
Automating Crypto Bugs Discovery

JP Aumasson, Yolan Romailler

1 Testing crypto

Credit: https://unsplash.com/@sveninho

What do we want?

Testing functionality

➢ Valid inputs give correct output
➢ Invalid input trigger appropriate error

Testing security

➢ Program can't be abused
➢ Cryptographic secrets won't leak

Automated testing

In order of complexity and coverage

➢ Static analyzers About code security, not correctness
➢ Test vectors The more values, the more coverage
➢ Dumb fuzzing Typically looks for crashes, e.g. afl
➢ Smart fuzzing Protocol- or state machine-specific
➢ Formal verification Proves correctness / security properties

How to maximize the efficiency? (ease of use × coverage)

Towards cost-effective testing

2 Approach: differential fuzzing

Credit: https://unsplash.com/@ja5on

New tool from old ideas

Testing crypto by comparing two implementations not new

New: tool to automate it for many different interfaces

Principle for hash functions, PRNG

P1 P2

Input generation
(specific to function tested)

P1(x) == P2(x) ?

x x

Principle for encryption

P1

P2

Input generation
(specific to function tested)

P2(P1(x)) == x ?

x

P1(x)

Pub key

Priv Key

3 A new tool: CDF

Credit: https://unsplash.com/@timstief

CDF – Crypto Differential Fuzzing

Command-line tool in Go

➢ Native code, portable to Linux/macOS/Windows
➢ Concurrency support, fast enough (not speed bottleneck)

Language-agnostic

➢ Takes an executable file (binary or script)
➢ Can test crypto from any language or framework

Started in May 2016, most code written in Sept '16 - March '17

Why using CDF?

➢ Correctness and security of implementations
➢ Interoperability between implementations
➢ Checks include

○ Insecure parameters supported
○ Non-compliance with standards (e.g. FIPS)
○ Edge cases of specific algorithms (e.g. DSA)

CDF can replace test vectors, but not formal verification

Wycheproof – similar but different

From Google (Bleichenbacher, Duong, Kasper, Nguyen)

Announced in Dec. 2016, presented at RWC in Jan. 2017

➢ Extensive set of unit tests
➢ Specific to Java's common crypto interface (so far)
➢ Many bugs found in OpenJDK, BouncyCastle, etc.
➢ Tests a single program, doesn't compare implementations

https://github.com/google/wycheproof

3.a How it works

Credit: https://unsplash.com/@pyeshtiaghi

So you want to test ECDSA?

How to deal with the different APIs?

Go/crypto

Crypto++

OpenSSL

Generic ECDSA interface in CDF

➢ Public key = curve point P = (x, y)
➢ Private key = number d, such that P = dG
➢ Signature = pair of numbers (r, s)

ECDSA interface in CDF for CLI input, hex-encoded:

Input Output

Signature x, y, d, m r, s

Verification x, y, r, s, m True / False

CDF interfaces

➢ General API of CDF translatable to any tested software
➢ Needed in order to support black-box testing

Interfaces define the inputs and expected outputs for a given
crypto functionality (hashing, RSA encryption, etc.)

Not all inputs of an interface may be used by the tested software

How CDF works

CDF binary, compiled from Go

Executable files calling the
software to be tested (e.g. libs)

Software tested, may be
different libs, languages, etc.

P1
e.g. function in

OpenSSL

CDF

Interface
implementation

for P1

P2
e.g. function in

go/crypto

Interface
implementation

for P2

ECDSA interface for
cryptography.io

sign + verify, 35 sLoC (.py)

ECDSA interface for
OpenSSL

sign + verify, 124 sLoC (.c)

3.b Examples of tests

Credit: https://unsplash.com/@rubavi78

ECDSA

➢ P1 signs, P2 verifies, for different hash lengths
➢ Check support of hashes larger than group size (truncation?)
➢ Check degenerate cases (risks of forgery, DoS, key recovery)

○ (0, 0) public key
○ 0 private key
○ Hash = 0 and signature = (x, x)

Example of ECDSA test

RSA encryption

➢ P1 encrypts, P2 decrypts, for different message lengths
➢ Possible checks

○ Exponents lengths supported, detecting max length
○ Support of small private exponents d
○ Support for messages larger than the modulus

➢ Detects timing leaks

Timing leaks detection

Based on dudect – https://github.com/oreparaz/dudect

➢ Searches statistical evidence of timing discrepancies between
two classes of input values (e.g. valid and invalid ciphertexts)

➢ Leverages Welch's t-test
➢ dudect entirely rewritten in Go

4 Issues found

Credit: https://unsplash.com/@toddcravens

Findings summary

Focus on widely used libraries, only tested few components

Number of issues discovered:

Impressive defense in depth in Crypto++...

go/crypto OpenSSL mbedTLS PyCrypto Crypto++

OAEP 2 0 0 0 0

ECDSA 2 2 2 n.a. 0

DSA 3 2 n.a. 3 0

DSA (Go, OpenSSL, PyCrypto)

CDF detected the following:

➢ DoS on attacker-provided parameters upon signature
➢ Invalid signature issuance on invalid domain parameters
➢ Always-valid signatures issuance and verification on invalid

domain parameters

(EC)DSA FIPS compliance: signature

Infinite loop in DSA signing (Go, OpenSSL)

Domain params (p, q, g), secret key x, pubkey y = gx mod p

1. Generate a random k, 1 < k < q
2. Calculate r = (gk mod p) mod q
3. If r = 0, goto 1.
4. Calculate s = k− 1 (H(m) + xr) mod q
5. If s = 0, goto 1.
6. Return the signature (r, s)

What if g = 0 ?

..

..

Infinite loop in DSA (Go)

Infinite loop in DSA (Go)
Fix implemented by the Go team:
Bound the number of iterations

5 Conclusions

Credit: https://unsplash.com/@martinjphoto

TODO: CDF needs more...

➢ Interfaces, in order to test more crypto functionalities

➢ Tests, like unit tests from Wycheproof missing in CDF

➢ Applications, to find bugs in crypto software/libs

➢ Testing, to find bugs in CDF

Thank you!
Get CDF at https://github.com/kudelskisecurity/cdf

"Besides black art, there is only automation and mechanization."
—Federico García Lorca

https://github.com/kudelskisecurity/cdf

