Blockchain security!

JP Aumasson

1 TAURUS

<insert blockchain meme here>

Are blockchains secure”?

* No major issue ever in Bitcoin nor Ethereum internals

* But: lot of new code, new protocols, complex logic,
wide attack surface, unexperienced developers; a
recipe for blockchain bugs

Blockchain bugs?

* Design bugs: functionality works as intended, but can
be abused by an attacker

* Software bugs: software errors allow the program to
enter an insecure state, unintended by the design

Such bugs can be found either in the blockchain itself,
or on the applications running on top of it
(smart contracts, etc.)

Multiple targets

A typical cryptocurrency needs several applications
 Wallets: desktop, mobile, where private keys are stored

e Validation nodes: which run a consensus mechanism to
authorize transactions and ensure the blockchain’s
consistency—be it PoOW or PoS

Attackers goals

Main goal: free money
o Steal private keys/seeds/wallets

e |ssue transactions on behalf
of other clients

e Create coins/tokens out of thin air

Other goals: network denial-of-service, user lock out, etc.

1. Bitcoin overtlow

2. Ethereum reentrancy
3. Zerocoin multi-spend
4. Lisk accounts hijack

5. Parity wallet bug

6. IOTA’s hash function

/. Bitgrail withdrawal

8. BatchOverflow

9
1

. Verge consensus
0. BIP32 utilities

1. Bitcoin overflow (CVE-2010-5139

The worst problem ever in Bitcoin

@ Author Topic: Version 0.3.10 - block 74638 overflow PATCH! (Read 5059 times)

satoshi () Version 0.3.10 - block 74638 overflow PATCH! o

Founder * August 15,2010, 11:48:22 PM ==

Sr. Member

| Version 0.3.10 patches the block 74638 overflow bug. http://bitcointalk.org/index.php?

topic=823

Activity: 364
The Linux version includes tcatm's 4-way SSE2 SHA-256 that makes generating faster on i5, i7
(with hyperthreading) and AMD CPU's. Try the "-4way" switch to enable it and check if it's

& faster for you.

Ignore

Download from sourceforge:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.10/

SHA1 16645ec5fcdb35bc54bc7195309a1a81105242bb bitcoin-0.3.10-win32-setup.exe
SHA1 4f35ad7711a38fe8c880c6c9beab430824c426d3 bitcoin-0.3.10-win32.zip

SHA1 e3fdalddb31b0d5c35156cacd80deebeabae6423 bitcoin-0.3.10-linux.tar.gz
SHA1 b812ccff4881778b9090f7¢c0b0255bcba7b078ac bitcoin-0.3.10-macosx.zip

It is no longer necessary to delete blk*.dat. The good block chain has overtaken the bad block
chain, so you can just upgrade and it'll automatically reorg away the bad block chain.

What happened??

jgarzik /S, Strange block 74638
Legendary ~ August 15, 2010, 06:08:49 PM
DD

Activity: 1498 The "value out” in this block #74638 is quite strange:

Code:
& 0 {
"hash" : "0000000000790ab3f22ec756ad43bbab569%abf0bddeb7c67a6f7bl470a7eclc",
Ignore "o 1,
"prev _block" : "0000000000606865e679308edf079991764d88e8122caf%9250aef5386962b6e84",
"mrkl root" : "618ebald419el3c8d08d38c346da7cdlc/c66fd8831421056ae56d8d80bbecSe",
" : 1281891957,
b " : 469794830,
""""""" : 28192719,

* The sum of output values in a transaction overtflowed
the Iinteger variable

* Transaction check validated the (hegative) sum

 184,467,440,737.09551616 bitcoins were created...

