDPassphrase —> [Word32] -> HDAddressPayload
packHDAddressAttr (HDPassphrase passphrase) path = do

let !pathSer = serialize' path

let !packCF = encryptChaChaPoly addrAttrNonce passphrase "" pathSer

case packCF of
CryptoFailed er —> panic $ "Error 1n packHDAddressAttr: " <> show er
CryptoPassed p —> HDAddressPayload p

Found In a major cryptocurrency wallet, totally defeats encryption

BUg#Z
Weak key derivation from a password

encryption key = SHA-256(password)

Encryption key then easy to break
Need to use a password hash with salt and cost

Found in several audits (with various hash functions)

BUJ#3
Hijacking accounts in a $3B cryptocurrency

(publicKey, privateKey) = deriveKey(seed)

address = hash(publicKey)

With 64-bit address, what can go wrong?

BUJ#3
Hijacking accounts in a $3B cryptocurrency

(publicKey, privateKey) = deriveKey(seed)

address = hash(publicKey)

With 64-bit address, what can go wrong?

FINnd another key pair with the same address In 294 elliptic curve
operations, exploitable to hijack accounts, unfixable

Bug#4
Weak encryption in credentials store

void aes_encrypt(void* buffer, size_t bufferLen, const void* password, size_t
— passwordLen) {

AES: :Encoder enc;

init_aes_enc(enc, password, passwordLen);

uint8_t* p = (uint8_t*)buffer;

uint8_t* end = p + bufferLen;

for (; p<end; p+=AES::s_BlockSize) {
enc.Proceed(p, p);

}

Found In an anonymous cryptocurrency wallet

BUJ#5
FHlaws iIn NFC cryptocurrency wallet

Symmetric key sent in clear

Hash(PIN) sent to unauthenticated receivers

Default PIN length of 3 digits

Control commands sent without authentication (spoofable)

BUJHO
ENtropy data ignored In key generation

In a BIP32 hierarchical key derivation software

Generating an address from a 64-byte seed:

S echo bc0ef283f57fd5e4£f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -1 entropy -0 addr m
1Jzuo5xm621i18gFQOLOb58f2F5a7nTK308bD

BUJHO
ENtropy data ignored In key generation

In a BIP32 hierarchical key derivation software

Generating an address from a 64-byte seed:

S echo bc0ef283f57fd5e4£f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -1 entropy -0 addr m
1Jzuo5xm621i18gFQOLOb58f2F5a7nTK308bD

When truncating the seed to 32 bytes, same result. &

S echo bc0ef283f57fd5e4£36657053228eae8 |
bip32gen -xXx -1 entropy -o addr m
1Jzuo5xm6218gFQLOb58f2F5a7nTK308bD

Agenda

1. Common crypto bugs from real audits
2. The case of Rust: typical bugs and recommendations

3. What we've learnt; tips for auditors and customers

Memory-safe system language, using reference counting (no GC)
Used more and more for crypto, for its safety and performance

Example: a large part of Zcash's reference code Is in Rust

Pre-auditing

cargo test
cargo clippy
cargo audit

rg unsafe

unsafe can be unsate

unsafe blocks of code can break memory safety — typically used
when using raw pointers in FHI calls

Review all unsafe blocks for e.g. out-of-lbound read/write

#[no_mangle]

pub extern "C" fn wallet_from_seed(seed_ptr: *const c_uchar, out: *mut c_uchar) {
let seed = unsafe { read_seed(seed_ptr) };

let xprv = hdwallet: :XPrv::generate_from_seed(&seed) ;

unsafe { write_xprv(&xprv, out) }

unsafe fn read_seed(seed_ptr: *const c_uchar) -> hdwallet::Seed {
let seed_slice = std::slice::from_raw_parts(seed_ptr, hdwallet::SEED_SIZE);

hdwallet::Seed::from_slice(seed_slice) .unwrap()

Careful with unwrap ()

unwrap () Will panic if the Option/Result processed IS None/Err

To avoid DoS, panic should be reserved for unrecoverable errors

Example from an audit, where deserialize() can return Err

impl RawBlock {
pub fn from_dat(dat: Vec<u8>) -> Self { RawBlock(dat) }
pub fn decode(&self) -> cbor_event::Result<Block> {
— RawCbor::from(&self.0) .deserialize() }
pub fn to_header(&self) -> RawBlockHeader {

—~ // TODO optimise ©f possible with the CBOR structure by skipping some prefic
let blk = self.decode() .unwrap();
blk.get_header () .to_raw()

}

/erolze or not zeroize?

Sensitive values can be reliably erased/zeroized in C(++)
Usually not in garbage-collected languages (e.g. Go, Java, JS)

What about Rust?

/erolze or not zeroize?

More reliable for heap than stack (no control on stack allocator)
Caveats: moves, copies, heap reallocations, etc.

