
Multiple Bugs in Multi-Party Computation:
Breaking Cryptocurrency's Strongest Wallets

Omer Shlomovits

JP Aumasson

The speakers
Designed enterprise wallets used by banks and exchanges

Audited the security of several threshold crypto and MPC products

Omer

Co-founder of ZenGo

Co-founder of MPC Alliance

Israel

@OmerShlomovits

JP
VP technology at Kudelski Security

Co-founder of Taurus Group

Switzerland

@veorq

Agenda

• Basic notions: wallet, multi-party computation, threshold signature

• Crypto building blocks: secret-sharing, commitment, etc.

• New attacks to compromise private keys or leak key bits

• Recommendations to avoid such catastrophes

Basic notions

What’s a wallet?
System to store and manage keys associated to digital asset accounts

• These keys are required to sign transactions, thus spend money

• Usually a seed is stored, from which keys are derived as per BIP32/44

• The public key or the address can be made public

Different types of wallets for 
individual users:

Online, mobile, desktop, 
paper, hardware

Enterprise wallets
Used by institutional actors rather than individuals: crypto exchanges,
private banks, crypto banks, investment funds, etc. Different needs than
individual wallets:

• Higher security and privacy: larger amounts, regulations and audits

• Management features: transactions settlement, proof of reserve, etc.

• Integration in financial IT and processes (e.g. banking network)

• Key lifecycle assurance, from key ceremony to BCP/DRP

• Hot vs. cold systems, to manage liquidity and minimize risk

• High availability, to work all the time

This talk is about technologies used for enterprise wallets

Distributing trust
Enterprise wallets need to distribute trust (in software, hardware, humans),
to avoid a single point of failure, minimize the risk, and be compliant with
certain regulatory frameworks:

• Dedicated hardware, strict processes, AAA layers can work, but not
always suitable (environment, cost, etc.)

• Multi-signatures can help, but require multiple keys, and tend to work
differently for different cryptocurrencies

• Funds can be distributed over per-account key, per-asset seed,
depending on the pooling model

• Cold storage systems often work with one or few fixed keys; processes
can be insufficient when $100Ms are under custody

Multi-party computation (MPC)
An approach to distribute trust, particularly interesting when only software
components are available, backed by established crypto research:

MPC components received “encrypted” inputs, and only learns the output:

For a wallet application, what are the inputs and the MPC functionality?

MPC protocol
for addition

“encrypted” Y

“encrypted” X
X+Y

An approach to distribute trust, particularly interesting when only software
components are available, backed by established crypto research:

MPC components received “encrypted” inputs, and only learns the output:

How to efficiently manage quorum-based protocols (m-of-n participants)?

MPC protocol
for addition

“encrypted” key share

Signature“encrypted” key share
“encrypted” transaction

Multi-party computation (MPC)

Threshold signatures (TSS)
Goal: Distribute signing power among multiple parties, to prevent a single signer
(or a small collusion of signers) to issue a signature

A (t, n) scheme allows of any set of t parties to sign, among n>t possible signers
holding distinct shares and common parameters

share2, tx
share1

share3, tx

Threshold signatures (TSS)
Special case of MPC, based on research in threshold cryptography

How to generate the shared key? Trust a server then split it and share it?

TSS protocol

key share 1

Signature
message

Signer 1

key share 2
message

Signer 2

Distributed key generation
Or how to generate keys to TSS without a single trusted dealer, by
distributing the computation in a verifiable way

A protocol, based on agreed-upon TSS parameters

xc,Q

xi,Q

xs,Q

Where are MPC and TSS used?
Common use case is cryptocurrency exchanges:

• Cold storage with $100Ms stored

• Used to distribute trust among multiple parties/locations/infrastructures

For example, TSS may include shares on smart cards, cloud HSMs, and VMs.

