SPHINCS+

JP Aumasson, Taurus SA

Introduction

Search NIST

NIST Announces First Four Quantum-Resistant
Cryptographic Algorithms

Federal agency reveals the first group of winners from its six-year competition.

July 05,2022

For digital signatures, often used when we need to verify identities during a digital transaction or to
sign a document remotely, NIST has selected the three algorithms CRYSTALS-Dilithiume , FALCON
and SPHINCS+o (read as “Sphincs plus”). Reviewers noted the high efficiency of the first two, and
NIST recommends CRYSTALS-Dilithium as the primary algorithm, with FALCON for applications that
need smaller signatures than Dilithium can provide. UuERGITE B s | ST ERTeT TEW EIJ ETEETE T
slower than the other two, but it is valuable as a backup for one chief reason: It is based on a
different math approach than all three of NIST’s other selections

Three of the selected algorithms are based on a family of math problems called structured lattices,
while SPHINCS+ uses hash functions. The additional four algorithms still under consideration are
designed for general encryption and do not use structured lattices or hash functions in their
approaches.

Hash functions

* The simplest and most reliable crypto primitive

* No mathematical structure or NP-hardness reduction

* NIST submissions must support FIPS primitives (SHA-2/3, SHAKE)
e Can NOT be used to build public-key encryption / KEMs

* Quantum resistance: black-box algorithms against...
* (Second) preimage: theoretical 2"/2 bound + overhead...
* Collision resistance: mostly unaffected

SPHINCS+ genealogy

1987, Goldreich
1979, Lamport/Winternitz Large certification trees

One-time hash-based signing Keys on demand (Levin)

1979, Merkle
Tree-based many-time signatures
(stateful)

2015, SPHINCS

2002, Reyzin/Reyzin 2018: SPHINCS+

2023: SPHINCS+

HORS few-time signatures V3.1

2011: XMSS
Stateful tree- WOTS-based signatures

SPHINCS+ submission T

¢ Andreas Hulsing, Eindhoven University of Technology
(NL)

SPHINCS' Team

https://sphincs.org/

Jean-Philippe Aumasson
Daniel J. Bernstein, University of lllinois at Chicago (US)
and Ruhr University Bochum (DE) and Academia Sinica
Ward Beullens, KU Leuven (BE)
Christoph Dobraunig, Graz University of Technology (AT)
Maria Eichlseder, Graz University of Technology (AT)
Scott Fluhrer
Stefan-Lukas Gazdag, genua GmbH
Andreas Hulsing, Eindhoven University of Technology

e . ¢ Panos Kampanakis, AWS
Effort lead by Andreas Hulsing * Sician Kb, Goge (G

e Tanja Lange, Eindhoven University of Technology (NL)

and Academia Sinica (TW)

e Martin M. Lauridsen

Based on SPHINCS (2015)

e Florian Mende

, Infineon Technologies (DE)

e Ruben Niederhagen, Academia Sinica & University of

(I Was inVited by the deSignerS’ after my SmeiSSion aerl,?;ealmg:c:ﬂ;l;gér:]?zUn-—rl\, of Technology (AT)
Gravity-SPHINCS didn’t make it to the 2" round)

Peter Schwabe, MPI-SP & Radboud University (NL)

Bas Westerbaan, Cloudflare

- L] L] L]

=
o)
-]
N
7}
P
=]
D
D
Q.
0
(o8]
Ta =
(&)
(@]
=
Q.
=
-
S
o
=

<
>
<

https://sphincs.org/

Building blocks

Lamport one-time signatures (1979)

* Key generation:

* Pick random strings K, and K, (your private key)
* The public key is the two values H(K,), H(K,)

* To sign the bit 0, show K, to sign 1 show K;
“Gucci swimsuit tha
* To verify a sig S of i, check H(S) == H(K) 500 Ga SWirT:ti:,t

$390”

Lamport one-time signatures (1979)

\ 7 l
g c

* Key generation: | S
* Pick random strings K, and K, (your private key)
* The public key is the two values H(K,), H(K,) D 4 Q
* To sign the bit 0, show K, to sign 1 show K; [3\ |
. . . “Gucci swimsuit that
* To verify a sig S of i, check H(S) == H(K) you can't swim in,

$390”
Problems:

* Needs as many keys as bits

it's the most useless

* A key can be used only once and
the most expensive

Winternitz trick: sign more than a bit (1979)

5. The Winternitz Improvement

Shortly before publication[e.g., in 1979], Robert Winternitz of the Stanford
Mathematics Department suggested a further substantial improvement which
reduces the size of the signed message by an additional factor of about 4 to 8.
Winternitz’s method trades time for space: the reduced size is purchased with
an increased computational effort.