Consider using the crate zeroize

Crypto and Rust

Rust programmers tend to be good programmers — fewer bugs per LoC
Fewer tools available than for C, but these are mostly useless anyway :)

Potential timing leaks usually easy to notice...

O 00 NN oo G s WO N R

2.7 KZENC-F-007: Possible Timing Leak in Mpz::Modulo::mod_sub

Severity: Low

Description

In big_gmp.rs, the Mpz: :Modulo: :mod_sub() function is implemented as follows:

fn mod_sub(a: &Self, b: &Self, modulus: &Self) -> Self {
let a_m = a.mod_floor(modulus);
let b_m = b.mod_floor (modulus);
if a_m >= b_m {
(a_m - b_m) .mod_floor (modulus)
} else {
(a + (-b + modulus)) .mod_floor (modulus)

}

O 0 NN O G kW=

G O S Gt
NN g ks LN =R O

2.8 KZENC-F-008: Possible Timing Attack in ECScalar::from()

Severity: Low

Description

In ed25519.rs, the ECScalar: : from() function is implemented as follows:

fn from(n: &BigInt) -> Ed25519Scalar {

let mut v = BigInt::to_vec(&n);

let mut bytes_array_32: [u8; 32];

if v.len() < SECRET_KEY_SIZE {
let mut template = vec![0; SECRET_KEY_SIZE - v.len()];
template.extend_from_slice(&v) ;
v = template;

}

bytes_array_32 = [0; SECRET_KEY_SIZE];

let bytes = &v[..SECRET_KEY_SIZE];

bytes_array_32.copy_from_slice(&bytes);

bytes_array_32.reverse() ;

Ed25519Scalar {
purpose: '"from_big_int",

fe: SK::from_bytes(&bytes_array_32),

}

The conditional if statement before padding introduces a possible timing leak in case
the secret key has a lot of leading zeroes.

References

There’'s much more to say about Rust and its security

https://tonyarcieri.com/rust-in-2019-security-maturity-stability

Rust in 2019: Security, , : i)
Maturity, Stability https://qithub.com/rust-secure-code/

® Improve clippy security lints 2019 goal
#27 opened on Jan 15 by tarcieri

® Improve dynamic analysis tooling [2019 goal
#26 opened on Jan 14 by Shnatsel

® Docs on available tools and when to use them 2019 goal
#25 opened on Jan 14 by vakaras

® Continuous verification of standard library 2019 goal
#23 opened on Jan 13 by Shnatsel

® safety-oriented static analysis tooling 2019 goal
#22 opened on Jan 13 by Shnatsel

® Make Memory Sanitizer actually usable [2019 goal

#21 opened on Jan 13 by Shnatsel

https://tonyarcieri.com/rust-in-2019-security-maturity-stability
https://github.com/rust-secure-code/wg/

Agenda

1. Common crypto bugs from real audits
2. Ihe case of Rust: typical bugs and recommendations

3. What we’ve learnt; tips for auditors and customers

The situation is much better than 10 years ago

Cryptography is easier to use, the average developers
understands more crypto, more resources and software

Many crypto audits are not much about crypto

Language knowledge and familiarity with all classes of
bugs at least as important as pure crypto knowledge

Both sides must be prepared

Auditor: Be familiar with the kind of system/protocol audited, its
components, security notions, language/frameworks

Customer: Provide a description of critical assets and
functionalities, intended behavior, documentation, security model

Scoping and effort estimate is hard
There are trade-offs between completeness, flexibility, and cost

cloc results are useful but not sufficient

Distribution of the time of findings’ varies

Sometimes most issues found at the beginning of the audit;
low-hanging fruits then diminishing returns

Sometimes later, because of the learning curve

(Depends on the functionality, code and system complexity)

Severity ratings is not always easy
Should be risk-based (Impact x exploitability), as in CVSS
Overestimation iIs more common than underestimation

A cryptographer may cringe if they see MD5 or AES-ECB used,
out these may not be actual security issues

Understand the security model

For example, when reviewing a proof-of-work, consider attacks
oy both block authors and miners

Empathize with developers

After writing the report, read it and imagine that you're the
developer who wrote the code, and revise the tone accordingly

Provide a clear description, mitigation suggestions, links to
relevant documentation/articles, review the patch

Communicate, report findings

Establish a group chat with developers, ask questions, report
findings to 1) know if relevant or FP/incorrect, 2) help developers
mitigate earlier

Audits are no security guarantee

Security audits tend to be broader than they’re deep
Different teams/persons have different fields of expertise
Audit limited in time/scope/budget

Vulnerabllities can be in dependencies/runtime/platform

Thank youl

jpa@pm.me @veorag

kudelskisecurity.com

KUDELSKI
SEGURITY Q

