
Attacking and Defending Blockchains:
From Horror Stories to Secure Wallets

JP Aumasson

<insert blockchain meme here>

/me
• https://aumasson.jp | @veorq

• VP Technology @ Kudelski Security

• Did lots of security audits for major blockchain organizations

• Also founds bugs for fun, collected bug bounties

• Co-designed a cryptocurrency storage solution used by several
Swiss financial institutions (Taurus)

https://aumasson.jp

Flight plan

• PART I: Wallets

• PART II: Horror stories

Defending and Attacking Blockchains:
Secure Wallets and Horror Stories

JP Aumasson

PART I: Wallets

What’s a wallet
A medium to store the seeds/passphrases/keys
associated to digital assets accounts

• These secrets are required to generated the private keys
used to sign transactions, i.e. to spend money

• Unlike real wallets, a crypto wallet does not directly
include funds, only the key to spend them

• The public keys and address can be made public (but
may compromise anonymity and linkability)

Hot vs. Cold
Hot wallets

• ≈ Checking accounts, readily available to spend

• Must be connected to internet

• Higher risk of theft, e.g. if OS compromised

Cold wallets

• ≈ Saving accounts

• Can be kept offline

• Hold more $$$ than hot wallets

Different types of wallets
• Online

• Mobile

• Desktop

• Paper

• Hardware

What do you use?

Online wallet
Secrets are stored by a third-party (“cloud”), typically an exchange, credentials
are used to login to the platform

Funds are generally transferred to the exchange’s hot or cold wallet, not to “your"
individual address or wallet managed by the exchange

Most exchanges provide wallet management, e.g. Bitstamp, Coinbase, Kraken,
Bittrex, etc.

Online wallet
Pros:
• Convenience: no need to backup your keys, accessible from any device

• Convenience: directly integrated to an exchange

Cons and risks:
• Security: Platform (e.g. exchange) may be hacked and funds stolen

• Availability: If the platform is down (e.g. DoS) you can’t access your funds

Online interfaces
Web app to manage your account client-side, given your key (or data required to
recover it, such as a seed or passphrase), secrets are not known to the back-end

Hybrid systems: key encrypted client-side, stored encrypted in a cloud

Online interfaces
Pros:
• Doesn’t store your credentials on a third-party system

• Convenient UI

Cons and risks:
• Phishing: you might enter your credentials on a malicious website

• Web app might be hacked or malicious and surreptitiously collect your credentials

• You need an actual wallet to store your credentials

Mobile wallet
Mobile application to manage your account, your keys are stored locally

May support extra features such as multi-signatures, 2FA, "cold storage”

Popular wallets include Copay, Jaxx, Mycelium

Mobile wallet
Pros:
• Security: more secure than online wallets

• Control: no third-party can access your funds

• Convenience: on-the-go management of your funds

Cons and risks:
• Security: key exposed if OS compromised (Android riskier than iOS)

• Availability: key lost if device lost/stolen/destroyed

Desktop wallet
Desktop application to manage your account, your keys are stored locally

May support extra features such as multi-signatures, 2FA, "cold storage”

Popular wallets include Armory, Copay, Electrum, Exodus

Desktop wallet
Pros:
• Security: more secure than online wallets

• Control: no third-party can access your funds

• Availability: lower risk of theft/loss than mobile devices

Cons and risks:
• Security: key exposed if OS compromised (even if password-protected)

• Convenience: needs a better technical understanding than online wallets

Desktop wallet
Example: Electrum wallet setup

Different types of wallets, such as multisignature wallets

Desktop wallet
Example: Electrum wallet setup

BIP39 passphrase randomly generated, will be used to derive a seed that will
served as the root of a BIP32 hierarchical wallet

Desktop wallet
Example: Electrum wallet setup

Seed/passphase confirmation step to ensure that you’ve copied the passphrase

Desktop wallet
Example: Electrum wallet setup

Password-protect the seed/passphrase (symmetric encryption derived from this
password, used to encrypt the secrets on the local filesystem)