In the Lamport-Diffie method, given that y = F(x) and that y is public and x
is secret, a user signs a single bit of information by either making x public or
keeping it secret.

In the Winternitz method we still use y and x, and make y public and keep x
secret, but |we compute y from x by applying F repeatedly, for example, y =
F16(x). This allows us to sign 4 bits of information (instead of just 1) with the
single y value To sign the 4 bit message 1001 (9 in decimal), the signer
makes Fo(x) public. Anyone can check that FI(F(x) = y, thus confirming
that F¥(x) was made public, but no one can generate that value.

Because Fo(x) is public, F}¥(x) can be easily computed by anyone. Someone
could then (falsely) claim that the signed four bit message was 1010 (10 in
decimal) rather than 1001. Overcoming this problem requires a slight
extension of the method described in section 4, and adds only log n additional
bits.

Winternitz trick: sign more than a bit (1979)

* Key generation:

* Pick a random string K as private key
* The public key is H(H(H(H(.... (K)...)) = HW (K)

* To sign a number xin [0.. w—1], compute S = H*(K)
* To verify a sig S of x, check that H¥*(S) = public key

Winternitz trick: sign more than a bit (1979)

* Key generation:

* Pick a random string K as private key
* The public key is H(H(H(H(.... (K)...)) = HW (K)

* To sign a number xin [0.. w—1], compute S = H*(K)
* To verify a sig S of x, check that H¥*(S) = public key

Problems:

* Need for w = 256 to sign a byte: slow, large (size of a hash)
* A key can be used only once

* Need for a checksum to avoid malleability

e Using the same H() offers suboptimal security

Winternitz trick: sign more than a bit (1979)

* Key generation:
* Pick a random string K as

* The public key.i
+ To sign a nu In SPHINCS+, w = 16
(4-bit blocks)

* To verify a si

Problems:
* Need for w = 256 to sign a byte: slow, large (size of a hash)
* A key can be used only once

* Need for a checksum to avoid malleability

e Using the same H() offers suboptimal security

From one-time to many-time (1990)

Use a Merkle tree to “compress” many public keys into one

H(H(H(K+) || H(K2)) || HCH(K3) [| H(K4)))

Pub key = |
| HH(K) || HEK:)) | HOH(K:) || H(K))
H(K1) H(K2) H(Ks) H(K4)

K1 Ko Ks K4

From one-time to many-time (1990)

Sign using a key (leaf) and provide its authentication path to the root

Pubkey= | H(H(H(G)||H(K)) || H(H(K) || H(K)))

H(K1) E —H(KS) H(K4)

‘ Ko K3 K4

From one-time to many-time (1990)

Verification = recompute the public key (root of the tree)

Pubkey= | H(H(H(G)||H(K)) || H(H(K) || H(K)))

H(K1) E —H(KS) H(K4)

‘ Ko K3 K4

From one-time to many-time (1990)

Verification = recompute the public key (root of the tree)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

To sign M, use a selection function S: M - indexes

1 2 3 4 5 n
Private keys K1 K2 Ks Ks Ks Kn

N N N2 N2 N2 N2
Publickeys [H(K1) [H(KK2) H(K3) H(i4) H(Ks) H(K<n)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

To sign M, use a selection function S: M - indexes
For example, if S(M) =

publish K1 and Ks

1 2 3 4 5 n
Private keys |l{1 K2 Ks Ks Ks Kn

N2 N N2 N2 N2 N2
Publickeys [H(K1) [H(KK2) H(K3) H(i4) H(Ks) H(K<n)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset
To sign M, use a selection function S: M - indexes
If too many messages are signed, all keys are revealed: insecure

1 2 3 4 5 n
Private keys |l{1 2 3 4 5 n

N2 N% N2 N2 N2 N2
Public keys |[H(K1) [H(K2) H(() H(K4) H(/<s) H(<n)

HORS few-time signatures (2022)

Hash to Obtain a Random Subset

SPHINCS+ uses trees built
from the public keys, with

If too many m ecure

1 2° to 2% values ;
Private keys |1 2 3 4 5 n

N/ N N N2 N2 N
Publickeys |H(K1) |H(Kz2) H(K3) H(Ka) H(Ks) H(Kn)

