What's Up Argon2?
I'ne Password Hashing Winner A Year Later

JP Aumasson, Kudelski Security

Password Hashing Competition

and our recommendation for hashing passwords: Argon2

ARGON2 | PHC | CONTACT

Password hashing is everywhere, from web services' credentials storage to mobile and desktop
authentication or disk encryption systems. Yet there wasn't an established standard to fulfill the
needs of modern applications and to best protect against attackers. We started the Password
Hashing Competition (PHC) to solve this problem.

PHC ran from 2013 to 2015 as an open competition—the same kind of process as NIST's AES and
SHA-3 competitions, and the most effective way to develop a crypto standard. We received 24
candidates, including many excellent designs, and selected one winner, Argon2, an algorithm
designed by Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich from University of Luxembourg.

password-nashing.net

http://password-hashing.net

Nobody cared about password hashing research betore PHC
Now we've got Argon2, the best password hash ever

Secure, simple, easy to use

Argon2: the memory-hard function for password hashing and other
applications

Designers: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich
University of Luxembourg, Luxembourg

HoOw ArgonZ works, super nigh-level

1. H := Hash(password, salt, all parameters)
2. Fill a 2-dimension array B of MemParameter 1024-byte blocks

 Fill column by column, with sequential dependency
 Blocks Bli][0] and Bl[i][1] depend on H
 QOther blocks BJi][j] depend on Bli][j-1] and on another block
 ‘dependon X' ="are a BLAKE2-based hash of stuff including X'
3. Repeat 2 TimeParameter times, xoring new blocks to old ones

4. Return as a tag an xor of the last column’s blocks

* Argon2d: "another block™ depends on the password
* Argon2i: "another block” is Independent of the passworao

Side-channel info on “another block”™ can be used to crack
passwords faster = use Argon2i if there are side channels

But Argon2d gets you optimal resistance to TMTO

Argon2d (1 pass) Argon2i (3 passes)
Processor Threads || Cycles/Byte Bandwidth | Cycles/Byte Bandwidth
(GB/s) (GB/s)
i7-4500U 1 1.3 2.5 4.7 2.6
17-4500U 2 0.9 3.8 2.8 4.5
i7-4500U 4 0.6 5.4 2 5.4
17-4500U 8 0.6 5.4 1.9 5.8

Table 4: Speed and memory bandwidth of Argon2(d/i) measured on 1 GB memory filled. Core i7-4500U —
Intel Haswell 1.8 GHz, 4 cores

Specifically, on an i7-4500U (Haswell):

* 0.1 second to Argon2d using 250MB with 1 core
* 0.5 second to Argon2i using 1GB with 2 cores

Applications of Argon?2

e Storing user passwords
* Key derivation, from low-entropy data like passwords
* Proofs of work (there’s already an altcoin)

Get it at https://qgithub.com/P-H-C/phc-winner-argon?2

* Reference C89 code, for Linux, *BSD, Windows

* Bullds static and shared libs, commanad-line utility
e Public domain-like license (CCO)

* Bindings for most common languages

$ echo —-n "password" | ./argon2 somesalt -t 2 -m 16 -p 4 -1 24

Type: Argon2i

Iterations: 2

Memory: 65536 KiB

Parallelism: 4

Hash: 45d7ac72e761242b20b77b9bT9b19d5915894e669a24e6¢ch

Encoded: $argon21%$v=19$m=65536, t=2, p=4%$c29tZXNhbHQ$RdescudvICsgt3ub+b+dWRWITmaaJlObG

0.188 seconds
Verification ok

https://github.com/P-H-C/phc-winner-argon2

Based on initlal C++ code by the Argon2 designers

™ Initial commit

&1
“ veorq committed on Oct 4, 2015

SiﬂCe J[heﬂ, as Qf Ju‘ 25: ® Unwatch~v 51 Y Unstar 1,114 ¥ Fork 71

e 4063 commits, 91 pull requests, 58 Issues
 Major code cleanup and lots of bugs fixeo
e Continuous integration and best practices

