
Blockchain security!

JP Aumasson

<insert blockchain meme here>

Are blockchains secure?

• No major issue ever in Bitcoin nor Ethereum internals

• But: lot of new code, new protocols, complex logic,
wide attack surface, unexperienced developers; a
recipe for blockchain bugs

Blockchain bugs?

• Design bugs: functionality works as intended, but can
be abused by an attacker

• Software bugs: software errors allow the program to
enter an insecure state, unintended by the design

Such bugs can be found either in the blockchain itself,  
or on the applications running on top of it  
(smart contracts, etc.)

Multiple targets

A typical cryptocurrency needs several applications

• Wallets: desktop, mobile, where private keys are stored

• Validation nodes: which run a consensus mechanism to
authorize transactions and ensure the blockchain’s
consistency—be it PoW or PoS

Attackers goals
Main goal: free money

• Steal private keys/seeds/wallets

• Issue transactions on behalf 
of other clients

• Create coins/tokens out of thin air

Other goals: network denial-of-service, user lock out, etc.

1. Bitcoin overflow

2. Ethereum reentrancy

3. Zerocoin multi-spend

4. Lisk accounts hijack

5. Parity wallet bug

6. IOTA’s hash function

7. Bitgrail withdrawal

8. BatchOverflow

9. Verge consensus

10. BIP32 utilities

1. Bitcoin overflow (CVE-2010-5139)
The worst problem ever in Bitcoin

What happened?

• The sum of output values in a transaction overflowed
the integer variable

• Transaction check validated the (negative) sum

• 184,467,440,737.09551616 bitcoins were created…

Lessons and solutions
• Simple input validation bug, would likely have been

caught in a security audit of the code

• Soft fork de facto invalidated the transaction

• Fixed within 5h, patched in 0.3.10

2. Ethereum reentrancy (a.k.a. DAO bug)

What happened? (simplified)
• Smart contract DAO.sol vulnerable to reentrancy (~smart contract cousin of concurrency)

• Attacker creates a contract that interacts with the vulnerable contract, to fool the contract
into “thinking” it has more money than it actually has, using nested function calls

• Exploit idea: attacker “pretends" to withdraw money so that the contract “thinks" it has less
money than it has, then attacker can steal this extra money..

• Mitigation: checks that the contract “thinks” it has at least as much money as the total
supply when entering deposit and withdraw functions:

Lessons and solutions
• Smart contract programming and reasoning is hard,

because based on an unconventional model

• Need for audits and best practices (safe arithmetic,
avoid external calls, check invariants, etc.)

• Some platforms use simpler, non-Turing complete logic
(yet richer than Bitcoin’s scripts) to reduce the risk

3. Zerocoin multi-spend

Experimental academic project, warned people not to
use their code in production..

What happened?

• Zero-knowledge proof checking that a coin isn’t already spent before spending it..

• Checks the unicity of the “serial number”, an integer less than the group order..

• Bug: code actually using “serial mod q”'s value, without checking “serial < q"

• Consequence: coins with distinct serial numbers but same value mod q could all be
spent, as if they were several copies of the same coin

Lessons and solutions
• Cryptography is fragile and complex to audit

• Don’t use experimental code for critical operations
(especially if their authors warn you against it)

4. Lisk account hijack

• Trivial collisions Address(passphrase 1) = Address(passphrase 2)

• Preimage search for a valid passphrase of a given address in ~264 trials

What happened?

• Multi-target attack will do ~249 operations to hit one-of-64 target addresses with 256 cores

• Lisk recommends a workaround: send a least one transaction from any new address in order
to broadcast the public key to the network (thus binding the key to the address)

What happened?

Lessons and solutions
• Flawed address derivation scheme, despite good

choice of cryptographic algorithm

• Other embarrassing security issues in Lisk (secret sent
in clear to validators, etc.), evidently wasn’t designed
nor reviewed by security people

• Lisk published an advisory, but cannot fix the problem

5. Parity wallet bug

Whoops!

What happened?
• Library contract with uninitialized owner

• Attacker took over the contract using the initWallet() function

• Then he killed the contract, thereby freezing all wallets that were dependent on this library

Lessons and solutions
• Smart contracts are hard, embarrassing issue for Parity

• Issue actually in the patch of a previous security issue (!)

6. IOTA’s hash function

IOTA = blockchain-less blockchain, using “trinary" rather
than binary arithmetic, and… custom crypto!

What happened?
• IOTA’s transaction signatures are not standard public key signatures..

• But one-time hash-based signatures, using key = f(seed, index), with incremented index..

• Instead using a standard hash function, IOTA designed a custom hash (“curl”)…

• Which turned out to be completely insecure (collisions easy to find)

What happened?
• IOTA’s transaction signatures are not standard public key signatures..

• But one-time hash-based signatures, using key = f(seed, index), with incremented index..

• Instead using a standard hash function, IOTA designed a custom hash (“curl”)…

• Which turned out to be completely insecure (collisions easy to find)

• But… exploitation not trivial because each key is used once.. still a security issue

Lessons and solutions
• Crypto by non-cryptographers is often a disaster

• Innovating is good, but frankenstein experiments with $Bs
at stake can be scary, should be done responsibly

• PR disaster for IOTA, but token value didn’t suffer much

• IOTA needs more analysis!