MPC/TSS find use cases in software-only deployments, for example to mitigate
the risk of using a mobile phone to store key share

Crypto building blocks

Digital signatures
Signatures schemes to support are those used to sign transactions

Of 2 main types, using elliptic-curve crypto:

• ECDSA, as used in Bitcoin and Ethereum with secp256k1

• Schnorr and EdDSA, mainly via Ed25519 (deterministic Schnorr) 
Supports aggregation of keys & signatures, thanks to its linearity

Another important construction is BLS signatures (which use pairings)

https://ia.cr/2018/483
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

https://ia.cr/2018/483
https://ia.cr/2018/483
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

Homomorphic encryption
When Dec(Enc(M1) ○ Enc(M2)) = M1 ❂ M2

Operators ○ and ❂ can be the same operation (× with textbook RSA),  
or distinct ones (× and + in Paillier)

Depending on the context, a vulnerability or a feature

Leveraged in e-voting schemes, and in TSS constructions…

Commitments

c := Commit(x, r)
Hiding property: Verifier does not learn information on x

Prover Verifier

x, r

Binding property: Prover cannot reveal another value than x Verify(x, r)

Setup()

Threshold secret-sharing
Mainly based on Shamir’s scheme

Uses polynomial interpolation to reconstruct 
a secret from it shares, while preventing  
recovery with fewer shares than required

Verifiable secret sharing (VSS): participants get a cryptographic proof that the
right secret was recovered, protecting against malicious dealers/ participants

A common VSS scheme is Feldman’s, which uses homomorphic encryption

Zero-knowledge proofs
Protocol where a prover convinces a verifier that they know some
mathematical statement (for example, a solution to the discrete log problem)
without revealing any info on the statement (zero-knowledge)

Completeness: A prover should be able to 
convince a verifier if the statement is true

Soundness: A prover should not be able to 
convince a verifier if the statement is false

Non-Interactive Zero-Knowledge (NIZK): 
Not really a protocol, just a single data blob

New attacks

Setup

Crypto Exchange Cold wallet 1User

sk1 skc

ska

skb

Hot wallet

sk2

Cold wallet 2

Cold wallet 3

Setup

Crypto Exchange Cold wallet 1User

sk1 skc

ska

skb

Hot wallet

sk2

Cold wallet 2

Cold wallet 3

Setup

Crypto Exchange Cold wallet 1User

sk1 skc

ska

skb

Hot wallet

sk2

Cold wallet 2

Cold wallet 3

Setup

Crypto Exchange Cold wallet 1User

sk1 skc

ska

skb

Hot wallet

sk2

Cold wallet 2

Cold wallet 3

Attacker Model

Crypto Exchange Cold wallet 1User

sk1 skc

ska

skb

Hot wallet

sk2

Cold wallet 2

Cold wallet 3

TSS prevents Single Point of Failure

Attacker Model

Crypto Exchange Cold wallet 1User

sk1 skc

ska

skb

Hot wallet

sk2

Cold wallet 2

Cold wallet 3

TSS prevents Single Point of Failure

Our Attacks

Forget-and-Forgive

 Lather, Rinse, Repeat

Golden Shoe Stolen funds

DoS (e.g. for blackmail)

Stolen funds

Cry CU
s s

s

sH s
C

C

Forget-and-Forgive

 Lather, Rinse, Repeat

Golden Shoe

 All responsibly disclosed

DoS (e.g. for blackmail)

Stolen funds

Stolen funds
CVE-2020-12118

Our attacks

Forget-and-Forgive

 Lather, Rinse, Repeat

Golden Shoe
CVE-2020-12118

DoS (e.g. for blackmail)

Stolen funds

Stolen funds

 All responsibly disclosed

Our attacks

Stolen funds

Forget-and-Forgive

 Lather, Rinse, Repeat

Golden Shoe
CVE-2020-12118

DoS (e.g. for blackmail)

 All responsibly disclosed

Stolen funds

Our attacks

Stolen funds

Forget-and-Forgive

 Lather, Rinse, Repeat

Golden Shoe
CVE-2020-12118

DoS (e.g. for blackmail)

