Asymmetric encryption with 2 XOR's: the cipher **TCHo**

Jean-Philippe Aumasson

University of Applied Sciences Northwestern Switzerland School of Engineering

Most of public-key schemes reduce security to integer factorization, discrete log, lattice problems, etc.

But:

- ▶ on quantum computers, RSA, ECC, ElGamal, etc. are broken
- ▶ in **light hardware**, complex and often slow implementation

On the other hand, LFSR-based (symmetric) ciphers fit well lightweight environments. . .

TCHo

- encrypts with only a LFSR and pseudorandom bits
- ▶ decrypts with simple linear algebra over GF(2)
- reduces semantic security to a hard problem,
- ▶ is not broken by quantum computers

TCHo AND RSA

Public key:

► **TCHo**: **irreducible** polynomial *P*

▶ RSA: **composite** integer n = pq

Private key:

► TCHo: a sparse multiple of P

► RSA: a prime **factor** of *n*

Hard problem:

► **TCHo**: finding a sparse **multiple** (polynomial)

► RSA: finding a prime **factor** (integer)

Encryption:

► TCHo: encryption is probabilistic

► RSA: encryption is **deterministic**

DESCRIPTION OF TCHo

HISTORY

Original TCHo in [Finiasz-Vaudenay 06]

Improvement in [Aumasson-Finiasz-Meier-Vaudenay 07], with

- ► **faster** encryption
- ► more **security** arguments
- ▶ performance benchmarks

Here we present the **new TCHo**.

ENCRYPTION

such that

- ► *P* is the **public key**
- $ightharpoonup \gamma > 0$ (more zeros than ones)

$$\mathsf{Enc}(m) = (m||\ldots||m) \oplus \mathsf{rand}_{\gamma}(R_1) \oplus \mathsf{LFSR}_{P}(R_2)$$

ENCRYPTION

Implementation built on three **independent components**, fed with two random (unbiased) samples R_1 and R_2 \Rightarrow parallelizable

 LFSR_P plaintext-independent \Rightarrow can be precomputed

DECRYPTION

$$\begin{matrix} K & \text{private key, sparse multiple of } P \\ \otimes \\ 10011011\dots10101011 & \left(m||\dots||m\right) \oplus \mathsf{rand}_{\gamma} \oplus \mathsf{LFSR}_{P} \\ \\ = 0100\dots1101 & \left(\tilde{m}||\dots||\tilde{m}\right) \oplus \mathsf{rand}_{\gamma^{\mathsf{w}(K)}} \end{matrix}$$

 \Rightarrow can compute \tilde{m} (count majority), and recover m:

$$m \leftarrow \psi(\tilde{m})$$

with ψ a **linear map** defined by K

PRODUCT POLYNOMIAL ⊗ BITSTRING

Let
$$K = \sum k_i x^i$$
, and a bitstring $u = (u_0, \dots, u_{\ell-1})$, then

$$K \otimes u = v$$
,

with $|v| = \ell - \deg(K)$ bits, and

$$v_i = u_i k_0 + \cdots + u_{i+\deg(K)} k_{\deg(K)}$$

 \approx sequence of dot products

Properties exploited in decryption (recall $K = P \times Q$)

- $ightharpoonup K \otimes (LFSR_P) = 0...0$
- $\blacktriangleright \ \ \mathsf{K} \otimes (\mathsf{LFSR}_P \oplus \mathsf{rand}_\gamma) \approx \mathsf{rand}_{\gamma^{\mathsf{w}(\mathsf{K})}}$

DECRYPTION

$$\begin{matrix} \mathcal{K} \\ \otimes \\ 10011011\dots 10101011 \end{matrix} \qquad \begin{matrix} \mathbf{private \ key}, \ \mathsf{sparse \ multiple \ of} \ P \\ \hline \\ = 0100\dots 1101 \end{matrix} \qquad \begin{pmatrix} m||\dots||m \end{pmatrix} \oplus \mathsf{rand}_{\gamma} \oplus \mathsf{LFSR}_{P} \\ \hline \\ = 0100\dots 1101 \qquad \begin{pmatrix} \tilde{m}||\dots||\tilde{m} \end{pmatrix} \oplus \mathsf{rand}_{\gamma^{\mathsf{w}(\mathcal{K})}} \end{matrix}$$

 \Rightarrow can compute \tilde{m} (count majority), and recover m:

$$m \leftarrow \psi(\tilde{m})$$

with ψ a **linear map** defined by K

DECRYPTION RELIABILITY

$$\psi(m)$$
 repeated

$$N = \frac{\ell - \deg(K)}{|m|}$$
 times

Decrypt incorrectly \Leftrightarrow majority logic fails \Leftrightarrow at least one bit of $\psi(m)$ is noised more than half the times.

$$\Pr[\mathsf{bad} \; \mathsf{decryption}] pprox |m| \cdot \varphi\Big(-\sqrt{\frac{N\gamma^{2w}}{1-\gamma^{2w}}}\Big)$$

with φ the CDF of $\mathcal{N}(0,1)$.

KEY GENERATION

Problem:

Find a pair (K, P), with K a sparse multiple of P, of given degree and weight, and P of degree in $[d_{\min}, d_{\max}]$.

