
BLAKE2 
 

https://blake2.net  



Another hash again? 

 

 

 



 

 
Why not SHA-2, SHA-3? 

 

 



 

 
Why not SHA-2, SHA-3? 

 BLAKE, Groestl, JH, Skein? 

 

 



 

 
Why not SHA-2, SHA-3? 

 BLAKE, Groestl, JH, Skein? 

BMW, CubeHash, MD6, Shabal? 

 



focus on 

software (speed) 
& 

usability  



“But speed in software is 
limited by HDD latency” 



True on legacy hardware, but 
recent SSDs R/W at ≈500MBps 

 

on 2GHz Core i7 (SB) 

SHA-256: 110 MiBps 

SHA-512: 172 MiBps 





“OK, but software hashing 

is never a bottleneck” 



Except in 

cloud storage  

advanced file systems 

version control systems 

intrusion detection systems  

etc. 



Example: Artillery IDS 
 

hashes all files in /etc/ and 

/var/www/ every 60sec on  a 

machine busy serving HTTP 
 

~2000 small files in /etc/ of a basic install 

but /var/www/ can be huge (GiBs) 

(>200MiB on my tiny server…) 



Example: ZFS (Sun/Oracle) 
 

“Each block of data is checksummed and the 
checksum value is then saved in the pointer to 

that block (…) Next, the block pointer is 
checksummed (…) This checksumming 

continues all the way up the file system's data 
hierarchy to the root node, which is also 

checksummed, thus creating a Merkle tree.” 
http://en.wikipedia.org/wiki/ZFS#ZFS_Data_Integrity  

 

http://en.wikipedia.org/wiki/ZFS


Example: ZFS (Sun) 
 

Integrity checking defaults to  

a weak checksum, because SHA-256 

(optional) isn’t fast enough 
 

Deduplication in ZFS also requires 

fast hashing 



Example: OpenStack Swift 
Cloud storage system used by NASA, AT&T, etc. 

 

“Objects and files are written to multiple 
disk drives spread throughout servers in 

the data center, with the OpenStack 
software responsible for ensuring data 

replication and integrity across the cluster.” 
http://www.openstack.org/software/openstack-storage/  

 
-> MD5 

http://www.openstack.org/software/openstack-storage/
http://www.openstack.org/software/openstack-storage/
http://www.openstack.org/software/openstack-storage/
http://www.openstack.org/software/openstack-storage/


Example: Perforce 
major commercial VCS 

used in 5500+ orgs, including Google 

 

 

 

 

 

reported to take several hours on 
large projects… 





MD5 2.5 times as fast as SHA-256 

SHA-3 not much faster… 



Need #1  

at least as fast as MD5 



Need more than a (fast) hash 



Bring what users need, in a 

way that users understand 



Need #2  

specify “extra features” 
but avoid bloat of design/specs 



Need #3 

usage-oriented specs 
focus on users’ needs and expectations 

do it with the right language 



Mission summary 

aggressively optimize the design 

identify and specify extra features 

provide ready-to-use code and tools 

present it in the most convincing way 



Tiger team 
JP Aumasson (@aumasson) 

Samuel Neves (@sevenps) 

Zooko Wilcox-O’Hearn (@zooko) 

Chris Winnerlein (@codesinchaos) 



BLAKE2 
Faster than MD5 on 64-bit Intel 

32% less RAM used than BLAKE 

 

No-overhead support of 

Parallel hashing (multicore, SIMD) 

Tree mode (updatable, incremental) 

Prefix-key, salt, personalization 

 



BLAKE2b 

for 64-bit CPUs, 1-64 byte digests 
12 rounds, based on BLAKE-512 

 

BLAKE2s 

for 32-bit CPUs, 1-32 byte digests 
10 rounds, based on BLAKE-256 



G function: simpler, faster 



G function: simpler, faster 

no constants 
-16% ops 

saves 64 RAM bytes 
in B2s (128 in B2b) 



G function: simpler, faster 

12% faster  
than 25 
(pshufb…) 



G function: simpler, faster 

= doubling 
+ shift 
-> a bit faster… 



Parameter block 
xored to the IV 



Little-endian  
like MD5, unlike BLAKE or SHA-x 

like Intel, AMD, ARM 



Bytes, not bits 

can save days of debugging (really) 



Parallel hashing 

×4 and ×8 
 

BLAKE2bp(M) = 

B2b(B2b(M1),B2b(M2),B2b(M3),B2b(M4)) 

 

BLAKE2sp(M) = 

B2s(B2s(M1),B2s(M2),B2s(M3),…,B2s(M8)) 
 



Parallel hashing 
 

Maximizes CPU usage 
keeps cores and pipelines busy 

(AVX2 will enable “2-in-1 “ BLAKE2s) 
 

Minimizes computation overhead  
with 1 non-leaf node hashing short message 

 

Supports streamed hashing, 
unknown-length messages 



Tree hashing 

Simple, yet comprehensive support  



Tree hashing 
 

“Sound tree hashing” 
all nodes distinct, last node signaled, etc. 

 

Supports unbounded fanout mode 
 

Secure handling of “tree saturation” 
 

Generic binary tree with 4KiB leaves 
 



Security 
 

High confidence, following  

previous analysis of BLAKE 
 

Best hash attack on 2.5 rounds  

e.g. collisions in 2112 instead of 2128 

 

No formal BLAKE > BLAKE2 reduction  

due to different compression functions 



Performance 



BLAKE2 designed to exploit 
 

Multiple cores (4,8) 
 

Instruction-level //ism 
 

SIMD instruction sets 

(including ARM’s NEON, and future AVX2) 



Cycles per byte 

Mebibytes per second 

Lesser speed-up on Bulldozer due to vector rotations… 



Cycles per byte 

Mebibytes per second 

Lesser speed-up on Bulldozer due to vector rotations… 

5.35 



On Intel Sandy Bridge 
 

BLAKE2b 59% faster than BLAKE-512 

BLAKE2s 31%  faster than BLAKE-256 

on long messages 

 

BLAKE2s faster than MD4 

on ≤64-byte messages 

 



On Intel Sandy Bridge 

 

 

BLAKE2bp 3.51×  as fast as BLAKE2b 

BLAKE2sp 6.37× as fast as BLAKE2s 

 

-> 700MB disk image hashed in ~300ms 

 

Speed-up should converge to 4/8× if optimized 

 



Low-end software 
32% smaller than BLAKE 

 

BLAKE2s requires 168 bytes of RAM 

BLAKE2b requires 336 bytes of RAM 

 



Hardware 
speed-up only from round reduction 

 

BLAKE2b 29% faster than BLAKE-512 

BLAKE2s 25% faster than BLAKE-256 

 



Our code package 
 

C “ref” and “sse” of BLAKE2b/s/bp/sp 

supports SSSE3, SSE4.1, AVX, XOP 
 

C# of BLAKE2b for .NET integration 
 

b2sum command-line tool 
 

SUPERCOP-like benchmark tool 



Released Dec 21st 



Positive reception 



Positive reception 



Positive reception 



Third-party code 
 

BLAKE2b and BLAKE2s in Go, JavaScript 

b2sum binaries for OS X, Linux, Windows 

(Dmitry Chestnykh) 

 

Libraries .a .so.* (Corey Richardson) 

PHP wrapper (Craig Akimoto) 

Python wrapper (Kwon-Han Bae) 

Node.js bindings (Takashi Seki) 

PPC Altivec C (@englabenny) 



Now supported in John the Ripper 
 



What’s next? 
SUPERCOP benchmarks 

optimized NEON code 

Tahoe-LAFS tests 

and more… 



Thank you 

happy 3×11×61 


