
Asymmetric encryption with 2 XOR’s:
the cipher TCHo

Jean-Philippe Aumasson

1 / 26

Most of public-key schemes reduce security to integer factorization,
discrete log, lattice problems, etc.

But:

I on quantum computers, RSA, ECC, ElGamal, etc. are broken

I in light hardware, complex and often slow implementation

On the other hand, LFSR-based (symmetric) ciphers fit well
lightweight environments. . .

TCHo

I encrypts with only a LFSR and pseudorandom bits

I decrypts with simple linear algebra over GF(2)

I reduces semantic security to a hard problem,

I is not broken by quantum computers

2 / 26

TCHo AND RSA

Public key:

I TCHo: irreducible polynomial P

I RSA: composite integer n = pq

Private key:

I TCHo: a sparse multiple of P

I RSA: a prime factor of n

Hard problem:

I TCHo: finding a sparse multiple (polynomial)

I RSA: finding a prime factor (integer)

Encryption:

I TCHo: encryption is probabilistic

I RSA: encryption is deterministic

3 / 26

DESCRIPTION OF TCHo

4 / 26

HISTORY

Original TCHo in [Finiasz-Vaudenay 06]

Improvement in [Aumasson-Finiasz-Meier-Vaudenay 07], with

I faster encryption

I more security arguments

I performance benchmarks

Here we present the new TCHo.

5 / 26

ENCRYPTION

10101001 . . . 10101001 repetition of m||m|| . . . ||m
⊕

00100100 . . . 00100010 random bits with bias γ = Pr(0)− Pr(1)
⊕

01110110 . . . 01101110 LFSRP(random state)

such that

I P is the public key

I γ > 0 (more zeros than ones)

Enc(m) =
(
m|| . . . ||m

)
⊕ randγ(R1)⊕ LFSRP(R2)

6 / 26

ENCRYPTION

Implementation built on three independent components, fed
with two random (unbiased) samples R1 and R2

⇒ parallelizable

R1
-

m -

R2
-

repeat - ⊕
6

LFSRP

- Enc(m)
?

randγ

LFSRP plaintext-independent ⇒ can be precomputed

7 / 26

DECRYPTION

K private key, sparse multiple of P
⊗

10011011 . . . 10101011
(
m|| . . . ||m

)
⊕ randγ ⊕ LFSRP

= 0100 . . . 1101
(
m̃|| . . . ||m̃

)
⊕ randγw(K)

⇒ can compute m̃ (count majority), and recover m:

m← ψ(m̃)

with ψ a linear map defined by K

8 / 26

PRODUCT POLYNOMIAL ⊗ BITSTRING

Let K =
∑

kix
i , and a bitstring u = (u0, . . . , u`−1), then

K ⊗ u = v ,

with |v | = `− deg(K) bits, and

vi = uik0 + · · ·+ ui+deg(K)kdeg(K)

≈ sequence of dot products

Properties exploited in decryption (recall K = P × Q)

I K ⊗ (LFSRP) = 0 . . . 0

I K ⊗ (LFSRP ⊕ randγ) ≈ randγw(K)

9 / 26

DECRYPTION

K private key, sparse multiple of P
⊗

10011011 . . . 10101011
(
m|| . . . ||m

)
⊕ randγ ⊕ LFSRP

= 0100 . . . 1101
(
m̃|| . . . ||m̃

)
⊕ randγw(K)

⇒ can compute m̃ (count majority), and recover m:

m← ψ(m̃)

with ψ a linear map defined by K

10 / 26

DECRYPTION RELIABILITY

ψ(m) repeated

N =
`− deg(K)

|m|
times

Decrypt incorrectly ⇔ majority logic fails ⇔ at least one bit of
ψ(m) is noised more than half the times.

Pr[bad decryption] ≈ |m| · ϕ
(
−

√
Nγ2w

1− γ2w

)
with ϕ the CDF of N (0, 1).

11 / 26

KEY GENERATION

Problem:
Find a pair (K ,P), with K a sparse multiple of P, of given
degree and weight, and P of degree in [dmin, dmax].

