Hardening HSMs for
Banking-Grade Crypto Wallets

Black Hat 2024

JP-Aumasson, Chervine Majeri

Whois

JP

e Taurus co-founder & CSO
e First BHUS talk was in 2013

Chervine

* Taurus lead research engineer
* First BHUS talk right now

TAURUS Crypto asset custody & issuance for banks (taurushg.com)
regulated and running a marketplace for tokenized assets (t-dx.com)

In Geneva, Zurich, London, Paris, Vancouver, Dubai

Outline

1. Whatis really an HSM?

2. Security and crypto internals

3. Attack surface and hardening

4. Best practices & a note on cloud HSMs

Disclaimer: This is based on our experience over 7 years with 3 HSM
models, deployed in production on-prem or managed. YMMV.

TAURUS

0. How many of you have used
an HSM before?

2

TAURUS

1. What is really an HSM?

Hardware security module (HSM)

“A dedicated crypto processor that is specifically designed
for the protection of the crypto key lifecycle” (HSM vendor)

Enterprise/cloud HSMs usually 1RU or PCIE card form factor
The actual HSM is the module in the appliance/card

HSM purpose

Store secret keys for crypto operations:
= Signature, decryption, symmetric encryption, MAC

?Ls SignN M

<
“Setem e[Hsw 1%

High-assurance domain thanks to isolation & anti-tampering

Protect keys in case of servers/workstations compromise

HSM use case examples

* Blockchain transaction signing and TEE

* Code sighing (HSM mandatory for MS Win apps)
 Database encryption/decryption (usually via KEKSs)
* PKl root of trust (for CAs, enterprise PKls, etc.)

,,,,,,,,,,
986 -
- 426

https://www.flickr.com/photos/okolkman/22789012910/in/album-72157661146853781/

HSM interfaces

Crypto interface over PCle or USB, TCP/IP if network-attached
Admin interface over serial port, SSH, HTTP/REST + TLS, GUI

The following top-level commands are available: Syntax: partition
Name (short) Description The following subcommands are available:
client c > Client semd o el el
exit e Exit Shell create cr Add Partition
help he Get Help init j > Init
hsm hs > Hsm resize resi Resize Partition Storage Space
my m > My rename ren Rename Partition
network ne > Network createChallenge createC Create Crypto Officer or Crypto User challenge
ntls nt > Ntls activate a Cache Partition PED key data
package pac > Package deactivate dea Decache Partition PED key data
partition par > Partition list 1 List Partitions
service se > Service S:O:C cent 5: - g°: :3'::::°“ ;:;orﬁation
showContents shof et Par on ects
:;:Eg:f :;sc : g;:zg:f showPolicies showP Get Partition Policies
changePolicy changePo Set Partition Policy Value
syslog sysl > Syslog changePw changePw Set Partition Password
token t > Token delete del Delete Partition
user u > User clear cl Delete Partition Objects
webserver W > Webserver backup b Backup Partition
restore rest Restore Partition

stcIdentity

st

Secure Trusted Channel Configuration

TAURUS

2. Security and crypto internals

Security mechanisms (1/5)

* Local isolation (slots aka partitions)

Partition Roles

Logging In to the

H S M P a rt i ti 0 n S Application Partition

Initializing Crypto Officer
and Crypto User Roles

HSM Partitions are independent logical HSMs that reside within the SafeNet for an Application
HSM inside, or attached to, your host computer or appliance. ==& 8 g1\ Partition
Partition has its own data, access controls, security policies, and separate o onaing a Partition Role
admlnlstratlon access for at least some roles, independent from other HSM Resetting the Crypto

' (if your HSM supports more than one). Depending on the product, Orficer, :r"::;stgfsgz
the HSM can contain multiple HSM partitions, and each partition can be Credential
associated with one or more Clients. Each HSM Partition has a special Activation on Multifactor

administrative account or role, who manages it. Quorum-Authenticated

Partitions

User Roles

Administration Security

Security mechanisms (2/5) Offcer (450)

Administrator
Security Officer (SO)

* Local isolation (slots aka partitions) Token Owner (User)
Unauthenticated Users
- RBAC, ABAC-ish model (with per-slot roles) —

Administration Security Officer (ASQO) Administrator

This user knows and can present the Admin Token SO PIN. The ASQ’s main role is to introduce the This user knows and can present the Admin Token User PIN. The following services are available to the Administrator:
Administrator to the module. The following services are available to the ASO: Set or change Real Time Clock (RTC) value
Set the initial Administrator PIN value (ASO cannot change it later) Read the System Event Log

