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• New attacks to compromise private keys or leak key bits  


• Recommendations to avoid such catastrophes



Basic notions



What’s a wallet?
System to store and manage keys associated to digital asset accounts

• These keys are required to sign transactions, thus spend money

• Usually a seed is stored, from which keys are derived as per BIP32/44 

• The public key or the address can be made public


Different types of wallets for 
individual users: 

Online, mobile, desktop, 
paper, hardware



Enterprise wallets
Used by institutional actors rather than individuals: crypto exchanges, 
private banks, crypto banks, investment funds, etc. Different needs than 
individual wallets: 


• Higher security and privacy: larger amounts, regulations and audits


• Management features: transactions settlement, proof of reserve, etc.


• Integration in financial IT and processes (e.g. banking network)


• Key lifecycle assurance, from key ceremony to BCP/DRP


• Hot vs. cold systems, to manage liquidity and minimize risk


• High availability, to work all the time


This talk is about technologies used for enterprise wallets



Distributing trust
Enterprise wallets need to distribute trust (in software, hardware, humans), 
to avoid a single point of failure, minimize the risk, and be compliant with 
certain regulatory frameworks:


• Dedicated hardware, strict processes, AAA layers can work, but not 
always suitable (environment, cost, etc.)


• Multi-signatures can help, but require multiple keys, and tend to work 
differently for different cryptocurrencies 


• Funds can be distributed over per-account key, per-asset seed, 
depending on the pooling model


• Cold storage systems often work with one or few fixed keys; processes 
can be insufficient when $100Ms are under custody



Multi-party computation (MPC)
An approach to distribute trust, particularly interesting when only software 
components are available, backed by established crypto research:


MPC components received “encrypted” inputs, and only learns the output:


For a wallet application, what are the inputs and the MPC functionality?

MPC protocol  
for addition

“encrypted” Y 

“encrypted” X 
X+Y



An approach to distribute trust, particularly interesting when only software 
components are available, backed by established crypto research:


MPC components received “encrypted” inputs, and only learns the output:


How to efficiently manage quorum-based protocols (m-of-n participants)?

MPC protocol  
for addition

“encrypted” key share 

Signature“encrypted” key share
“encrypted” transaction 

Multi-party computation (MPC)



Threshold signatures (TSS)
Goal: Distribute signing power among multiple parties, to prevent a single signer 
(or a small collusion of signers) to issue a signature 


A (t, n) scheme allows of  any set of  t parties to sign, among n>t possible signers 
holding distinct shares and common parameters  

share2, tx
share1

share3, tx



Threshold signatures (TSS)
Special case of MPC, based on research in threshold cryptography 

How to generate the shared key? Trust a server then split it and share it?

TSS protocol

key share 1 

Signature
message 

Signer 1

key share 2 
message 

Signer 2



Distributed key generation
Or how to generate keys to TSS without a single trusted dealer, by 
distributing the computation in a verifiable way


A protocol, based on agreed-upon TSS parameters 

xc,Q

xi,Q

xs,Q



Where are MPC and TSS used?
Common use case is cryptocurrency exchanges:


• Cold storage with $100Ms stored


• Used to distribute trust among multiple parties/locations/infrastructures


For example, TSS may include shares on smart cards, cloud HSMs, and VMs.


MPC/TSS find use cases in software-only deployments, for example to mitigate 
the risk of using a mobile phone to store key share



Crypto building blocks



Digital signatures
Signatures schemes to support are those used to sign transactions


Of 2 main types, using elliptic-curve crypto:


• ECDSA, as used in Bitcoin and Ethereum with secp256k1


• Schnorr and EdDSA, mainly via Ed25519 (deterministic Schnorr) 
Supports aggregation of keys & signatures, thanks to its linearity


Another important construction is BLS signatures (which use pairings)

https://ia.cr/2018/483 
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

https://ia.cr/2018/483
https://ia.cr/2018/483
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html


Homomorphic encryption
When Dec( Enc(M1) ○ Enc(M2) ) = M1 ❂ M2 

Operators ○  and ❂ can be the same operation (× with textbook RSA),  
or distinct ones (× and + in Paillier)


Depending on the context, a vulnerability or a feature


Leveraged in e-voting schemes, and in TSS constructions…



Commitments

c := Commit(x, r)
Hiding property: Verifier does not learn information on x

Prover Verifier

x, r

Binding property: Prover cannot reveal another value than x Verify(x, r)

Setup()



Threshold secret-sharing
Mainly based on Shamir’s scheme


Uses polynomial interpolation to reconstruct 
a secret from it shares, while preventing  
recovery with fewer shares than required 


Verifiable secret sharing (VSS): participants get a cryptographic proof that the 
right secret was recovered, protecting against malicious dealers/ participants


A common VSS scheme is Feldman’s, which uses homomorphic encryption



Zero-knowledge proofs
Protocol where a prover convinces a verifier that they know some 
mathematical statement (for example, a solution to the discrete log problem) 
without revealing any info on the statement (zero-knowledge)


Completeness: A prover should be able to 
convince a verifier if the statement is true   


Soundness: A prover should not be able to 
convince a verifier if the statement is false


Non-Interactive Zero-Knowledge (NIZK): 
Not really a protocol, just a single data blob 



New attacks
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Attacker Model 
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Crypto Exchange

Forget-and-Forgive

sk_A

sk_C

sk_B

Time = t’



y = xA + xB + xC       

xC

xA xB

3P - Key Gen black box

Forget-and-Forgive



rCA rCB

 rCA  + rCB = 0 

Forget-and-Forgive
y = xA + xB + xC       

xC

xA xB



y’  = y ,x’CxC

,x’BxB

Forget-and-Forgive
y = xA + xB + xC       

 ,x’AxA

 rCA  + rCB = 0 

rCA rCB
x’A  = xA + rCA  , x’B = xB + rCB  , x’C  = xC



y’  = y

Done  ?