Repeat

I pick a random K of given degree and weight

I factorize this K

I if K has a factor P of degree ∈ [dmin, dmax], return (P,K)

(in practice deg(K) > 15 000, deg(P) > 5 000)

12 / 26

EXAMPLE OF PARAMETERS

For 80-bit security,

I plaintext of |m| = 128 bits

I ciphertext of ` = 56 000 bits

I public-key is polynomial P of degree ∈ [7 150, 8 000]

I private-key is polynomial K of degree 24 500 and weight 51

I noise has bias 0.98

I decryption fails with probability 2−23

13 / 26

SECURITY OF TCHo

14 / 26

PRIVATE KEY RECOVERY

Can decrypt if

I the private key K is known, OR IF

I another sparse multiple of degree ≤ deg(K) is known

Computational problem LWPM

I Parameters: w , d , dP , 0 < dP < d and w � d .

I Instance: P of degree dP

I Question: find a multiple of P of degree ≤ d and weight ≤ w .

Strategies: exhaustive search, generalized birthday paradox,
syndrome decoding.

⇒ for LWPM in time Ω(2λ), need(
d

w − 1

)
≤ 2dP and w log

d

dP
≥ λ

15 / 26

BASIC SECURITY PROPERTIES

TCHo. . .

I is XOR-malleable,

Enc(m)⊕∆ = Enc(m ⊕∆)

I can be inverted by a CCA adversary: given challenge
ciphertext c , just query for m← Dec(c ⊕∆), and recover
original message m ⊕∆.

I can instanciate a KEM in hybrid encryption scheme, to
provide IND-CCA security.

16 / 26

SEMANTIC SECURITY

Idea:
How to distinguish a ciphertext

C1 = (m|| . . . ||m)⊕ randγ ⊕ LFSRP ,

from (uniform) random bits C2 =rand0 ?

Compute Ci ⊕m ⇒ reduces to distinguish randγ ⊕ LFSRP from
rand0

Strategy:

I Directly distinguish randγ ⊕ LFSRP from rand0

I Find P̃, a sparse multiple of P, and distinguish

P̃ ⊗ (randγ ⊕ LFSRP) = rand
γw(P̃)

from
P̃ ⊗ rand0 = rand0

17 / 26

PERFORMANCES OF TCHo

18 / 26

BENCHMARKS’ SETTINGS

I machine: P4 3 GHz cache 1 Mb (lasecpc15)

I C++ code, compiled with gcc 4.1.2,
flags -O3 -march=pentium4

I Use Shoup’s NTL lib. for matrix operations and polynomial
factorization (algo: Cantor-Zassenhaus, probabilistic)

I Timings given for one message, taking average values

19 / 26

RESULTS

Parameters:

I 128-bit plaintext, 54 Kb ciphertext

I deg(P) ∈ [7 150, 8 000], deg(K) = 24 500, w(K) = 51

Encryption:

I 45 ms (without precomputation)

I < 1 ms (with precomputation of 54 Kb)

Decryption:

I 108 ms (without precomputation)

I 20 ms (with precomputation of ψ)

Key generation:

I ≈ 20 min

20 / 26

RESULTS

Parameters:

I 128-bit plaintext, 146 Kb ciphertext

I deg(P) ∈ [6 000, 8 795], deg(K) = 17 600, w(K) = 81

Encryption:

I 100 ms (without precomputation)

I < 1 ms (with precomputation of 146 Kb)

Decryption:

I 260 ms (without precomputation)

I 130 ms (with precomputation of ψ)

Key generation:

I ≈ 2 min

21 / 26

PERFORMANCES

“Why do you give software timings for a hardware cipher ?”
→ did not have the opportunity to implement HW.

Expected much faster on hardware devices, since

I Enc = only XOR and LFSR

I Dec = only GF(2) linear algebra

I parallelism is possible

Alternative mode: encrypt ψ(m), decrypt directly to m
(negligible speed-up)

22 / 26

CONCLUSION

23 / 26

SUMMARY

TCHo is. . .

I based on the hardness of finding a sparse polynomial multiple

I quantum-cpu resistant

I semantically secure

24 / 26

FURTHER WORK

More experiments:

I benchmarks on FPGA, ASIC, etc.

I suitable for RFID tags ?

More analysis:

I speed-up key generation ?

I replace huge LFSR by. . . ?

I identify weak instances ?

I solve LWPM efficiently ?

Papers & slides available at
lasecwww.epfl.ch
www.131002.net

25 / 26

Asymmetric encryption with 2 XOR’s:
the cipher TCHo

Jean-Philippe Aumasson

26 / 26

	Introduction
	Specification
	Encryption
	Decryption
	Key generation
	Example

	Security
	Private key recovery
	Basic properties
	Semantic security

	Performances
	Summary