Set the CKA_TRUSTED attribute on a Public object Purge a full System Event Log

Set the CKA_EXPORT attribute on a Public object Configure the Transport Mode feature

Exercise cryptographic services with Public objects Specify the security policy of the HSM

Create, destroy, import, export, generate and derive Public objects Create new SafeNet ProtectToolkit-C slots/tokens and specify their labels, SO PINs, and minimum PIN Length

itialize sma and specify their labels &) PINs
Can change his/her own PIN Initialize smart cards and specify their labels and SO PINs
Destroy individual SafeNet ProtectToolkit-C slots/tokens
Erase all HSM secure memory, including all PINs and User Keys
Perform firmware upgrade operations

Manage Host Interface Master Keys

Exercise cryptographic services with Public objects on the Admin Token

Security mechanisms (3/5)

* RBAC model (with per-slot roles)
* PKCS#11 Cryptoki API

Bit Flag (Mask
CKF_HW 0x00000001 True if the mechanism is performed by the
device; false if the mechanism is

performed in software

CKF_ENCRYPT 0x00000100 True if the mechanism can be used with
C_Encryptinit

CKF _DECRYPT 0x00000200 True if the mechanism can be used with
C_Decryptinit

CKF DIGEST 0x00000400 True if the mechanism can be used with
C_Digestinit

CKF_SIGN 0x00000800 True if the mechanism can be used with
C_Signlnit

* Local isolation (slots aka partitions)

5.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

¢ C_Decryptlnit

CK DEFINE FUNCTION(CK RV, C DecryptInit) (
CK SESSION HANDLE hSession,
CK MECHANISM PTR pMechanism,
CK OBJECT HANDLE hKey

) 7

C_Decryptlnit initializes a decryption operation. hSession is
the session’s handle; pMechanism points to the decryption
mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which
indicates whether the key supports decryption, MUST be
CK TRUE.

Security mechanisms (4/5)

* Local isolation (slots aka partitions)
* RBAC model (with per-slot roles)
* PKCS#11 Cryptoki API

* FIPS 140-2/3 certified crypto and anti-tampering controls

Security mechanisms (5/5)

* Local isolation (slots aka partitions)
* RBAC model (with per-slot roles)
* PKCS#11 Cryptoki API

* FIPS 140-2/3 certified crypto and anti-tampering controls

May NOT include:

* Software exploit mitigations like ASLR and DEP
* Remote attestation mechanism

Internals overview (1/2)

* System-on-chip with a PPC core and crypto accelerators
e Some minimal Linux distrib, some bootloader

* Crypto software libraries

* Sighed firmware updates

23

24 # Start PCSC:

25 exec /sbin/pcscd
Linux-misc GPL-2.0 (https:/lwww.g 26

27 # Launch the HSM app, and wait for it to die.

Libsodium ISC (https://www.isc.or

Linux kernel GPL-2.0 with exceptions

OpenSSL OpenSSL (http://www.o 0
‘ * . 28 exec /sbin/HSM
Protobuf BSD-3-Clause "New" or' 29
n « N
Protobuf-c BSD 2-clause "Simplifiec g? SEI'Idng_tEXt LDG(CRITICAL) HSM crashed:
Protocol Buffer Java Util Package BSD-3-Clause "New" or | 32 # Tell host that HSM quit:

U-boot GNU GPL v2.0 only (htty 33 sendlog_text "HSM terminated"

Internals overview (2/2)

* Crypto support: mainly FIPS incl. legacy algorithms
* “True RNG” seeding a NIST 800-90A DRBG

Full Suite B support
Asymmetric: RSA, DSA, Diffie-Hellman, Elliptic C

Symmetric

CAST, and more

» Random Number Ge ion: designed to co 0/31to DRG.4
using HW based true nois e alongside NIST 800-90A compliant CTR-
DRBG

TAURUS

3. Attack surface and hardening

Custom modules

* Firmware extension software component loaded by users
* Replace the original firmware’s init()

* Must be developed C, using the vendor’s SDK

* Size limitation (ex: 8MB)

static int handle_init(Message_Handle token, Messages_ HSMRequest *request) {

if(request->checksum.data == NULL || request->checksum.len != 32) { HSM
return pack_reply(token, "invalid checksum™, MESSAGES__HSMRESPONSE__CODE__ Failure, NULL, ©, ©, NULL, NULL);
Message processing modules -
} gep g > Custom functions
if(request->init == NULL || request->init->length == @ || request->init->data.data == NULL || request->init->data.len == @) { Y

