
JP Aumasson

Cryptographic
Backdooring

/me: @veorq http://aumasson.jp

 BLAKE(2), SipHash, NORX
 https://password-hashing.net

 https://cryptocoding.net
 https://malicioussha1.github.io

 DahuCon

http://aumasson.jp
https://password-hashing.net
https://cryptocoding.net
https://malicioussha1.github.io

Agenda

Why this talk?
Backdooring 101
Sabotage tactics

A perfect backdoor
Conclusion

Why this talk?

You may not be interested in backdoors,
but backdoors are interested in you

NSA’s BULLRUN program

Public research mostly inexistant

2004

http://eprint.iacr.org/2015/097.pdf

http://eprint.iacr.org/2015/097.pdf
http://eprint.iacr.org/2015/097.pdf

Bad reputation: surveillance, deception

“a back door for the government can easily —and
quietly—become a back door for criminals and

foreign intelligence services.”

http://justsecurity.org/16503/security-front-doors-vs-back-doors-distinction-difference/

http://justsecurity.org/16503/security-front-doors-vs-back-doors-distinction-difference/
http://justsecurity.org/16503/security-front-doors-vs-back-doors-distinction-difference/

And terrorists etc.

(Like internet and encryption)

“It increases the ‘attack surface’ of the system,
providing new points of leverage that a nefarious

attacker can exploit.”

http://justsecurity.org/16503/security-front-doors-vs-back-doors-distinction-difference/

http://justsecurity.org/16503/security-front-doors-vs-back-doors-distinction-difference/
http://justsecurity.org/16503/security-front-doors-vs-back-doors-distinction-difference/

Not well understood, by the public

Especially crypto backdoors

Why doing research about backdoors?

Detect backdoors

If you have to implement a backdoor,
whatever the reasons, better do it well

Backdooring 101

What’s a backdoor?

Not a trapdoor
(Covert rather than overt)

“A feature or defect that allows
surreptitious access to data”

Weakened algorithms
(A5/2, GMR, etc.)

Covert channels
(Exfiltration of keys, etc.)

Key escrow

Clipper chip phone AT&T TSD3600

“An undocumented way to get access to a
computer system or the data it contains”

Bugdoors
Backdoors that look like bugs

What’s a good backdoor?

Undetectable

Observables look legit
Requires non-trivial RE

Deniable

Looks unintentional
Isn’t incriminating

NOBUS (no one but us)

Exploitation requires a secret:
Keys, algorithm, protocol, etc.

Can also be specific privilege, skill, etc.

Reusable

Multiple times, against multiple targets
Usable without being revealed

(Unlike Flame’s MD5 collision)

Unmalleable

Not easily tweaked to be exploited by another party
Difficult to replicate without all details

Forward-secure

If the backdoor is detected,
previous exploits aren’t compromised

Simple

Minimize code, logic, memory,etc.

Sabotage tactics

Constants

Choose constants that allow you
to compromise the security

40 bits modified

Colliding binaries, images, archives

Full control on the content, NOBUS

(BSidesLV/DEFCON/SAC 2014)
https://malicioussha1.github.io

https://malicioussha1.github.io/
https://malicioussha1.github.io/

2 distinct files, 3 valid file formats

NIST curves’ coefficients

Hashes of unexplained 16-byte seeds, e.g.
c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

(Speculation, not evidence of backdoor)

Notion of rigidity

Or suspiciousness of the constants:
“a feature of a curve-generation process, limiting

the number of curves that can be generated”

http://safecurves.cr.yp.to/rigid.html

http://safecurves.cr.yp.to/rigid.html
http://safecurves.cr.yp.to/rigid.html

“The BADA55-VPR curves illustrate the fact that ‘verifiably
pseudorandom’ curves with ‘systematic’ seeds generated from
‘nothing-up-my-sleeve numbers’ also do not stop the attacker

from generating a curve with a one-in-a-million weakness.”
http://safecurves.cr.yp.to/bada55.html

http://safecurves.cr.yp.to/bada55.html
http://safecurves.cr.yp.to/bada55.html

This program can generate millions of plausible
values for “somewhat rigid” constants
 https://github.com/veorq/NUMSgen

Is it possible to find many “fully rigid” designs?

https://github.com/veorq/NUMSgen

Dual_EC_DRBG
(NSA design, NIST standard)

http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html

If n such that nQ = P is known, RNG is broken
(NOBUS)

http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html

Constants are anything that is.. constant
Arithmetic operations, S-boxes, etc.

A backdoor in AES?