 All responsibly disclosed

Stolen funds

Our attacks

Forget-
and-
Forgive

Lather,
Rinse,
Repeat

Golden
Shoe

Interactive — multiple rounds of
communication between multiple end points 🔥 🔥

Use of non-standard/cutting edge crypto
primitives 🔥 🔥

Each step must be checked for correctness
by all participants 🔥 🔥

Attacks taxonomy

Forget-
and-
Forgive

Lather,
Rinse,
Repeat

Golden
Shoe

Interactive — multiple rounds of
communication between multiple end points 🔥 🔥

Use of non-standard/cutting edge crypto
primitives 🔥 🔥

Each step must be checked for correctness
by all participants 🔥 🔥

Attacks taxonomy

Forget-
and-
Forgive

Lather,
Rinse,
Repeat

Golden
Shoe

Interactive — multiple rounds of
communication between multiple end points 🔥 🔥

Use of non-standard/cutting edge crypto
primitives 🔥 🔥

Each step must be checked for correctness
by all participants 🔥 🔥

Attacks taxonomy

Forget-
and-
Forgive

Lather,
Rinse,
Repeat

Golden
Shoe

Interactive — multiple rounds of
communication between multiple end points 🔥 🔥

Use of non-standard/cutting edge crypto
primitives 🔥 🔥

Each step must be checked for correctness
by all participants 🔥 🔥

Attacks taxonomy

Crypto Exchange

Forget-and-Forgive

sk_C

sk_A

sk_B

Time = t

Crypto Exchange

Forget-and-Forgive

sk_C

sk_A

sk_B

sk_C

sk_A

sk_B

Time = t’

Crypto Exchange

Forget-and-Forgive

sk_A

sk_C

sk_B

Time = t’

y = xA + xB + xC

xC

xA xB

3P - Key Gen black box

Forget-and-Forgive

rCA rCB

 rCA + rCB = 0

Forget-and-Forgive
y = xA + xB + xC

xC

xA xB

y’ = y ,x’CxC

,x’BxB

Forget-and-Forgive
y = xA + xB + xC

 ,x’AxA

 rCA + rCB = 0

rCA rCB
x’A = xA + rCA , x’B = xB + rCB , x’C = xC

y’ = y

Done ?

Forget-and-Forgive
y = xA + xB + xC

,x’CxC

,x’BxB ,x’AxA

 rCA + rCB = 0

x’A = xA + rCA , x’B = xB + rCB , x’C = xC
rCA rCB

y’ = y

Done ?

Delete xA , xB , xC

Forget-and-Forgive
y = xA + xB + xC

 rCA + rCB = 0

x’C

x’A x’B

x’A = xA + rCA , x’B = xB + rCB , x’C = xC

xC
rCA rCB

Delete xA

 x’A = xA + rCA

 rCA + rCB != 0

Abort

x’B = xB + rCB

Forget-and-Forgive
y = xA + xB + xC

 rCA + rCB = 0

x’A xB

xC
rCA rCB

Delete xA

 x’A = xA + rCA

 rCA + rCB != 0

Abort

x’B = xB + rCB

Forget-and-Forgive
y = xA + xB + xC

 rCA + rCB = 0

x’A xB

y’ = x’A + xB + x’C != y

Forget-and-Forgive

Crypto Exchange

sk_C

sk_A

sk_B

Time = t

Forget-and-Forgive

Crypto Exchange

sk_C

sk_A

sk_B

Time = t’

Forget-and-Forgive

Crypto Exchange

sk_C

sk_A

sk_B

Ransom attack!

Crypto Exchange

User (owner)

sk1 sk2

Signed
 transactions

Lather, Rinse, Repeat

sk1
sk1

Crypto Exchange

User (owner)
Signed

 transactions

Lather, Rinse, Repeat

sk2
sk2

2P - Key Gen black box

x2x1

Q,Q, C, ekdk

C = Enc(x1)
{dk,ek} is a key pair for homomorphic encryption scheme {Enc,Dec}

Lather, Rinse, Repeat

2P - Sign black box

m, x2

c, ek

dk, x1

SigSig

Lather, Rinse, Repeat

2P - Sign black box

m, x2

c, ek

dk, x1

SigSig

To refresh, a new dk,ek,c must be generated as well!

Lather, Rinse, Repeat

2P - Refresh

…

Expensive zk proof that
C’ = Enc(x1’)

….

x2’, c’, ek’

dk, x1

dk’, x1’

x2

Lather, Rinse, Repeat

2P - Refresh

…

Expensive zk proof that
C’ = Enc(x1’)

….

x2’, c’, ek’

dk, x1

dk’, x1’

x2

Lather, Rinse, Repeat

Idea: Since x1’ = x1 + r , it is enough to prove: Cnew = Cold ❂ Enc(r)

Lather, Rinse, Repeat

2P - Refresh

…

Non-Expensive zk proof
that C’ = Enc(y)

….

x2’, c’, ek’

dk, x1

dk’, x1’

x2

Lather, Rinse, Repeat

2P - Refresh

2P - Sign

fail/success

2P - Refresh

2P - Sign

fail/success

.

.

.