Paper wallet
Key printed on a piece of paper, as QR code, hex digits, or passphrase 
(Other media: laminated paper, engravings, etc.)

bitaddress.org  
bitcoinpaperwallet.com, etc.

http://bitaddress.org
http://bitcoinpaperwallet.com

Paper wallet
Pros:
• Security: more secure than online, mobile, or desktop wallets

• Security: safe even if all your devices are fully compromised

Cons and risks:
• Availability: can be lost, stolen, burnt, damaged with time

• Convenience: needs more technical understanding to use than desktop wallets

• Security: can be hijacked by taking a picture, video surveillance, etc.

Hardware wallet
Physical device that stores keys securely, without exposing them to the host OS

Features such as U2F (FIDO), multiple wallets, hidden passphrase, etc.

Popular consumer hardware wallets are Ledger and Trezor devices

Hardware wallet
Pros:
• Security: keys never directly exposed to the OS, acts like a black box

• Security: even if stolen, extracting the key requires advanced equipment & skills

• Security: some devices support plausible deniability (“emergency PIN”, multiple PINs)

Cons and risks:
• Availability: Lock-out, e.g. if wrong PIN entered and the device “self-destructs”

• Functionality: Limited number of coins supported, can’t always have multiple seeds

• Loss of the device + no backup

Hardware wallet: not perfect

https://www.hackread.com/all-ledger-hardware-wallet-vulnerable-to-man-in-the-middle-attack/

Typical setup for individuals
• Hot: online wallet(s) for day-to-day trading, on different exchanges

• Cold: long-term investment stored on a hardware wallet

• Backup: paper copy of the hardware wallet key, on laminated paper, in a safe

Recommendations
• Only use online wallet as hot wallets

• Use only recommended/popular online wallets (such as MEW)

• Distribute between hot and cold storage, depending on your activity

• BACKUP! (mobile, desktop, paper, hardware): encrypted or paper copies

Exchanges and wallets
• Hot wallet(s) guarantees liquidity for daily operations (mainly withdrawals)

• Cold wallet(s) contain the majority of the exchange’s funds

https://www.coinbase.com/security

https://www.coinbase.com/security

Exchanges and wallets
• Hot wallet(s) guarantees liquidity for daily operations (mainly withdrawals)

• Cold wallet(s) contain the majority of the exchange’s funds

https://www.kraken.com/security/practices

https://www.kraken.com/security/practices

Exchanges and hardware wallets?
• Most exchanges do NOT use hardware wallets — is it really a problem?

• Gemini is an exception

https://gemini.com/security/

https://gemini.com/security/

Exchanges and hardware wallets?
• Anything missing here? What about backups?

https://gemini.com/security/

https://gemini.com/security/

“Warm” wallets
• Not completely airgapped (must allow the broadcast of transactions)

• Typically based on hardware storage to minimize risks

• Used by banks to ensure compliance with banking regulations

• Needs manual traceable procedures (“4-eyes” control, 3 lines of defense,
etc.)

• Must integrate in bank networks (Avaloq, Temenos, etc.) and have a familiar
UI

https://www.kraken.com/security/practices

PART II: Horror stories

Are blockchains secure?

• No major issue ever in Bitcoin nor Ethereum internals

• But: lot of new code, new protocols, complex logic,
wide attack surface, unexperienced developers; a
recipe for blockchain bugs

Blockchain bugs?

• Design bugs: functionality works as intended, but can
be abused by an attacker

• Software bugs: software errors allow the program to
enter an insecure state, unintended by the design

Such bugs can be found either in the blockchain itself,  
or on the applications running on top of it  
(smart contracts, etc.)

Multiple targets

A typical cryptocurrency needs several applications

• Wallets: desktop, mobile, where private keys are stored

• Validation nodes: which run a consensus mechanism to
authorize transactions and ensure the blockchain’s
consistency—be it PoW or PoS

Attackers goals
Main goal: free money

• Steal private keys/seeds/wallets

• Issue transactions on behalf 
of other clients

• Create coins/tokens out of thin air

Other goals: network denial-of-service, user lock out, harm
competitors’ reputation, etc.