(Research article by the honorable Dr. Gavekort: https://mjos.fi/doc/gavekort_kale.pdf)

https://mjos.fi/doc/gavekort_kale.pdf

Sabotaged AES S-box??

AES S-box is just the inverse x → x-1 in GF(28) !

A better S-box for AES!

Can you find the real backdoor?

Key generation

Make session keys predictable

3G/4G AKA

Session keys = hash(master key, rand)

Delegate tactical intercepts with
low-entropy rand values

Precompute and share session keys

(Just a possibility, not making allegations)

Hide weak parameters

RSA

Hide small public exponent
with some tricks to avoid detection

and recover using Boneh-Durfee-Frankel result

(CT-RSA 2003)

Key generation as a covert channel for itself

RSA

Hide bits of prime factors in n
Recover using Coppersmith’s method

Similar to “Pretty-Awful-Privacy” (Young-Yung)

(CT-RSA 2003)

Lesson: don’t outsource keygen

Implementations

Slightly deviate from the specs
Omit some verifications

etc.

Small subgroup attacks

Omit (EC)DH pubkey validation

(CRYPTO 1997)

(PKC 2003)

TLS MitM

Incomplete cert verification

“Misuse”

Repeated stream cipher nonces

NOBUS unlikely...

Software

Bugdoors in the crypto

Deniability may be plausible

goto fail;
goto fail;

goto cleanup;

Probably unintentional

Not NOBUS anyway

RC4 bugdoor (Wagner/Biondi)

#define TOBYTE(x) (x) & 255

#define SWAP(x,y) do { x^=y; y^=x; x^=y; } while (0)

static unsigned char A[256];

static int i=0, j=0;

unsigned char encrypt_one_byte(unsigned char c) {

 int k;

 i = TOBYTE(i+1);

 j = TOBYTE(j + A[i]);

 SWAP(A[i], A[j]);

 k = TOBYTE(A[i] + A[j]);

 return c ^ A[k];

}

RC4 bugdoor (Wagner/Biondi)

#define TOBYTE(x) (x) & 255

#define SWAP(x,y) do { x^=y; y^=x; x^=y; } while (0)

static unsigned char A[256];

static int i=0, j=0;

unsigned char encrypt_one_byte(unsigned char c) {

 int k;

 i = TOBYTE(i+1);

 j = TOBYTE(j + A[i]);

 SWAP(A[i], A[j]); /* what if (i == j) ?*/

 k = TOBYTE(A[i] + A[j]);

 return c ^ A[k];

}

Hardware

IC trojans

Malicious modification of a chip

At design (HDL), fab (netlist), distribution (IC)

Detection difficult

“Undetectable by optical RE!”

(CHES 2013)

“Maybe, but not with electronic imaging (SEM)”

(CHES 2014)

CPU multiplier X × Y = Z correct
except for one “magic” pair (X, Y)

Exploitable to break RSA, ECC, etc.

2128 pairs for 64-bit MUL, detection unlikely

A perfect backdoor

http://phili89.wordpress.com/2010/05/24/the-perfect-crime-project-38/

http://phili89.wordpress.com/2010/05/24/the-perfect-crime-project-38/
http://phili89.wordpress.com/2010/05/24/the-perfect-crime-project-38/

Covert channel with a malicious RNG

NOBUS thanks public-key encryption

Undetectable thanks to proven indistinguishability

Compute X = Enc(pubkey, secret data to exfiltrate)

X values should look random

Use X as IVs for AES-CBC

Public-key encryption scheme with ciphertexts
indistinguishable from random strings?

Elligator curves

 http://safecurves.cr.yp.to/ind.html

http://safecurves.cr.yp.to/ind.html

RNG circuit must be hidden

For example in FPGA/PLD, difficult to RE

Communications and computations

Indistinguishable from those of a clean system

In case of full RE

Backdoor detected but unexploitable,
Previous covert coms remain safe (FS)

What can be exfiltrated? RNG state

Can give past and future session keys,
depending on the RNG construction

Many other techniques…

Conclusion

All this is quite basic

(Credit: @krypt3ia)

And that’s only for crypto

Should we really worry about backdoors?

Or first fix bugs and usability issues?

16 submissions received

Winner: John Meacham
sabotaged AES, confusion in standard type redefinition

Runner-up: Gaëtan Leurent
ZK identification protocol, buggy Hamming weight

“Competition to write or modify crypto
code that appears to be secure, but
actually does something evil”

https://underhandedcrypto.com/

https://underhandedcrypto.com/
https://underhandedcrypto.com/

Thank you!

