
SPHINCS+
JP Aumasson, Taurus SA

Introduction

Hash functions

• The simplest and most reliable crypto primitive

• No mathematical structure or NP-hardness reduction

• NIST submissions must support FIPS primitives (SHA-2/3, SHAKE)

• Can NOT be used to build public-key encryption / KEMs

• Quantum resistance: black-box algorithms against…
• (Second) preimage: theoretical 2n/2 bound + overhead…

• Collision resistance: mostly unaffected

SPHINCS+ genealogy

1979, Lamport/Winternitz

One-time hash-based signing

1979, Merkle
Tree-based many-time signatures
(stateful)

2015, SPHINCS
2018: SPHINCS+
2023: SPHINCS+
v3.1

2002, Reyzin/Reyzin

HORS few-time signatures

2011: XMSS
Stateful tree- WOTS-based signatures

1987, Goldreich

Large certification trees
Keys on demand (Levin)

https://sphincs.org/

Based on SPHINCS (2015)

Effort lead by Andreas Hülsing

(I was invited by the designers, after my submission
Gravity-SPHINCS didn’t make it to the 2nd round)

SPHINCS+ submission

https://sphincs.org/

Building blocks

Lamport one-time signatures (1979)

• Key generation:
• Pick random strings K0 and K1 (your private key)

• The public key is the two values H(K0), H(K1)

• To sign the bit 0, show K0, to sign 1 show K1

• To verify a sig S of i, check H(S) == H(Ki)

Lamport one-time signatures (1979)

• Key generation:
• Pick random strings K0 and K1 (your private key)

• The public key is the two values H(K0), H(K1)

• To sign the bit 0, show K0, to sign 1 show K1

• To verify a sig S of i, check H(S) == H(Ki)

Problems:

• Needs as many keys as bits

• A key can be used only once

Winternitz trick: sign more than a bit (1979)

Winternitz trick: sign more than a bit (1979)

• Key generation:
• Pick a random string K as private key

• The public key is H(H(H(H(…. (K)…)) = Hw (K)

• To sign a number x in [0 .. w – 1], compute S = Hx (K)

• To verify a sig S of x, check that Hw-x (S) = public key

Winternitz trick: sign more than a bit (1979)

• Key generation:
• Pick a random string K as private key

• The public key is H(H(H(H(…. (K)…)) = Hw (K)

• To sign a number x in [0 .. w – 1], compute S = Hx (K)

• To verify a sig S of x, check that Hw-x (S) = public key

Problems:

• Need for w = 256 to sign a byte: slow, large (size of a hash)

• A key can be used only once

• Need for a checksum to avoid malleability

• Using the same H() offers suboptimal security

Winternitz trick: sign more than a bit (1979)

• Key generation:
• Pick a random string K as private key

• The public key is H(H(H(H(…. (K)…)) = Hw (K)

• To sign a number x in [0 .. w – 1], compute S = Hx (K)

• To verify a sig S of x, check that Hw-x (S) = public key

Problems:

• Need for w = 256 to sign a byte: slow, large (size of a hash)

• A key can be used only once

• Need for a checksum to avoid malleability

• Using the same H() offers suboptimal security

In SPHINCS+, w = 16
(4-bit blocks)

From one-time to many-time (1990)

Use a Merkle tree to “compress” many public keys into one

From one-time to many-time (1990)

Sign using a key (leaf) and provide its authentication path to the root

From one-time to many-time (1990)

Verification = recompute the public key (root of the tree)

From one-time to many-time (1990)

Verification = recompute the public key (root of the tree)

SPHINCS+ uses layers of
trees of height from 3 to 8

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

To sign M, use a selection function S: M → indexes

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

To sign M, use a selection function S: M → indexes

For example, if S(M) = {1, 5} publish K1 and K5

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

To sign M, use a selection function S: M → indexes

If too many messages are signed, all keys are revealed: insecure

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

To sign M, use a selection function S: M → indexes

If too many messages are signed, all keys are revealed: insecure

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)

SPHINCS+ uses trees built
from the public keys, with

26 to 214 values

SPHINCS+ design

SPHINCS+ ideas

• Optimize all the previous constructions for security and efficiency

• Tree of trees (“hypertree”) where
• Nodes are Winternitz/Merkle trees (optimized “WOTS+”)

• Each leaf is a tree of HORS instances (“FORS”, forest of random subsets)

• The private key seeds DRBGs to generate
• WOTS+ instances’ private keys

• HORST instances’ private keys

• The public key includes the
• Parameters of the tree (as a seed)

• Root of the hypertree

SPHINCS+ ideas

• Each tree’s leaf signs the root
of a tree underneath

• Messages are signed with a
few-time signature (HORS)

• The actual verification only
happens at the hypertree’s root

• Internal parameters generated
with a DRBG

SPHINCS+ signing

• Pick a random HORS instance

• Reconstruct TREEs to
• “Sign” each tree’s root from a leaf

• Compute the authentication path

• Signature consists of:
• The seed used for pick unpredictable

HORS signing leaf coordinate used
(H(sk, m) + optional randomness)

• The HORS signature

• Each TREE’s signature (auth path)

SPHINCS+ verification

• Verify HORS instance signature

• “Connect” the HORS instance to
the hypertree root (pubkey) by..