Thanks to all contributors

* sheves

o 49 commits /| 2,182 ++ |/ 2,508 --

flamewow

13 commits | 536 ++ | 434 --

1T UniQP

4 commits / 4 ++ | 6 --

yonas

2commits / 2 ++ / 6 --

i angt

Tcommit /1 ++/1--

@ tvdburgt

Tcommit /1++ /0 --

& thibaultCha

' Tcommit /1++ /0 --

PlasmaPower

Tcommit /2 ++ /0 --

alls

“1* khovratovich
39 commits /| 552 ++ /| 392 --

lucab
11 commits / 585 ++ /| 562 --

phxal

2 commits /10 ++ / 6 --

5

. hynek
2 commits / 6 ++ | 2 --

&% quininer

==71commit/1++ /0 --

aberaud
v 1Tcommit /1 ++ /1 --
¢) tigertoes

Tcommit /O ++ /1 --

Qowyn
1 commit / 1,202 ++ / 10 --

&

daniel-dinu

% 36 commits /| 51,965 ++ |/ 25,077 --

==l 9 commits / 29 ++ /16 --

T O-wiz-0

2commits / 6 ++ /1 --

o mbroz

2 commits / 8 ++ / 31 --

o dessant

" 1commit/1++ /0 --

="= 3lipha

" 1commit/ 51 ++ /16 --

u Khady
Tcommit/1++ /0 --

% technion
W 32 commits / 354 ++ |/ 154 --

™ ranisalt
nr 8 commits / 116 ++ / 81 --

77 paragonie-scott
£ 2 commits / 20 ++ /10 --

ocharles

Tcommit /1++ /0 --

L% Cjlarose

= 1 commit /2 ++ /1 --

Q

dkg

1Tcommit /47 ++ / Q0 --

a seanhussey

Tcommit /1 ++/1--

The detault password hash in libsodium

#define PASSWORD "Correct Horse Battery Staple"
#define KEY_LEN crypto_box_SEEDBYTES

unsigned char salt[crypto_pwhash_SALTBYTES];
unsigned char key[KEY_LEN];

randombytes_buf(salt, sizeof salt);

if (crypto_pwhash
(key, sizeof key, PASSWORD, (PASSWORD), salt,
crypto_pwhash_OPSLIMIT_INTERACTIVE, crypto_pwhash_MEMLIMIT_INTERACTIVE,
crypto_pwhash_ALG_DEFAULT) != 0) {

/* out of memory 3

https://download.libsodium.org, by @jedisct

https://download.libsodium.org

€& = C [https://packages.debian.org/source/sid/argon2

@ About Debian Getting Debian Support Developers' Corner

debian / packages / sid (unstable) / source / misc / argon2

Source Package: argon2 (0~20160406-2)

The following binary packages are built from this source package:

argon2
memory-hard hashing function - utility

libargon2-0
memory-hard hashing function - runtime library

libargon2-0-dev
memory-hard hashing function - development files

Props to @lucabruno

Why Argon2 and not scrypt”

e Scrypt has no data-independent mode (like Argon?2i)
o ArgonZ2 is easier to parametrize (just 2 knobs)

* Argon?2 algorithm is simpler
* scrypt needs PKBDF2, HMAC, SHA-256, Salsa20

* Argon?2 just needs BLAKEZ2-like rounds

ArgonZ also has a better security analysis ...

Argon?2’s security (1/4): cryptanalysis

e Seriously? :-)

Argon?2’s security (2/4): GPU/ASIC inefficiency

* ArgonZ2 optimized for modern x86 microarchitectures
o EXxploits local parallelism and multi-core/threading
 More memory usage makes ASICs slower & costlier

Argon2’s security (3/4): side-channel resistance

 We're concerned with software side channels
* Argon2i is time-constant, memory addresses-constant
 ArgonZ2d Is not

Argon2’s security (4/4): time-space tradeoffs

 How much does it cost to hash with less memory?
* [here should be no "shortcut’
e 2 excellent papers published this year...

hitp://eprint.iacr.org/2016/027 (Jan 2016, 53 pages)

Balloon Hashing: a Provably
Memory-Hard Function with a
Data-Independent Access Pattern

Dan Boneh!, Henry Corrigan-Gibbs!, and Stuart Schechter?

' Stanford University
2 Microsoft Research

Rigorous analysis of memory-hard hashing

* Introduced the balloon hashing function
 Showed how to Argon2i with 4 times less space
* Motivated a tweak of Argon?2i released March 2016

http://eprint.iacr.org/2016/027

hitp://eprint.iacr.org/2016/115 (Feb 2016, 37 pages)

Efficiently Computing Data-Independent Memory-Hard Functions

Joel Alwen Jeremiah Blocki
IST Austria Microsoft Research

Theoretical analysis of memory-hard hashing's cost:

* [ntroduces an energy measure, more realistic than Al
* Presents asymptotic attacks on Argon2i and Balloon
* No practical impact on Argon?2, similar attacks known

http://eprint.iacr.org/2016/115

Standardization efforts @ |IRTF (CFRG)

Network Working Group A. Biryukov
Internet-Draft D. Dinu
Intended status: Informational D. Khovratovich
Expires: September 21, 2016 University of Luxembourg
S. Josefsson

SJD AB

March 20, 2016

The memory-hard Argon2 password hash and proof-of-work function
draft-irtf-cfrg-argon2-00

Abstract

This document describes the Argon2 memory-hard function for password
hashing and proof-of-work applications. We provide an implementer
oriented description together with sample code and test vectors. The
purpose 1s to simplify adoption of Argon2 for Internet protocols.

Conclusions
* \We understand well Argon2’s strengths and limitations
* Argon2 now has a mature reference implementation

* YOU can use It with most popular languages

For any support: http://password-hashing.net/#contact

http://password-hashing.net/#contact