} return pack_reply(token, "no init payload™, MESSAGES__ HSMRESPONSE__CODE__ Failure, NULL, ©, ©, NULL, NULL); Firmware Module Fl.lncti()na”ty r\"'10dLl|e FM

uint32_t len = request->init->length;

if(len > 1000000) { _— PKCS#11 functions
return pack_reply(token, "invalid total size: max 1000000 bytes", MESSAGES__HSMRESPONSE__CODE__ Failure, NULL, ©, ©, NULL, NULL); cryptOkl lerary :

} Extra functions

if(request->init->data.len > len) { Support

return pack_reply(token, "invalid payload: longer than total size", MESSAGES__ HSMRESPONSE__ CODE__Failure, NULL, ©, ©, NULL, NULL
}

What could go wrong (1/3)

* Compromised caller creds = free HSM requests (no filtering)
* PKCS#11 intrinsic flaws and limitations (see Ledger’s paper)
* Bugs in the PKCS#11 implementation and HSM runtime

Yubico YubiHSM PKCS#11 Library
Vulnerability (CVE-2023-39908)

Everybody be cool, this is a robbery!

Jean-Baptiste Bédrune et Gabriel Campana
jean-baptiste.bedrune@ledger.fr
gabriel.campana@ledger.fr

Ledger Donjon

Heiko Schafer discovered a new security issue in the Yubico yubihsm_pkesil.so driver library, which we SSTIC 201 9
disclosed together to Yubico. The YubiHSM PKCS#11 client-side library is designed to interact with Yubico HSM2

hardware security modules. Due to flaws in the memory handling, the library code accidentally returns 8192 bytes

of previously used process memory under some circumstances. This impacts the memory confidentiality of the

calling program for some usages.

https://blog.inhg.net/posts/yubico-yubihsm-pkcs-vuln/

What could go wrong (2/3)

* Knowns bugs in outdated OSS components (regreSSHion?)
* Cross-slot attacks (DoS, info leak, code exec?)

* Malicious custom module / supply-chain issues
* RNG issues (remember ROCA?)

Trusted FM binary creation

ﬁhis process involves Security Auditor, after their testifying of the build environment secure identifier.
The outcome of this process is a trusted FM binary, or a compiled version of an audited version of the FM.

All operations are performed under the supervision of Security Auditor, who records the operations

performed, and any failure or unexpected event.

What could go wrong (3/3)

With custom modules:

* Removing a directory from the FS crashes if the name ends with “/”

* Logging "too much" (1 log per message) freezes the HSM, needing a
power-cycle

* Inconsistent crypto interface between firmware versions

Without custom modules:
* Client-side segfaults with certain elliptic curve crypto interfaces

HSM hardening

A quick tour of measures proposed to harden HSMs
* Deployed in production

* Known tricks for “power users”

* Most won’t work with cloud HSMs

| 'hearyour ardening
experiments are going well.

1/6: Attack surface reduction

PKCS#11 APl override, to only allow “authorized” usage/args
But vendors can add more calls...

FM_RV Startup() {
CprovFnTable t *fn_table = 0S_GetCprovFuncTable();
if(fn_table == NULL) {

return 2;

fn_table->C_GetAttributeValue = GetAttributeValueOverride; //GetAttribute because it can be used to ge
fn_table->C_WrapKey=WrapKeyOverride; //WrapKey because we don't want wrapped versions getting out
fn_table->C_DeriveKey=DeriveKeyOverride; //DeriveKey because BIP32
fn_table->CT_CopyObject=CTCopyObjectOverride; //CopyObject because if Sensitive is missing, one could
fn_table->C_CopyObject=CopyObjectOverride; //Same but not across sessions
fn_table->C_SignInit=SignInitOverride; // Prevent some hmacs from outside (for exchanges we know about)
fn_table->C_DestroyObject=DestroyObjectOverride; // Otherwise people can just delete data and roll back to
fn_table->C_SetAttributeValue=SetAttributeValueOverride; // Otherwise people can just overwrite data and r
printf(“Registering taurus FM with chunking support\n”);
initialized = false;

return FMSW_RegisterDispatch(FM_NUMBER_CUSTOM_FM, handler);

2/6: Enforce secure configuration

Custom code can enforce that attributes of
PKCS#11 objects are the most restrictive,
and stop its operations otherwise

Ex: Ensure that secret key are marked as

CKA_SENSITIVE and not CKA_EXTRACTABLE.