Repeat

- ▶ pick a random K of given degree and weight
- ► factorize this *K*
- ▶ if K has a factor P of degree $\in [d_{\min}, d_{\max}]$, **return** (P, K)

(in practice deg(K) > 15000, deg(P) > 5000)

EXAMPLE OF PARAMETERS

For 80-bit security,

- ▶ plaintext of |m| = 128 bits
- ▶ ciphertext of $\ell = 56\,000$ bits
- ▶ public-key is polynomial P of degree \in [7 150, 8 000]
- ▶ private-key is polynomial *K* of degree 24 500 and weight 51
- ▶ noise has bias 0.98
- ▶ decryption fails with probability 2⁻²³

SECURITY OF TCHo

PRIVATE KEY RECOVERY

Can decrypt if

- ▶ the private key K is known, OR IF
- ▶ another sparse multiple of degree $\leq \deg(K)$ is known

Computational problem LWPM

- ▶ Parameters: $w, d, d_P, 0 < d_P < d$ and $w \ll d$.
- ▶ Instance: P of degree d_P
- ▶ Question: find a multiple of P of degree $\leq d$ and weight $\leq w$.

Strategies: exhaustive search, generalized birthday paradox, syndrome decoding.

 \Rightarrow for LWPM in time $\Omega(2^{\lambda})$, need

$$\binom{d}{w-1} \le 2^{d_P} \quad \text{and} \quad w \log \frac{d}{d_P} \ge \lambda$$

BASIC SECURITY PROPERTIES

TCHo...

▶ is XOR-malleable,

$$\mathsf{Enc}(m) \oplus \Delta = \mathsf{Enc}(m \oplus \Delta)$$

- ▶ can be **inverted** by a CCA adversary: given challenge ciphertext c, just query for $m \leftarrow \text{Dec}(c \oplus \Delta)$, and recover original message $m \oplus \Delta$.
- can instanciate a KEM in hybrid encryption scheme, to provide IND-CCA security.

SEMANTIC SECURITY

Idea:

How to distinguish a ciphertext

$$C_1 = (m||\ldots||m) \oplus \operatorname{rand}_{\gamma} \oplus \operatorname{LFSR}_{P},$$

from (uniform) random bits $C_2 = \text{rand}_0$?

Compute $C_i \oplus m \Rightarrow \text{reduces to distinguish rand}_{\gamma} \oplus \text{LFSR}_P$ from rand_0

Strategy:

- ▶ Directly distinguish $rand_{\gamma} \oplus LFSR_{P}$ from $rand_{0}$
- ▶ Find \tilde{P} , a sparse multiple of P, and distinguish

$$ilde{ ilde{P}} \otimes (\mathsf{rand}_{\gamma} \oplus \mathsf{LFSR}_{P}) = \mathsf{rand}_{\gamma^{\mathsf{w}(ilde{P})}}$$

from

$$\tilde{P} \otimes \mathsf{rand}_0 = \mathsf{rand}_0$$

PERFORMANCES OF TCHo

BENCHMARKS' SETTINGS

- ► machine: **P4 3 GHz** cache 1 Mb (lasecpc15)
- ► C++ code, compiled with gcc 4.1.2, flags -03 -march=pentium4
- ► Use Shoup's **NTL** lib. for matrix operations and polynomial factorization (algo: Cantor-Zassenhaus, probabilistic)
- ► Timings given for **one message**, taking **average** values

RESULTS

Parameters:

- ▶ 128-bit plaintext, 54 Kb ciphertext
- ▶ $deg(P) \in [7150, 8000], deg(K) = 24500, w(K) = 51$

Encryption:

- ▶ 45 ms (without precomputation)
- ► < 1 ms (with precomputation of 54 Kb)

Decryption:

- ▶ 108 ms (without precomputation)
- ▶ 20 ms (with precomputation of ψ)

Key generation:

► ≈ 20 min

RESULTS

Parameters:

- ▶ 128-bit plaintext, 146 Kb ciphertext
- ▶ $deg(P) \in [6000, 8795]$, deg(K) = 17600, w(K) = 81

Encryption:

- ▶ 100 ms (without precomputation)
- ► < 1 ms (with precomputation of 146 Kb)

Decryption:

- ▶ 260 ms (without precomputation)
- ▶ 130 ms (with precomputation of ψ)

Key generation:

► ≈ 2 min

PERFORMANCES

"Why do you give software timings for a hardware cipher?" → did not have the opportunity to implement HW.

Expected much faster on hardware devices, since

- ► Enc = only XOR and LFSR
- ▶ Dec = only GF(2) linear algebra
- parallelism is possible

Alternative **mode**: encrypt $\psi(m)$, decrypt directly to m (negligible speed-up)

CONCLUSION

SUMMARY

TCHo is...

- ▶ based on the hardness of finding a sparse polynomial multiple
- ▶ quantum-cpu resistant
- ► semantically secure

FURTHER WORK

More experiments:

- ▶ benchmarks on FPGA, ASIC, etc.
- ▶ suitable for RFID tags ?

More analysis:

- ► speed-up key generation ?
- ▶ replace huge LFSR by...?
- ▶ identify weak instances ?
- solve LWPM efficiently ?

Papers & slides available at lasecwww.epfl.ch www.131002.net

Asymmetric encryption with 2 XOR's: the cipher **TCHo**

Jean-Philippe Aumasson

University of Applied Sciences Northwestern Switzerland School of Engineering