SPHINCS+ design

SPHINCS+ ideas

e Optimize all the previous constructions for security and efficiency

* Tree of trees (“hypertree”) where
* Nodes are Winternitz/Merkle trees (optimized “WOTS+")
e Each leaf is a tree of HORS instances (“FORS”, forest of random subsets)

* The private key seeds DRBGs to generate
 WOTS+ instances’ private keys
 HORST instances’ private keys

* The public key includes the
* Parameters of the tree (as a seed)
* Root of the hypertree

SPHINCS+ ideas

* Each tree’s leaf signs the root
of a tree underneath

* Messages are signed with a
few-time signature (HORS)

e The actual verification only
happens at the hypertree’s root

* Internal parameters generated
with a DRBG

SPHINCS+ signing

* Pick a random HORS instance

* Reconstruct TREEs to
* “Sign” each tree’s root from a leaf
* Compute the authentication path

 Signature consists of:

* The seed used for pick unpredictable
HORS signing leaf coordinate used
(H(sk, m) + optional randomness)

* The HORS signature
e Each TREE’s signature (auth path)

SPHINCS+ verification

 Verify HORS instance signature

e “Connect” the HORS instance to
the hypertree root (pubkey) by..

* Reconstructing TREE roots from
authentication paths

No need to recompute tree,
much faster than verification

SPHINCS+ crypto primitives

SPHINCS+ needs (tweakable) hashing, PRF, DRBG functionalities

3 options in the NIST submissions:
e Simplest with a keyable XOF: SHAKE proposed, as a FIPSable primitive

* SHA-2 option: need HMAC and the MGF1 construction
* Non-FIPS option: sponge Haraka, faster for short input

SPHINCS+ instances

Parameters + choice of hash function + variant “robust” or “simple”

7.1. SPHINCS" Parameter Sets

SPHINCS™ is described by the following parameters already described in the previous sections.
All parameters take positive integer values.

n : the security parameter in bytes.

w : the Winternitz parameter.

h : the height of the hypertree.

d : the number of layers in the hypertree.
k : the number of trees in FORS.

t : the number of leaves of a FORS tree.

SPHINCS+ instances

Trade-off speed / signature size (small & slow vs. fast & large version)

n h d log(t) k w Dbitsec sec level sig bytes
SPHINCS*-12 16 63 7 12 14 16 133 1 7856
SPHINCS™*-128f 16 66 22 6 33 16 128 1 17088
SPHINCS™-19: 24 63 7 14 17 16 193 3 16224
SPHINCS*-192f 24 66 22 8 33 16 194 3 35 664
SPHINCS*-25¢ 32 64 8 14 22 16 255 5 29 792
SPHINCS*-256f 32 68 17 9 35 16 255 53 49 856

SPHINCS+ instances

Trade-off speed / signature size (small & slow vs. fast & large version)

Note that we did not obtain our proposed parameter sets simply by searching this output
for the smallest or the fastest option. The reason is that, for example, optimizing for size
without caring about speed at all results in signatures of a size of ~ 15 KB for a bit security
of 256, but computing one signature takes more than 20 minutes on our benchmark platform.
Such a tradeoff might be interesting for very few select applications, but we cannot think of
many applications that would accept such a large time for signing. Instead, the proposed
parameter sets are what we consider “non-extreme’”; i.e., with a signing time of at most a few
seconds in our non-optimized implementation.

SPHINCS+ security

As secure as hash functions

* Game-based PQ-EU-CMA proof
* Requires multi-target second-preimage resistance
e “Collision-resilient”

8.1.6. SPHINCS"-'simple’ and SPHINCS " -'robust’

The updated, Round 2 submission of SPHINCS™ introduces instantiations of the tweakable
hash functions similar to those of the LMS proposal for stateful hash-based signatures [16].
These instantiations are called 'simple’ (compared to the established instantiations which we
now call ‘robust’). The 'simple’ instantiations omit the use of bitmasks, i.e., no bitmasks have
to be generated and XORed with the message input of the tweakable hash functions F, H
or T. This has the advantage of better speed since the calls to the underlying hash function
(needed in order to generate the bitmasks for each tweakable hash calculation) are saved.
However, the resulting drawback is a security argument which in its entirety only applies in
the random oracle model.