Lessons and solutions

 Simple input validation bug, would likely have been
caught in a security audit of the code

e Soft fork de facto invalidated the transaction

* Fixed within 5h, patched in 0.3.10

// Check for negative or overflow input values
if (txPrev.vout[prevout.n].nValue < @)

return error("ConnectInputs() : txin.nValue negative");
if (txPrev.vout[prevout.n].nValue > MAX_MONEY)

return error("ConnectInputs() : txin.nValue too high");
if (nValueIn > MAX MONEY)

return error("ConnectInputs() : txin total too high");

+ + + + + + + +

2. Ethereum reentrancy (a.k.a. DAO bug)

I The Biggest Hacker Whodunnit of

the Summer

Jan Vollmer
Jul 14 2016, 4:20pm

It's been almost a month since a $53 million
hack sent the Ethereum community into crisis.

m =

June 17 marked the beginning of perhaps the biggest digital bank robbery this
summer: Unknown attackers disappeared $53 million in the cryptocurrency Ether
from one of the startup finance world's most promising and futuristic projects.

What happened? (simplifieq)

Smart contract DAO.sol vulnerable to reentrancy (~smart contract cousin of concurrency)

Attacker creates a contract that interacts with the vulnerable contract, to fool the contract
into “thinking” it has more money than it actually has, using nested function calls

Exploit idea: attacker “pretends” to withdraw money so that the contract “thinks" it has less
money than it has, then attacker can steal this extra money..

Mitigation: checks that the contract “thinks” it has at least as much money as the total
supply when entering deposit and withdraw functions:

modifier checkInvariants {
- if (this.balance !'= totalSupply) throw;
+ if (this.balance < totalSupply) throw;

}

Lessons and solutions

 Smart contract programming and reasoning is hard,
because based on an unconventional model

* Need for audits and best practices (safe arithmetic,
avoid external calls, check invariants, etc.)

e Some platforms use simpler, non-Turing complete logic
(yet richer than Bitcoin’s scripts) to reduce the risk

3. Zerocoin multi-spend

HOME PEOPLE Q AND A PAPERS, PRESS, ETC

@erocoin Project

Zerocash, the protocol that succeeded
Zerocoin, is being developed into a full-

fledged digital currency, Zcash.

What is Zerocoin?

Zerocoin is a project to fix a major weakness in Bitcoin: the lack of privacy guarantees we take
for granted in using credit cards and cash. Our goal is to build a cryptocurrency where your

neighbors, friends and enemies can’t see what you bought or for how much.

This project began with a proposed extension, called “Zerocoin”, to the Bitcoin protocol that
allowed users to mix their own coin. A collaboration between the the original Zerocoin
project members and cryptographers at MIT, The Technion, and Tel Aviv University, has
produced a far more efficient protocol that allows for direct private payments to otherusers of
hidden value. For disambiguation, we refer to this new protocol as Zerocash, and detail its

technical underpinnings here.

Experimental academic project, warned people not to
use their code Iin production..

What happened?

Coin

FPrivate financial transactions.
enabled hy the Zerocoin Protocol

NEW 3.1.0.2 WALLET

‘ DOWNLOAD l

Zero-knowledge proof checking that a coin isn’t already spent before spending it..
Checks the unicity of the “serial number”, an integer less than the group order..
Bug: code actually using “serial mod q”'s value, without checking “serial < q"

Consequence: coins with distinct serial numbers but same value mod g could all be
spent, as if they were several copies of the same coin

Lessons and solutions

* Cryptography is fragile and complex to audit

* Don’t use experimental code for critical operations
(especially if their authors warn you against it)

Can |l use it now?

Not yet. We are planning on releasing an alt-coin using the
Zerocash protocol. We are currently in the process of finishing
a release version of the client, based on the Bitcoin 0.9.|
codebase: there’s a big difference between research software,
and a working release grade client we can stand behind. Our
goal is to release this code in a production-quality form that
the community can use to stand up a real, functioning

currency. We will be providing further updates on this site.

4. Lisk account hijack

Access the power of
blockchain

Lisk makes it easy for developers to build and deploy blockchain applications in

JavaScript. Join the leading ecosystem for world-changing dapps.

>

BLOCKCHAINS: HOW TO STEAL MILLIONS IN
2 64 OPERATIONS

() January 16,2018 & JP Aumasson @ Crypto, cryptocurrency e 11 comments

['ve been reviewing the source code of a number of blockchain thingies, both for paid audits
and for fun on my spare time, and I routinely find real security issues. In this post I'll describe a
vulnerability noticed a while ago, and now that Lisk finally describes it and warns its users, I can

comment on its impact and exploitability.