1. Bitcoin overflow

2. Ethereum reentrancy

3. Zerocoin multi-spend

4. Lisk accounts hijack

5. Parity wallet bug

6. IOTA’s hash function

7. Bitgrail withdrawal

8. BatchOverflow

9. Verge consensus

10. BIP32 utilities

1. Bitcoin overflow (CVE-2010-5139)
The worst problem ever in Bitcoin

What happened?

• The sum of output values in a transaction overflowed
the integer variable

• Transaction check validated the (negative) sum

• 184,467,440,737.09551616 bitcoins were created…

Lessons and solutions
• Simple input validation bug, would likely have been

caught in a security audit of the code

• Soft fork de facto invalidated the transaction

• Fixed within 5h, patched in 0.3.10

2. Ethereum reentrancy (a.k.a. DAO bug)

What happened? (simplified)
• Smart contract DAO.sol vulnerable to reentrancy (~smart contract cousin of concurrency)

• Attacker creates a contract that interacts with the vulnerable contract, to fool the contract
into “thinking” it has more money than it actually has, using nested function calls

• Exploit idea: attacker “pretends" to withdraw money so that the contract “thinks" it has less
money that it has, then attacker can steal this extra money..

Lessons and solutions
• Smart contract programming and reasoning is hard,

because based on an unconventional model

• Need for audits and best practices (safe arithmetic,
avoid external calls, check invariants, etc.)

• Some platforms use simpler, non-Turing complete logic
(yet richer than Bitcoin’s scripts) to reduce the risk

3. Zerocoin multi-spend

Experimental academic project, warned people not to
use their code in production..

What happened?

• Zero-knowledge proof checking that a coin isn’t already spent before spending it..

• Bug: actually using the coin “serial mod q”'s value, without checking “serial < q"

• Consequence: coins with distinct serial numbers but same value mod q could all be
spent, as if they were several copies of the same coin

Lessons and solutions
• Cryptography is fragile and complex to audit

• Don’t use experimental code for critical operations
(especially if their authors warn you against it)

4. Lisk account hijack

• Trivial collisions Address(passphrase 1) = Address(passphrase 2)

• Preimage search for a valid passphrase of a given address in ~264 trials

What happened?

• Latency of ~249 operations to attack attack a one-in-64 target address with 256 cores

• Mitigation: send one transaction from any new address in order to broadcast the public key to
the network, thereby binding the key to the address

What happened?

Lessons and solutions
• Flawed address derivation scheme, despite good

choice of cryptographic algorithm

• Other embarrassing security issues in Lisk (secret sent
in clear to validators, etc.), evidently wasn’t designed
nor reviewed by security people

• Lisk published an advisory, but cannot fix the problem

5. Parity wallet bug

Whoops!

What happened?
• Library contract with uninitialized owner

• Attacker took over the contract using the initWallet() function

• Then he killed the contract, thereby freezing all wallets that were dependent on this library

Lessons and solutions
• Smart contracts are hard, embarrassing issue for Parity

• Issue actually in the patch of a previous security issue (!)

6. IOTA’s hash function

IOTA = blockchain-less blockchain, using trinary rather
than binary arithmetic, post-quantum signature, and…  
a custom hash function!

What happened?
• IOTA’s transaction signatures are not standard public key signatures..

• But one-time hash-based signatures, using key = f(seed, index), with incremented index..

• Instead of using a standard hash function, IOTA initially used a custom hash (curl)…

• For which collisions were easy to find (i.e. M1 and M2 such that H(M1)==H(M2))

What happened?
• IOTA’s transaction signatures are not standard public key signatures..

• But one-time hash-based signatures, using key = f(seed, index), with incremented index..