• Reconstructing TREE roots from
authentication paths

No need to recompute tree,
much faster than verification

SPHINCS+ crypto primitives

SPHINCS+ needs (tweakable) hashing, PRF, DRBG functionalities

3 options in the NIST submissions:

• Simplest with a keyable XOF: SHAKE proposed, as a FIPSable primitive

• SHA-2 option: need HMAC and the MGF1 construction

• Non-FIPS option: sponge Haraka, faster for short input

SPHINCS+ instances

Parameters + choice of hash function + variant “robust” or “simple”

SPHINCS+ instances

Trade-off speed / signature size (small & slow vs. fast & large version)

SPHINCS+ instances

Trade-off speed / signature size (small & slow vs. fast & large version)

SPHINCS+ security

As secure as hash functions

• Game-based PQ-EU-CMA proof

• Requires multi-target second-preimage resistance

• “Collision-resilient”

Security levels

Depends mainly on the hash output size (from 128 to 256 bits)

Software security

• Main risk: incorrect/unsafe code, owing to SPHINCS+’ complexity

• High assurance against timing attacks

• Like all cryptographic algorithms, may require protection against..
• Fault attacks (laser, power glitches, etc.)

• Side-channel attacks (EM, DPA, etc.)

• Implementations should include proper testing:
• KATs from the reference code

• Unit tests

• Happy and sad paths

• Arguments sanitization (type, size)

SPHINCS+ performance

Signature size

Between 7 KiB and 49 KiB, while keys are small

Speed (3.1 GHz Haswell Xeon)

• Key gen: 46, 88, 0.7, 1.3 milliseconds

• Signing: 355, 669, 18, 34 milliseconds

• Verification: 383, 777, 1079, 2153 microseconds

small & slow versions: Signing ≈ 1000× slower than verification

fast & large versions: Signing ≈ 15× slower than verification

Conclusion

Slow but reliable

The absence of a structure required for NP-hardness arguments makes
SPHINCS+ safer than lattice- or code-based constructions

Depending on the use case, signatures’ size is either a no-go or a non-issue

SPHINCS++

Many tricks and optimizations from XMSS and SPHINCS to SPHINCS+ v3.1

More optimizations possible, and more yet to be found

Challenges:

• Simplifying the constructions

• Simplifying the security arguments and underlying assumptions

• Further “compressing” signatures (more trees?)

Thank you ☺

Thanks to Andreas and Tanja for their feedback

Images AI-generated with Midjourney with prompts about
SPHINCS and post-quantum hash-based signature schemes

	Slide 1: SPHINCS+
	Slide 2
	Slide 3
	Slide 4: Hash functions
	Slide 5: SPHINCS+ genealogy
	Slide 6: SPHINCS+ submission
	Slide 7
	Slide 8: Lamport one-time signatures (1979)
	Slide 9: Lamport one-time signatures (1979)
	Slide 10: Winternitz trick: sign more than a bit (1979)
	Slide 11: Winternitz trick: sign more than a bit (1979)
	Slide 12: Winternitz trick: sign more than a bit (1979)
	Slide 13: Winternitz trick: sign more than a bit (1979)
	Slide 14: From one-time to many-time (1990)
	Slide 15: From one-time to many-time (1990)
	Slide 16: From one-time to many-time (1990)
	Slide 17: From one-time to many-time (1990)
	Slide 18: HORS few-time signatures (2022)
	Slide 19: HORS few-time signatures (2022)
	Slide 20: HORS few-time signatures (2022)
	Slide 21: HORS few-time signatures (2022)
	Slide 22
	Slide 23: SPHINCS+ ideas
	Slide 24: SPHINCS+ ideas
	Slide 25: SPHINCS+ signing
	Slide 26: SPHINCS+ verification
	Slide 27: SPHINCS+ crypto primitives
	Slide 28: SPHINCS+ instances
	Slide 29: SPHINCS+ instances
	Slide 30: SPHINCS+ instances
	Slide 31
	Slide 32: As secure as hash functions
	Slide 33: Security levels
	Slide 34: Software security
	Slide 35
	Slide 36: Signature size
	Slide 37: Speed (3.1 GHz Haswell Xeon)
	Slide 38
	Slide 39: Slow but reliable
	Slide 40: SPHINCS++
	Slide 41