TL;DR: you can hijack certain Lisk accounts and steal all their balance after only 2% evaluations of the
address generation function (a combination of SHA-256, SHA-512, and a scalar multiplication over
Ed25519’'s curve).

What happened?

Like in any cryptocoin platform, coin owners are identified by an

address. In Lisk, addresses are 64-bit numbers, such
as 3040783849904107057L. Whereas in Bitcoin, for example, an address

Is simply a hash of one’s public key, a Lisk address is derived
deterministically from a passphrase, while generating the users’s

keypair along the way. In more details, it works like this:

1. Given a passphrase, compute a 256-bit seed as seed = SHA-

256(passphrase).

2. Derive an Ed25519 keypair from this seed, which involves computing
SHA-512(seed) and a scalar multiplication.

3. Compute the SHA-256 hash of the public key, and define the address

as the last 8 bytes of the 32-byte hash.

e Trivial collisions Address(passphrase 1) = Address(passphrase 2)

 Preimage search for a valid passphrase of a given address in ~264 trials

What happened?

Second problem: no address-key binding

Ideally, short addresses shouldn’t be a huge problem: if an address already exists
and is bound to a key pair, you shouldn’t be able to hijack the account by finding

another passphrase/keypair mapping to this address.

And that’s the second problem: an address isn’‘t bound to a keypair until it has sent
money to another address (or voted for a delegate). What this means is that if an
account only receives money but never sends any, then it can be hijacked by finding
a preimage—and once the attacker has found a preimage, they can lock the original
user out of their account by issuing a transaction and binding the address to their

new passphrase/keypair.

 Multi-target attack will do ~24° operations to hit one-of-64 target addresses with 256 cores

* Lisk recommends a workaround: send a least one transaction from any new address in order
to broadcast the public key to the network (thus binding the key to the address)

Lessons and solutions

* Flawed address derivation scheme, despite good
choice of cryptographic algorithm

* Other embarrassing security issues in Lisk (secret sent
In clear to validators, etc.), evidently wasn’t designed
nor reviewed by security people

* Lisk published an advisory, but cannot fix the problem

24 O Lisk $932 839,595 $8.77 $10,040.900 106,322,500 LSK *

5. Parity wallet bug

ETHEREUM NEWS

'l Accidentally Killed It': Parity Wallet Bug Locks $150
Million in Ether

L) paritytech / parity

¢>Code (@lssues 165) Pull requests 26 I'll Projects 5 11 Insights

“" ' anyone can Kill your contract #6995
A

GA¥ LM ghost opened this issue on Nov 6, 2017 - 16 comments

ghost commented on Nov 6, 2017 « edited by ghost ~

| accidentally killed it.

https://etherscan.io/address/0x863df6bfad4469f3ead0be8f9f2aae51c91a907b4

WhOOpS! 37 F1 @8 i3 @18 @3

® Watch ~

337

What happened?

e Library contract with uninitialized owner

o Attacker took over the contract using the initWallet () function

// constructor - just pass on the owner array to the multiowned and
// the limit to daylimit
function initWallet(address[] _owners, uint _required, uint
_daylimit) only_uninitialized A
initDaylimit(_daylimit);
initMultiowned(_owners, _required);

}

 Then he killed the contract, thereby freezing all wallets that were dependent on this library

Lessons and solutions

 Smart contracts are hard, embarrassing issue for Parity

* [ssue actually in the patch of a previous security issue (!)

Following the fix for the original multi-sig vulnerability that had
been exploited on 19th of July (function visibility), a new version of
the Parity Wallet library contract was deployed on 20th of July.
Unfortunately, that code contained another vulnerability which was
undiscovered at the time - it was possible to turn the Parity Wallet
library contract into a regular multi-sig wallet and become an owner
of it by calling the initWallet function. It is our current
understanding that this vulnerability was triggered accidentally on
6th Nov 2017 02:33:47 PM +UTC and subsequently a user deleted
the library-turned-into-wallet, wiping out the library code which in
turn rendered all multi-sig contracts unusable and funds frozen
since their logic (any state-modifying function) was inside the

library.