6 bis. IOTA’s “M"

7. Bitgrail withdrawals

Reminder: client-side validation can’t be trusted

8. BatchOverflow

What happened?
• Several alt coins added a “batch transfer” functionality to ERC20 contracts..

• Sends a same amount _value of tokens to a list of receivers:

• Integer overflow in total amount computation: attacker can set amount to a low (or even
zero) value, passing the check line 259, yet sending high amount _value to receivers

Lessons and solutions
• Beginner error in simple smart contract function

• Would have been spotted in 5min in a security audit

9. Verge

9. Verge

What happened?
• Consensus protocol adapts the proof-of-work difficulty based on the number of blocks

confirmed in the last two hours..

• Attacker kept sending blocks with spoofed (earlier) timestamps to fool the difficulty
calculation algorithm..

• Exploit facilitated by Verge’s (nonsensical) use of 5 hashing algorithms: attacker only
lowered the difficulty for Scrypt, thereby only competing with Scrypt miners

Lessons and solutions
• Complexity tends to bring insecurity

• Secure-sounding features (5 algorithms!) can backfire

• Consensus parameters depending on untrusted input is a
recipe for disasters

• Many coins vulnerable to time manipulation (e.g. via
forged NTP responses that could fool the OS)

• A black paper instead of a white paper doesn’t help

10. BIP32 utilities

$ bip32gen
usage: bip32gen [-h] [-x] [-X] -i {entropy,xprv,xpub} [-n AMOUNT]
 [-f FROM_FILE] [-F TO_FILE] -o OUTPUT_TYPE [-v] [-d]
 chain [chain ...]
bip32gen: error: the following arguments are required:  
-i/--input-type, -o/--output-type, chain

Derivation of BIP32 accounts (key pair, address)
from a seed and a path 
https://github.com/prusnak/bip32utils (Python)

https://github.com/prusnak/bip32utils

What happened? (1/2)
Generate an address from a 32-byte seed:

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened? (1/2)
Generate an address from a 32-byte seed:

Generate an address from the 16-byte truncated seed:

$ echo bc0ef283f57fd5e4f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened? (1/2)
Generate an address from a 32-byte seed:

Generate an address from the 16-byte truncated seed:

WTF?!

$ echo bc0ef283f57fd5e4f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened? (1/2)
Generate an address from a 32-byte seed:

Generate an address from the 16-byte truncated seed:

WTF?!

• Length of the seed is a parameter -n AMOUNT, default to 16 bytes

• Longer seeds will be silently truncated to 16 bytes without warning/error

• Did a PR to fix this, now merged..

$ echo bc0ef283f57fd5e4f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened? (2/2)
bip32gen keeps deriving incorrect xpub/xpriv values 🤦

For certain BIP32 paths only…

Gave up investigating, enough hours wasted,  
switched to a more established (but bigger) tool in JS…

What happened? (2/2)
bip32gen keeps deriving incorrect xpub/xpriv/address 🤦

Risk: get an address for which you don’t have the key

Gave up investigating, enough hours wasted,  
switched to a more established (but bigger) tool in JS…

What happened? (3/2)
BIP32 key derivation failed on my macbook..

What happened? (3/2)
BIP32 key derivation failed on my macbook..

Pinpointed the problem to… SHA-512

Which SHA-512 implementation? 🤔

What happened? (3/2)
BIP32 key derivation failed on my macbook..

Pinpointed the problem to… SHA-512

Which SHA-512 implementation? 🤔

What happened? (4/2)
Root cause was a basic oob read

internal/buffer.js:55
 throw new ERR_OUT_OF_RANGE(type || 'offset',
 ^

RangeError [ERR_OUT_OF_RANGE]: The value of "offset" is out of range. It must be >= 0 and <= 161.
Received 164
 at boundsError (internal/buffer.js:55:9)
 at Buffer.readUInt32BE (internal/buffer.js:198:5)

What happened? (4/2)
Root cause was a basic oob read

internal/buffer.js:55
 throw new ERR_OUT_OF_RANGE(type || 'offset',
 ^

RangeError [ERR_OUT_OF_RANGE]: The value of "offset" is out of range. It must be >= 0 and <= 161.
Received 164
 at boundsError (internal/buffer.js:55:9)
 at Buffer.readUInt32BE (internal/buffer.js:198:5)

What happened? (4/2)
Root cause was a basic oob read

Unexploitable :-/

internal/buffer.js:55
 throw new ERR_OUT_OF_RANGE(type || 'offset',
 ^

RangeError [ERR_OUT_OF_RANGE]: The value of "offset" is out of range. It must be >= 0 and <= 161.
Received 164
 at boundsError (internal/buffer.js:55:9)
 at Buffer.readUInt32BE (internal/buffer.js:198:5)

Lessons and solutions
• Don’t use any open-source utility in production!

• Node/JS dependency trees can hide insecure||deprecated
code, not always reported by tools like nsp or npm-dview

• A crypto API should default to the most secure behavior, be
“misuse resistant" / fail-safe

Conclusions
• Many more bugs to be found

• Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

Conclusions
• Many more bugs to be found

• Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

• Recent example: EOS

Conclusions
• Many more bugs to be found

• Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

• Recent example: EOS

• Security audits help, but won’t find all the bugs

• Nice way to make money for bug hunters :-)

Thank you!

@veorq https://aumasson.jp https://taurusgroup.ch

https://aumasson.jp
https://taurusgroup.ch

