
JP Aumasson

Too much crypto™ II

Real World Crypto 2020, NYC

Symmetric cryptography does too much computation
It could achieve the same security with way fewer operations and less energy

Symmetric cryptography does too much computation
It could achieve the same security with way fewer operations and less energy

Because algorithms are overdesigned
Round numbers are initially set to a high number, precautionarily, but are never
adjusted after we realise that fewer rounds would be sufficient

Symmetric cryptography does too much computation
It could achieve the same security with way fewer operations and less energy

Because algorithms are overdesigned
Round numbers are initially set to a high number, precautionarily, but are never
adjusted after we realise that fewer rounds would be sufficient

Due to imperfect selection processes, deployment costs, poor risk thinking

In the real world, 128-bit security is enough, even 100 bits

Economic argument:
With the power/capability/time/means/budget to run a 2100 attack, you can do
other, more effective things to compromise a system than break its crypto

My 2020 proposal:
Faster and less energy-hungry crypto

My 2020 proposal:
Faster and less energy-hungry crypto

Q4 2022 status:
No new attacks
Proposal still stands
ChaCha8 gained popularity

The BLAKE3 hash/PRF/KDF

Based on 7-round BLAKE2

blake3.io

http://blake3.io

Too much cryptocomputation in blockchains

Proof of work

Too much cryptocomputation in blockchains

Every program is recomputed multiple times
Hampers scalability, solved by “rollups”…

Too much crypto in ZK proof systems?

When general-purpose primitives are as arithmetic circuits (SHA2, BLAKE2, etc.)
-> Use ZK-friendly hash functions, like Poseidon

When a general-purpose crypto hash is superfluous
-> Use universal hash if sufficient

Too much crypto in ZK friendly hash functions?

Small changes can have a major speed/energy impact, because
-> Circuit transformation amplifies performance gains losses
-> Hashing is everywhere in ZKPs: Merkle trees, commitment schemes,
Fiat-Shamir transforms, encryption, signature, etc.

Too much crypto in ZK friendly hash functions?

Small changes can have a major speed/energy impact, if we
-> Eliminate padding
-> Support only known-length input
-> Use an all-in-one primitive for hashing, encryption, randomness

safe-hash.dev

Upcoming: security proof

https://safe-hash.dev/

Too much conclusion
• Crypto standards will most likely keep doing way too much crypto
• More toomuchcrypto in Salsa/ChaCha-based TLS/SSH than in AES-based
• If you don’t need a standard, ChaCha8 and BLAKE3 are fine
• ZKPs have more incentives (circuits cost & gas) to reduce crypto and are not

stuck with standards and interoperability constraints yet

JP

Much thanks!