6. IOTA’s hash function

Blockchain Tangle (DAG/ Directed Acyclic Graph)

IOTA = blockchain-less blockchain, using “trinary” rather
than binary arithmetic, and... custom crypto!

@ |OTA Vulnerability Report: Cryptanalysis of the Curl Hash Function Enabling Practical
Signature Forgery Attacks on the IOTA Cryptocurrency

By Ethan Heilman (Boston University, Paragon Foundation, Commonwealth Crypto), Neha Narula (MIT Media Lab), Thaddeus
Dryja (MIT Media Lab, Lightning Network Dev), Madars Virza (MIT Media Lab, Zcash)

Team contact e-mail: curl@mit.edu

What happened?

|OTA’s transaction signatures are not standard public key signatures..
But one-time hash-based signatures, using key = f(seed, index), with incremented index..
Instead using a standard hash function, IOTA designed a custom hash (“curl”)...

Which turned out to be completely insecure (collisions easy to find)

What happened?

|OTA’s transaction signatures are not standard public key signatures..

But one-time hash-based signatures, using key = f(seed, index), with incremented index..
Instead using a standard hash function, IOTA designed a custom hash (“curl”)...

Which turned out to be completely insecure (collisions easy to find)

But... exploitation not trivial because each key is used once.. still a security issue

Lessons and solutions

e Crypto by non-cryptographers is often a disaster

 Innovating is good, but frankenstein experiments with $Bs
at stake can be scary, should be done responsibly

e PR disaster for IOTA, but token value didn’t suffer much

* |OTA needs more analysis!

6 bis. IOTA's “M"

Why is the normalized hash considered insecure when containing the char ‘M’

Looking at the code of the iota.lib.js' bundle creation mechanism, a normalized hash is computed
A and then checked for inclusion of 13 /% = M x/ . If one is found, the obsoleteTag is incremented,

and the hashing is repeated.

What is the reason behind a 13 indicating an insecure bundle hash?

v security bundles hashing

There was a bug in the wallet software related to absence of https://github.com/Come-from-
N Beyond/ISS/commit/de1a279450558848a81858fd57b023719eb9a0d3. "M" should be avoided to

prevent leakage of the corresponding (and following) private key fragments.

share improve this answer answered Jan 13 at 12:47
a P
= Lt Come-from-Beyond
XOWSY 1395 o 2 0 13

/. Bitgraill withdrawals

BitGrail lost $170 million worth of Nano XRB
tokens because... the checks for whether
you had a sufficient balance to withdraw
were only implemented as client-side
JavaScript reddit.com/r/CryptoCurren

=D
v thdraw page
on va wpt then ou nd pec anualh nd 3 reques o ou ou
rIwa
2 Wh closed
ho ou coul ur addro om us: om ancthor user accosnt. That wou ne or balanc
B ber soived this bug b en " numbe as

for using a PHP website coded by same skil-level as CfB of IDIOTA

6:31 PM - 11 Feb 2018

Reminder: client-side validation can’t be trusted

8. BatchOverflow

EEEEEEEEEEEE

OKEXx Suspends ERC20 Deposits on Discovery of
Critical Ethereum Smart Contract Bug

' . -
pES

What happened?

 Several alt coins added a “batch transfer” functionality to ERC20 contracts..

¢« Sends asame amount wvalue of tokens to a list of receivers:

batchTransfer(address[] _receivers, uint256 _value) whenNotPaused
uint cnt = receivers. length;
uint256 amount = uint256(cnt) * value;

(cnt Y cnt 20);

(_value =~ @ balances[msg.sender] amount) ;

balances[msg.sender] balances [msg.sender] .sub(amount);

(uint i = 0; i < cnt; i++) {
balances[_receivers(i]] balances|[_receivers|i]].add(_value);
Transfer(msg.sender, _receivers[i], _value);

true;

* Integer overflow in total amount computation: attacker can set amount to a low (or even
zero) value, passing the check line 259, yet sending high amount wvalue to receivers

Lessons and solutions

* Beginner error in simple smart contract function

* Would have been spotted in dmin in a security audit

Dear valued customers,

We are suspending the deposits of all ERC-20 tokens due to the discovery of a new
smart contract bug - "BatchOverFlow". By exploiting the bug, attackers can generate
an extremely large amount of tokens, and depaosit them into a normal address. This
makes many of the ERC-20 tokens vulnerable to price manipulations of the attackers.