If available, use directly the filesystem
(rather than PKCS#11 objects)

CK_ATTRIBUTE len_attrs[] = {

{CKA VALUE LEN, &tmplen, s
{CKA SENSITIVE, &is sensit
{CKA PRIVATE, &is private,
{CKA MODIFIABLE, &is modif
{CKA WRAP, &1s wrap, sizeo
{CKA EXPORT, &is export, s
{CKA IMPORT, &is import, s
{CKA_UNWRAP, &1is unwrap, s
{CKA EXTRACTABLE, &is extr
{CKA EXPORTABLE, &is expor
{CKA DERIVE, &is derive, s
{CKA_ENCRYPT, &is_encrypt,
{CKA DECRYPT, &is decrypt,
{CKA SIGN, &is sign, sizeo
{CKA VERIFY, &is verify, s
{CKA_CLASS, &obj class, si

3/6: In-HSM business logic

Move business logic from servers/VMs to the HSM

Ex: Create blockchain transactions (sighature, payload) after
enforcing a multi-sig quorum and governance rules

Benefits:

* Computation integrity and confidentiality protected
* Can interact with in-HSM crypto objects

Risks: Bugs leading to secrets leak or code execution

4/6: Application-level *AC

* Roles = users (request approvers), admins (rules approvers)
* Admins sign rules defining authorized quorums

* Users and admins signh with hardware tokens

N . .
| Only admin pubkeys in the HSM

i

Tricks needed to prevent replay
and downgrade

. ’ﬂ JR y
mmm@mdﬁmﬂm adventure

5/6 Application-level secure channel

HSMs may support secure channels, but only at the network
level, or offer insufficient security (anon DH in old HSMs)

If the consumer of the HSM response is not the host talking to
the HSM, application-level security is needed (aka e2ee)

- o
- o -
- e e e =

6/6: Minimize black-boxing

The proprietary HSM code is generally not open-source,
therefore harder to review for bugs, let alone fix them

Alternative: integrate code from auditable/OSS libraries via the
custom modules (may need tweaks/optimization/stripping)

Exception: randomness: HSM’s PRNG and entropy sources
Can post-process with a custom DRBG

TAURUS

4. From stateless to stateful

Why a state?

Stateless HSMs are convenient and simple to manage
* Multiple instances behind a load balancer
* Immutable state configured once in a key ceremony

However, statefulness often needed for
* Anti-replay, anti-downgrade (ex: monotonous counter)
* Enforcement of security policies (ex: via timestamps)

Challenges of HSM states

* HSMs’ storage is limited, and I/O is slow

* High-availability needs at least 2 redundant HSMs
e State bounded in size (must fit in a ~2MB message)
e State transitions must be verifiable

Solution: trees!

Merkle trees & Merkle proofs

Principle: only reveal state components needed by a request
* Encode the state as a Merkle tree

* Admins signh the root, verified in the HSM
* Merkle proofs

What if the state (thus root) changes?

Merkle trees limitations

The root represents a list of data nodes @ —Insertion=>

Logarithmic membership proof size

0x23...

Read-only trees are easy... @

| C LD
How to insert/delete? @ E

* Where to insert the data?
* How to efficiently “rebalance” the tree?

0x23...

Red-black trees

* Allow updates on partial trees

« Keep Merkle-tree property
* Bounded height of at most 2log(N+1) with N nhodes

« Self-balancing via simple “coloring rules”

o RB1: Given a node, any path to any leaf has the same number of black nodes
(the black height)

o RB2: There can’t be an edge between two nodes

Tree examples

* Rebalancing performed through rotations
* Rotated subtrees preserve RB and Merkle properties

————Right Rotation—>»

<« eft Rotation

Tree insertion

* Rebalancing is recursive
over the height of the tree

* Carries on so long as the

parent P is red

Tree insertion

e Case 1:
oParent P and uncle U are both red

Tree insertion

e Case 1:
oParent P and uncle U are both red

e Solution:

oRecolor both P and U to black
oRecolor GP to red
oNo impact on subtrees

Tree insertion

e Case 2:

oUncle U is black
oXis the left child of P

Tree insertion

e Case 2:

oUncle U is black
oXis the left child of P

e Solution

oRecolor P and GP
= Breaks RB1

Tree insertion

e Ca

se 2:

oUncle U is black
oXis the left child of P

eSO

O
O

ution
Recolor P and GP

Rotate GP to the right

oSubtrees not impacted

Tree insertion

e Case 3: e
oUncle U is black

oXis the right child of P

Tree insertion

e Case 3:

oUncle U is black
oXis the right child of P

e Solution

o Rotate P to the left

o Brings us back to case 2
with P and X swapped

Tree conclusion

* Red-black and Merkle properties can be combinedin a
single structure

* Lets us perform state transitions on large datasets within a
ow-memory HSM

* |nserting a user to a set of 1M requires revealing 20-40 users

TAURUS

5. Best practices, cloud HSMs

Best practices (1/2)