Security levels

Depends mainly on the hash output size (from 128 to 256 bits)

n h d log(t) k w Dbitsec seclevel sig bytes

SPHINCS™*-128s 16 63 7 12 14 16 133 1 7856
SPHINCS™-128f 16 66 22 6 33 16 128 1 17088
SPHINCS™-192s 24 63 7 14 17 16 193 3 16 224
SPHINCS*-192f 24 66 22 8 33 16 194 3 35 664
SPHINCS™*-256s 32 64 8 14 22 16 255 5 29792
SPHINCS™-256f 32 68 17 9 35 16 255) 49 856

Software security

* Main risk: incorrect/unsafe code, owing to SPHINCS+' complexity
* High assurance against timing attacks

* Like all cryptographic algorithms, may require protection against..

» Fault attacks (laser, power glitches, etc.)
» Side-channel attacks (EM, DPA, etc.)

* Implementations should include proper testing:
* KATs from the reference code
* Unit tests
* Happy and sad paths
* Arguments sanitization (type, size)

« 1iiIE

SPHINCS+ performance

Signature size

Between 7 KiB and 49 KiB, while keys are small

public key size secret key size signature size

SPHINCS™-128s 32 64 7856
SPHINCST-128f 32 64 17088
SPHINCS'-192s 48 96 16224
SPHINCS™t-192f 48 96 35 664
SPHINCS™*-256s 64 128 29792

SPHINCS™-256f 64 128 49 856

Speed (3.1 GHz Haswell Xeon)

key generation signing verification
SPHINCS*-SHAKE-128s-simple 143900796 1102470520 1189102
SPHINCS*-SHAKE-128s-robust 274483474 2076548 104 2408 782
SPHINCS'-SHAKE-128f-simple 2249444 56 933 788 3 346 068
SPHINCS*-SHAKE-128f-robust 4272402 106 032 762 6677094

* Key gen: 46, 25, 0.7, 1.3 milliseconds
* Signing: 355, , 18, 34 milliseconds
* Verification: 383, , 1079, 2153 microseconds

small & slow versions: Signing = 1000x slower than verification
fast & large versions: Signing = 15x slower than verification

Conclusion

Slow but reliable

The absence of a structure required for NP-hardness arguments makes
SPHINCS+ safer than lattice- or code-based constructions

g P Aumasson

SHA 2 and 3 and BLAKE? will never be broken; at best harmless

complexity reduction for SHA-256 or -512

Depending on the use case, signatures’ size is either a no-go or a non-issue

SPHINCS++

Many tricks and optimizations from XMSS and SPHINCS to SPHINCS+ v3.1
More optimizations possible, and more yet to be found

Challenges:

e Simplifying the constructions

e Simplifying the security arguments and underlying assumptions
* Further “compressing” signatures (more trees?)

Thank you ©

Thanks to Andreas and Tanja for their feedback

Images Al-generated with Midjourney with prompts about
SPHINCS and post-quantum hash-based signature schemes

	Slide 1: SPHINCS+
	Slide 2
	Slide 3
	Slide 4: Hash functions
	Slide 5: SPHINCS+ genealogy
	Slide 6: SPHINCS+ submission
	Slide 7
	Slide 8: Lamport one-time signatures (1979)
	Slide 9: Lamport one-time signatures (1979)
	Slide 10: Winternitz trick: sign more than a bit (1979)
	Slide 11: Winternitz trick: sign more than a bit (1979)
	Slide 12: Winternitz trick: sign more than a bit (1979)
	Slide 13: Winternitz trick: sign more than a bit (1979)
	Slide 14: From one-time to many-time (1990)
	Slide 15: From one-time to many-time (1990)
	Slide 16: From one-time to many-time (1990)
	Slide 17: From one-time to many-time (1990)
	Slide 18: HORS few-time signatures (2022)
	Slide 19: HORS few-time signatures (2022)
	Slide 20: HORS few-time signatures (2022)
	Slide 21: HORS few-time signatures (2022)
	Slide 22
	Slide 23: SPHINCS+ ideas
	Slide 24: SPHINCS+ ideas
	Slide 25: SPHINCS+ signing
	Slide 26: SPHINCS+ verification
	Slide 27: SPHINCS+ crypto primitives
	Slide 28: SPHINCS+ instances
	Slide 29: SPHINCS+ instances
	Slide 30: SPHINCS+ instances
	Slide 31
	Slide 32: As secure as hash functions
	Slide 33: Security levels
	Slide 34: Software security
	Slide 35
	Slide 36: Signature size
	Slide 37: Speed (3.1 GHz Haswell Xeon)
	Slide 38
	Slide 39: Slow but reliable
	Slide 40: SPHINCS++
	Slide 41