To protect public interest, we have decided to suspend the deposits of all ERC-20
tokens until the bug is fixed. Also, we have contacted the affected token teams to

conduct investigation and take necessary measures to prevent the attack.

If you have already made a deposit request, your funds will arrive safely after our

deposit service resumed. We apologize for any inconvenience caused.

Regards,
OKEX
Apr 25, 2018

9. Verge

The Verge Hack, Explained

Time Warps, Mining Exploits, Denial of Service, and More!

Privacy as a choice.
A secure and anonymous

cryptocurrency.

Get Started with Verge

Read the Blackpaper of Verge Currency

9. Verge

'

https://vergecurrency.com/static/blackpaper/Verge-Anonymity-Centric-CryptoCurrency.pdf Q w

VVERGE

'he most privacy focused

What happened??

 (Consensus protocol adapts the proof-of-work difficulty based on the number of blocks
confirmed in the last two hours..

» Attacker kept sending blocks with spoofed (earlier) timestamps to fool the difficulty
calculation algorithm..

be too difficult—let’s make it easier!” Since timestamps were continuously
being spoofed, the protocol continuously lowered the difficulty, until mining
got laughably easy. To give a general idea, the average difficulty in the hours
before the initial attack was 1393093.39131, while during the attack, it got
as low as 0.00024414, a decrease in difficulty of over 99.999999%. Lower
difficulty in submitting a block means more blocks get submitted— in this

case, roughly a block every second.

* Exploit facilitated by Verge’s (nonsensical) use of 5 hashing algorithms: attacker only
lowered the difficulty for Scrypt, thereby only competing with Scrypt miners

Lessons and solutions

 Complexity tends to bring insecurity
e Secure-sounding features (5 algorithms!) can backfire

* Consensus parameters depending on untrusted input is a
recipe for disasters

 Many coins vulnerable to time manipulation (e.g. via
forged NTP responses that could fool the OS)

* A black paper instead of a white paper doesn’t help

10. BIP32 utilities

Derivation of BIP32 accounts (key pair, address)
from a seed and a path
https://qgithub.com/prusnak/bip32utils (Python)

S bip32gen

usage: bip32gen [-h] [-X] [-X] -1 {entropy,xprv,xXxpub} [-n AMOUNT]
[-f FROM FILE] [-F TO FILE] -o OUTPUT TYPE [-v] [-d]
chain [chain ...]

bip32gen: error: the following arguments are required:

-i/--input-type, -o/--output-type, chain

https://github.com/prusnak/bip32utils

What happened? (1/2)

Generate an address from a 32-byte seed:

S echo bc0ef283f57fd5e4£36657053228eae8d2d5b0ed4d87c6ee069a9cade39411d63 |
bip32gen -xX -1 entropy -0 addr m
1Jzuo5xm6218gFQLQOb58f2F5a7nTK308bD

What happened? (1/2)

Generate an address from a 32-byte seed:

S echo bc0ef283f57fd5e4£36657053228eae8d2d5b0ed4d87c6ee069a9cade39411d63 |
bip32gen -xX -1 entropy -0 addr m
1Jzuo5xm6218gFQLQOb58f2F5a7nTK308bD

Generate an address from the 16-byte truncated seed:

S echo bc0ef283f57fd5e4£f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm6218gFQLOb58f2F5a7nTK308bD

What happened? (1/2)

Generate an address from a 32-byte seed:

S echo bc0ef283f57fd5e4£36657053228eae8d2d5b0ed4d87c6ee069a9cade39411d63 |
bip32gen -xX -1 entropy -0 addr m
1Jzuo5xm6218gFQLOb58f2F5a7nTK308bD

Generate an address from the 16-byte truncated seed:

S echo bc0ef283f57fd5e4£f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm6218gFQLOb58f2F5a7nTK308bD

WTF?!