Software defense

* Keep the HSM firmware updated

* Tighten PKCS#11 attributes (to the minimum needed)

* Enable security features (secure channel)

* Custom code: minimize dependencies

* Custom code: have solid build/deploy integrity (see SLSA.dev)

Best practices (2/2)

Access control

* Segregate accesses and credentials (admin/SO, slot user/SQO)
* Minimize network exposure (no internet facing, whitelisting)

Key management

* Generate critical keys in key ceremonies (in- or off-HSM?)
* Have reliable & tested back-ups and DR procedures

Use HSM back-up/cloning?

On cloud HSM aka HSMaa$S

Convenient cloud-based systems, notably as KMS back-end

Limitations:

* Access may be indirect via some cloud middleware

* May be multi-tenant, sharing hardware with other users

_imited capability to configure the HSM and PKCS#11 settings
mpossible to run custom code

How to be sure it’s really an HSM and not an emulator?

Conclusion

HSMs + in-HSM custom logic is a powerful setup suitable for
various high-assurance security systems, but requires
significant investment in

* Bespoke hardening to reduce the attack surface
* Management of compute and storage limitations
* SDLC integrity and QA

* HSM model/vendor-specific shenanigans

TAURUS

Thank you

A joint work with the Taurus team

Acknowledgements:
AndrésS., Antony V., Mattia T., Ryan H., Stefano Z., Tal B.

https://taurushg.com

	Slide 1: Hardening HSMs for Banking-Grade Crypto Wallets Black Hat 2024 JP Aumasson, Chervine Majeri
	Slide 2: Whois
	Slide 3: Outline
	Slide 4: 0. How many of you have used an HSM before?
	Slide 5: 1. What is really an HSM?
	Slide 6: Hardware security module (HSM)
	Slide 7: HSM purpose
	Slide 8: HSM use case examples
	Slide 9: HSM interfaces
	Slide 10: 2. Security and crypto internals
	Slide 11: Security mechanisms (1/5)
	Slide 12: Security mechanisms (2/5)
	Slide 13: Security mechanisms (3/5)
	Slide 14: Security mechanisms (4/5)
	Slide 15: Security mechanisms (5/5)
	Slide 16: Internals overview (1/2)
	Slide 17: Internals overview (2/2)
	Slide 18: 3. Attack surface and hardening
	Slide 19: Custom modules
	Slide 20: What could go wrong (1/3)
	Slide 21: What could go wrong (2/3)
	Slide 22: What could go wrong (3/3)
	Slide 23: HSM hardening
	Slide 24: 1/6: Attack surface reduction
	Slide 25: 2/6: Enforce secure configuration
	Slide 26: 3/6: In-HSM business logic
	Slide 27: 4/6: Application-level *AC
	Slide 28: 5/6 Application-level secure channel
	Slide 29: 6/6: Minimize black-boxing
	Slide 30: 4. From stateless to stateful
	Slide 31: Why a state?
	Slide 32: Challenges of HSM states
	Slide 33: Merkle trees & Merkle proofs
	Slide 34: Merkle trees limitations
	Slide 35: Red-black trees
	Slide 36: Tree examples
	Slide 37: Tree insertion
	Slide 38
	Slide 39: Tree insertion
	Slide 40: Tree insertion
	Slide 41: Tree insertion
	Slide 42: Tree insertion
	Slide 43: Tree insertion
	Slide 44: Tree insertion
	Slide 45: Tree conclusion
	Slide 46: 5. Best practices, cloud HSMs
	Slide 47: Best practices (1/2)
	Slide 48: Best practices (2/2)
	Slide 49: On cloud HSM aka HSMaaS
	Slide 50: Conclusion
	Slide 51: Thank you A joint work with the Taurus team Acknowledgements: André S., Antony V., Mattia T., Ryan H., Stefano Z., Tal B. https://taurushq.com