Lather, Rinse, Repeat

Lather, Rinse, Repeat

sk1
sk1

Crypto Exchange

User (owner)
Signed

 transactions

sk2
sk2

Lather, Rinse, Repeat

sk2sk1
sk1 sk2

Crypto Exchange

User (owner)
Signed

 transactions
sk1

Lather, Rinse, Repeat

sk2sk1
sk1 sk2

Crypto Exchange

User (owner)
Signed

 transactions
sk1

sk_A

Golden Shoe

sk_C

sk_B sk_D

Golden Shoe

sk_A sk_C

sk_B sk_D

Rule in real-world interactive protocols:

Every message received must be tested to correctly follow the protocol

mbc πbc,

Rule in real-world interactive protocols:

Every message received must be tested to correctly follow the protocol

Golden Shoe

sk_A sk_C

sk_B sk_D

3P - Key Gen black box

…
 {N,h1,h2 } , Proof {N,h1,h2 }

…

N, h1, h2, N, h1, h2 ,
Proof { N,h1,h2 } Proof { N,h1,h2 }

Golden Shoe

N,h1,h2 N,h1,h2

2P - Sign

…
 f31(N,h1,h2), f21(N,h1,h2)

…

3P - Key Gen black box

…
 {N,h1,h2 } , Proof {N,h1,h2 }

…

 f31(N,h1,h2) f21(N,h1,h2)

Golden Shoe

3P - Key Gen black box

…
 {N,h1,h2 } , Proof {N,h1,h2 }

…

N, h1, h2, N, h1, h2 ,
Proof { N,h1,h2 } Proof { N,h1,h2 }

Golden Shoe

N,h1,h2 N,h1,h2

2P - Sign

…
 f31(N,h1,h2), f21(N,h1,h2)

…

 f31(N,h1,h2) f21(N,h1,h2)

3P - Key Gen black box

…
 {N,h1,h2 } , Proof {N,h1,h2 }

…

Golden Shoe

N,h1,h2 N,h1,h2

2P - Sign

…
 f31(N,h1,h2), f21(N,h1,h2)

…

 f31(N,h1,h2) f21(N,h1,h2)

3P - Key Gen black box

…
 {N,h1,h2 } , Proof {N,h1,h2 }

…

f31(N,h1,h2), f21(N,h1,h2)x3, x2

x3, x2

Golden Shoe

Golden Shoe

sk_A sk_C

sk_B sk_D

After one signature

Golden Shoe

sk_A sk_C

sk_B sk_D

sk_B
sk_C
sk_D

Signed
 transactions

Golden Shoe

sk_A sk_C

sk_B sk_D

sk_B
sk_C
sk_D

Recommendations

Minimize complexity
Advanced crypto is really cool and powerful (ZKP, MPC, TSS, pairings, etc.)

Modern languages like Rust, Haskell, or C++17 are cool and powerful too

But their complexity and the skills required to understand them, can also act
as obfuscation layers hiding subtle bugs

Example: Zcash 2019 bug https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/  

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Careful with academic papers
Implementing a scheme proven secure on paper might still lead to security
disasters, because of:

• Flaws in components not specified in the paper (encodings, parsing, etc.)

• Checks for insecure parameters not in the paper and not implemented

• Incomplete or confusing definition

Example from a recent audit:

In a zero-knowledge factorization proof, 
misunderstanding of “Common Input” 
lead to trivially forgeable proofs.

Spoiler: N must not be selected only 
by the prover, otherwise it can pick M 
and determine the corresponding N https://dl.acm.org/doi/10.1145/288090.288108

https://dl.acm.org/doi/10.1145/288090.288108
https://dl.acm.org/doi/10.1145/288090.288108

Should I use MPC and TSS?

Depends on your requirements: wallet types, environment, etc.

MPC and TSS offer high assurance on paper thanks to math proofs, but
remain susceptible to misimplementations or overlooked threat vectors

Reduce the risk by relying on trusted solutions, established protocols, audited
code bases, and distribute trust across different platforms/hardware systems

https://dl.acm.org/doi/10.1145/288090.288108
https://dl.acm.org/doi/10.1145/288090.288108

Multiple Bugs in Multi-Party Computation:
Breaking Cryptocurrency's Strongest Wallets

More details in the associated paper

JP Aumasson

 jpa@pm.me

Omer Shlomovits

omer@kzencorp.com

mailto:jpa@pm.me
mailto:jpa@pm.me
mailto:omer@kzencorp.com
mailto:omer@kzencorp.com