What happened? (1/2)

Generate an address from a 32-byte seed:

S echo bc0ef283f57fd5e4£36657053228eae8d2d5b0ed4d87c6ee069a9cade39411d63 |
bip32gen -xX -1 entropy -0 addr m
1Jzuo5xm6218gFQLOb58f2F5a7nTK308bD

Generate an address from the 16-byte truncated seed:

S echo bc0ef283f57fd5e4£f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm6218gFQLOb58f2F5a7nTK308bD

WTF?!

 Length of the seed is a parameter -n AMOUNT, default to 16 bytes
* Longer seeds will be silently truncated to 16 bytes without warning/error
 Did a PR to fix this, now merged..

What happened? (2/2)

bip32gen keeps deriving incorrect xpub/xpriv values o

For certain BIP32 paths only...

Gave up investigating, enough hours wasted,
switched to a more established (but bigger) tool in JS...

What happened? (2/2)

bip32gen keeps deriving incorrect xpub/xpriv/address i

Risk: get an address for which you don’t have the key

Gave up investigating, enough hours wasted,
switched to a more established (but bigger) tool in JS...

bitpay / bitcore-lib

{>Code (! Issues 80 Pull requests 25 Projects 0

W Star 493 ¥ Fork 795
A pure and powerful JavaScript Bitcoin library https://bitcore.io/

‘D 3,038 commits I 8 branches

What happened? (3/2)

BIP32 key derivation failed on my macbook..

What happened? (3/2)

BIP32 key derivation failed on my macbook..

Pinpointed the problem to... SHA-512
Which SHA-512 implementation? &

What happened? (3/2)

BIP32 key derivation failed on my macbook..

Pinpointed the problem to... SHA-512
Which SHA-512 implementation? (&

cryptocoinjs / shab12

<> Code Issues 2 Pull requests 0 Projects 0 W Star 5 ?Fork 1

DEPRECATED - SHA 512 secure hashing algorithm

h nn AA“““‘:*“ hhhhhhhhhh

What happened? (4/2)

Root cause was a basic oob read

internal/buffer.js:55
throw new ERR_OUT OF RANGE(type || 'offset’',

A

RangeError [ERR OUT OF RANGE]: The value of "offset” is out of range. It must be >= 0 and <= 161.
Received 164

at boundsError (internal/buffer.js:55:9)

at Buffer.readUInt32BE (internal/buffer.js:198:5)

What happened? (4/2)

Root cause was a basic oob read

internal/buffer.js:55
throw new ERR_OUT OF RANGE(type || 'offse

A

RangeError [ERR OUT OF RANGE]: The value of
Received 164
at boundsError (internal/buffer.js:55:9
at Buffer.readUInt32BE (internal/buffer

WordArray. fromBuffer = function(buf) {
var len = buf. length

\0

var dif = len % 4
var w = []

if (!process.browser) {
for (var i = 0; i < len; i += 4) {
var n = buf.readUInt32BE(i, true)
w.push(n)
s
return new WordArray(w, buf.length)
} else { //bug in browserify / buffer
for (var i = 8; i < len - dif; i += 4) {
var n = buf.readUInt32BE(1i)

A Y S 1

What happened? (4/2)

Root cause was a basic oob read

internal/buffer.js:55
throw new ERR_OUT OF RANGE(type || 'offse

A

RangeError [ERR OUT OF RANGE]: The value of

Received 164
at boundsError (internal/buffer.js:55:9
at Buffer.readUInt32BE (internal/buffer

Unexploitable :-/

WordArray. fromBuffer = function(buf) {
var len = buf. length
var dif = len % 4
var w = []

if (!process.browser) {
for (var i = 0; i < len; i += 4) {
var n = buf.readUInt32BE(i, true)
w.push(n)
s
return new WordArray(w, buf.length)
} else { //bug in browserify / buffer
for (var i = 9; 1 < len - dif; i += 4) {
var n = buf.readUInt32BE(i)

A Y S 1

Lessons and solutions

* Don’t use any open-source utility in production!