• Instead of using a standard hash function, IOTA initially used a custom hash (curl)…

• For which collisions were easy to find (i.e. M1 and M2 such that H(M1)==H(M2))

• But… exploitation not trivial because each key is used once.. still a security issue

Lessons and solutions
• Crypto by non-cryptographers is often a disaster

• Innovating is good, but frankenstein experiments with $Bs
at stake can be scary, should be done responsibly

• PR disaster for IOTA, but token value didn’t suffer much

• IOTA needs more analysis!

7. Bitgrail withdrawals

Reminder: client-side validation can’t be trusted

8. BatchOverflow

What happened?
• Several alt coins added a “batch transfer” functionality to ERC20 contracts..

• Sends a same amount _value of tokens to a list of receivers:

• Integer overflow in total amount computation: attacker can set amount to a low (or even
zero) value, passing the check line 259, yet sending high amount _value to receivers

Lessons and solutions
• Beginner error in simple smart contract function

• Would have been spotted in 5min in a security audit

9. Verge

9. Verge

What happened?
• Consensus protocol adapts the proof-of-work difficulty based on the number of blocks

confirmed in the last two hours..

• Attacker kept sending blocks with spoofed (earlier) timestamps to fool the difficulty
calculation algorithm..

• Exploit facilitated by Verge’s (nonsensical) use of 5 hashing algorithms: attacker only
lowered the difficulty for Scrypt, thereby only competing with Scrypt miners

Lessons and solutions
• Complexity tends to bring insecurity

• Secure-sounding features (5 algorithms!) can backfire

• Consensus parameters depending on untrusted input is a
recipe for disasters

• Many coins vulnerable to time manipulation (e.g. via
forged NTP responses that could fool the OS)

• A black paper instead of a white paper doesn’t help

10. BIP32 tools (pt. 1)

$ bip32gen
usage: bip32gen [-h] [-x] [-X] -i {entropy,xprv,xpub} [-n AMOUNT]
 [-f FROM_FILE] [-F TO_FILE] -o OUTPUT_TYPE [-v] [-d]
 chain [chain ...]
bip32gen: error: the following arguments are required:  
-i/--input-type, -o/--output-type, chain

Derivation of BIP32 accounts (key pair, address)
from a seed and a path 
https://github.com/prusnak/bip32utils (Python)

https://github.com/prusnak/bip32utils

What happened?
Generate an address from a 32-byte seed:

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened?
Generate an address from a 32-byte seed:

Generate an address from the 16-byte truncated seed:

$ echo bc0ef283f57fd5e4f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened?
Generate an address from a 32-byte seed:

Generate an address from the 16-byte truncated seed:

WTF?!

$ echo bc0ef283f57fd5e4f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

What happened?
Generate an address from a 32-byte seed:

Generate an address from the 16-byte truncated seed:

WTF?!

• Length of the seed is a parameter -n AMOUNT, default to 16 bytes

• Longer seeds will be silently truncated to 16 bytes without warning/error

• Did a PR to fix this, now merged..

$ echo bc0ef283f57fd5e4f36657053228eae8 | bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

$ echo bc0ef283f57fd5e4f36657053228eae8d2d5b0e4d87c6ee069a9cade39411d63 |
bip32gen -x -i entropy -o addr m
1Jzuo5xm62i8gFQLQb58f2F5a7nTK3o8bD

Lessons and solutions
• Don’t use any open-source utility in production!

• Node/JS dependency trees can hide insecure||deprecated
code, not always reported by tools like nsp or npm-dview

• A crypto API should default to the most secure behavior, be
“misuse resistant" / fail-safe

Conclusions
• Many more bugs to be found

• Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

Conclusions
• Many more bugs to be found

• Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

• Recent example: EOS

Conclusions
• Many more bugs to be found

• Usual suspects: complex logic, unsafe language, rushed
deployment, lack of testing, third-party dependencies

• Recent example: EOS

• Security audits help, but won’t find all the bugs

• Nice way to make money for bug hunters :-)

Thank you!

https://kudelskisecurity.com

https://aumasson.jp

@veorq

https://kudelskisecurity.com
https://aumasson.jp