Forget-and-Forgive
y = xA + xB + xC       

,x’CxC

,x’BxB ,x’AxA

 rCA  + rCB = 0 

x’A  = xA + rCA  , x’B = xB + rCB  , x’C  = xC
rCA rCB



y’  = y

Done  ?

Delete xA , xB , xC

Forget-and-Forgive
y = xA + xB + xC       

 rCA  + rCB = 0 

x’C

x’A x’B

x’A  = xA + rCA  , x’B = xB + rCB  , x’C  = xC



xC
rCA rCB

Delete xA

 x’A  = xA + rCA 

 rCA + rCB != 0 

Abort

x’B = xB + rCB 

Forget-and-Forgive
y = xA + xB + xC       

 rCA  + rCB = 0 

x’A xB



xC
rCA rCB

Delete xA

 x’A  = xA + rCA 

 rCA + rCB != 0 

Abort

x’B = xB + rCB 

Forget-and-Forgive
y = xA + xB + xC       

 rCA  + rCB = 0 

x’A xB

y’ = x’A + xB + x’C   != y       
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Forget-and-Forgive

Crypto Exchange

sk_C

sk_A

sk_B

Ransom attack! 
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sk1
sk1

Crypto Exchange

User (owner)
Signed 

 transactions

Lather, Rinse, Repeat

sk2
sk2



2P - Key Gen black box

x2x1

Q,Q, C, ekdk

C = Enc(x1)
{dk,ek}  is a key pair for homomorphic encryption scheme {Enc,Dec}

Lather, Rinse, Repeat



2P - Sign black box
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2P - Sign black box

m, x2

c, ek 

dk, x1

SigSig

To refresh, a new dk,ek,c must be generated as well!

Lather, Rinse, Repeat
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Idea: Since x1’ = x1 + r , it is enough to prove: Cnew = Cold ❂ Enc(r)

Lather, Rinse, Repeat



2P - Refresh

…

Non-Expensive zk proof 
that   C’ = Enc(y) 

….

x2’, c’, ek’ 

dk, x1

dk’, x1’

x2

Lather, Rinse, Repeat



2P - Refresh

2P - Sign

fail/success 

2P - Refresh

2P - Sign

fail/success 

. 

. 

.
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Lather, Rinse, Repeat

sk2sk1
sk1 sk2

Crypto Exchange

User (owner)
Signed 

 transactions
sk1



sk_A

Golden Shoe

sk_C

sk_B sk_D



Golden Shoe

sk_A sk_C

sk_B sk_D

Rule in real-world interactive protocols: 


Every message received must be tested to correctly follow the protocol 



mbc πbc,

Rule in real-world interactive protocols: 


Every message received must be tested to correctly follow the protocol 

Golden Shoe

sk_A sk_C

sk_B sk_D
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Golden Shoe
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N,h1,h2 N,h1,h2 

2P - Sign

…
 f31(N,h1,h2),  f21(N,h1,h2)

…

 f31(N,h1,h2) f21(N,h1,h2)

3P - Key Gen black box

…
 {N,h1,h2 }  , Proof {N,h1,h2  } 

…

f31(N,h1,h2),  f21(N,h1,h2)x3, x2

x3, x2

Golden Shoe
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After one signature

Golden Shoe

sk_A sk_C

sk_B sk_D

sk_B
sk_C
sk_D



Signed 
 transactions

Golden Shoe

sk_A sk_C

sk_B sk_D

sk_B
sk_C
sk_D



Recommendations



Minimize complexity
Advanced crypto is really cool and powerful (ZKP, MPC, TSS, pairings, etc.)

Modern languages like Rust, Haskell, or C++17 are cool and powerful too 

But their complexity and the skills required to understand them, can also act 
as obfuscation layers hiding subtle bugs

Example: Zcash 2019 bug https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/  
 


https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/


Careful with academic papers
Implementing a scheme proven secure on paper might still lead to security 
disasters, because of:


• Flaws in components not specified in the paper (encodings, parsing, etc.)


• Checks for insecure parameters not in the paper and not implemented


• Incomplete or confusing definition 


Example from a recent audit: 

In a zero-knowledge factorization proof, 
misunderstanding of “Common Input” 
lead to trivially forgeable proofs.

Spoiler: N must not be selected only 
by the prover, otherwise it can pick M 
and determine the corresponding N  https://dl.acm.org/doi/10.1145/288090.288108

https://dl.acm.org/doi/10.1145/288090.288108
https://dl.acm.org/doi/10.1145/288090.288108


Should I use MPC and TSS?

Depends on your requirements: wallet types, environment, etc.  


MPC and TSS offer high assurance on paper thanks to math proofs, but 
remain susceptible to misimplementations or overlooked threat vectors  


Reduce the risk by relying on trusted solutions, established protocols, audited 
code bases, and distribute trust across different platforms/hardware systems  

https://dl.acm.org/doi/10.1145/288090.288108
https://dl.acm.org/doi/10.1145/288090.288108


Multiple Bugs in Multi-Party Computation: 
Breaking Cryptocurrency's Strongest Wallets

More details in the associated paper
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