* Node/JS dependency trees can hide insecure||deprecated
code, not always reported by tools like nsp or npm-dview

* A crypto API should default to the most secure behavior, be
“misuse resistant” / fail-safe

Conclusions

* Many more bugs to be found

* Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

Conclusions

* Many more bugs to be found

* Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

* Recent example: EOS

C' | @ GitHub, Inc. [US] | https://github.com/EOSIO/ecs

Some of the groundbreaking features of EOSIO include:

O O 0 N O O A W N A

N

. Free Rate Limited Transactions

. Low Latency Block confirmation (0.5 seconds)

. Low-overhead Byzantine Fault Tolerant Finality

. Designed for optional high-overhead, low-latency BF T finality
. Smart contract platform powered by Web Assembly

. Designed for Sparse Header Light Client Validation

. Scheduled Recurring Transactions

. Time Delay Security

. Hierarchical Role Based Permissions

. Designed for Parallel Execution of Context Free Validation Logic

. Designed for Inter Blockchain Communication

%O G

=) authorization_manager.cpp
block_header.cpp
block_header_state.cpp
block_log.cpp

=) block_state.cpp

=) chain_config.cpp

=) chain_id_type.cpp

=) controller.cpp

=) eosio_contract.cpp

) eosio_contract_abi.cpp

=) fork_database.cpp

. Support for Biometric Hardware Secured Keys (e.g. Apple Secure Enclave)

Update FC_ASSERT for abi_generator and abi_serializer
move id() from signed_block_header to block_header
Remove the redundant signature recovery and block digest when applyin...
Update FC_ASSERT for abi_generator and abi_serializer

Fix eosio.system abi & skip sig checks

action setparams added to system contract, unit-test of producers cha...
Update FC_ASSERT for abi_generator and abi_serializer

Fix unchecked unapplied transaction growth on relays

Update FC_ASSERT for abi_generator and abi_serializer

Add common_type_defs for abi_generator to use

Merge pull request #4566 from spartucus/patch-1

360 Security found critical bug of EOS, Dawn might @) Jon Bottarini @jon_bottarini - Jun 5, 2018 v

be postponed(Updated) I-Jow to make $80k in one day: Blockchain bugs. Congrats
@ GuidoVranken and best of luck on your future bugs! #bugbounty
ey M @Hacker0x01 Find bugs on @eos_io and get rewarded on

HackerOne! hackerone.com/eosio #EOS pic.twitter.com/ZHrr6ifoKV

Hacker Activity T T —

The 360 Vulcan team discovered a series of critical vulnerabilities in EOS, which is about ‘”" 97'“
to launch its mainnet on 2nd June. It has been verified that some of these vulnerabili- o !;;;3 N— S— T1.40 76t
tl A A\ 1603
¢ \ lockore « by quids - $10,000 closec sbout 1 hr a9 Rupulaticn
. . ‘ _‘A B d
‘ PSA: Major EOS bug makes it -
® K f};ﬁ Blockore - by guida - $10,000 loges about 1 hr aga Credits
3 03
o x &
1 possible to steal valuable resources SRR
. /\ 6‘\6 Blockore « tvauidz - $10,000
directly from users e _—
T |AA] &
srayceard
/_;\ (;;5 Blockore « btvguidz - $10,00C

dgah Guido Vranken
g @ GuidoVranken

Hacker exploits EOS betting platform
e g o o ° Thank you. A couple more waiting to be rewarded. | think the
to ‘WIn IGCKPOt 24 ilmes |n a rOW final tally was $120K but | lost count. Took me about a week.

1:37 AM - Jun 5, 2018

) 136 () 30 people are talking about this @

Conclusions

* Many more bugs to be found

* Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

* Recent example: EOS
e Security audits help, but won’t find all the bugs

* Nice way to make money for bug hunters :-)

Thank you!

@veorq https://aumasson.jp https://taurusgroup.ch

https://aumasson.jp
https://taurusgroup.ch

