
Beyond Modes:
Building a Secure Record Protocol from
a Cryptographic Sponge Permutation

Author: Markku-Juhani O. Saarinen

Presented by: Jean-Philippe Aumasson

CT-RSA ’14, San Francisco, USA
26 February 2014

1 / 19

Background: Complex, Insecure Legacy Protocols
All of the RFC / de facto standard networking security protocols—SSL3, SSH2, TLS,
IPSEC, PPTP, and wireless WPA2 (together with its predecessors)—consist of two
largely independent protocols:
1. The handshake / authentication protocol which establishes a shared secret K .
2. The transport / record protocol which provides communications security.

In addition to the plaintext P , data items required by record protocols to perform
authenticated encryption at each direction usually include at least the following:
S Incremental message sequence number.
IV Initialization vector for block ciphers.
Ke Key for the symmetric encryption algorithm.
Ka Key for the message authentication algorithm.
That is 2× 4 = 8 separate cryptovariables and at least two different algorithms (HMAC
and block cipher) in addition to PRFs that derive these.

2 / 19

Background: Complex, Insecure Legacy Protocols
All of the RFC / de facto standard networking security protocols—SSL3, SSH2, TLS,
IPSEC, PPTP, and wireless WPA2 (together with its predecessors)—consist of two
largely independent protocols:
1. The handshake / authentication protocol which establishes a shared secret K .
2. The transport / record protocol which provides communications security.

In addition to the plaintext P , data items required by record protocols to perform
authenticated encryption at each direction usually include at least the following:
S Incremental message sequence number.
IV Initialization vector for block ciphers.
Ke Key for the symmetric encryption algorithm.
Ka Key for the message authentication algorithm.
That is 2× 4 = 8 separate cryptovariables and at least two different algorithms (HMAC
and block cipher) in addition to PRFs that derive these.

2 / 19

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.

I Design with mathematical and legal provability in mind.
I Aim at simplicity and small footprint: use a single sponge permutation for key

derivation, confidentiality, integrity, etc. (Instead of distinct algorithms.)
I Use a single state variable in both directions, instead of 8+ cryptovariables.
I Ideally this protocol would be realizable with semi-autonomous integrated

hardware, without much CPU or MCU involvement.

3 / 19

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.

I Design with mathematical and legal provability in mind.
I Aim at simplicity and small footprint: use a single sponge permutation for key

derivation, confidentiality, integrity, etc. (Instead of distinct algorithms.)
I Use a single state variable in both directions, instead of 8+ cryptovariables.
I Ideally this protocol would be realizable with semi-autonomous integrated

hardware, without much CPU or MCU involvement.

3 / 19

Two-party Synchronization

Legacy protocols use two independent channels: one from Alice to Bob (A→ B)
and another from Bob to Alice (B → A).

Example. Consider the following three transcripts:

T1 : B → A : M2, A→ B : M1, A→ B : M3

T2 : A→ B : M1, B → A : M2, A→ B : M3

T3 : A→ B : M1, A→ B : M3, B → A : M2

These three exchanges have precisely the same valid representation on the two
channels when sent over IPSEC, TLS, SSL, or SSH protocols.

The same authentication codes will match, etc.

4 / 19

Two-party Synchronization

Legacy protocols use two independent channels: one from Alice to Bob (A→ B)
and another from Bob to Alice (B → A).

Example. Consider the following three transcripts:

T1 : B → A : M2, A→ B : M1, A→ B : M3

T2 : A→ B : M1, B → A : M2, A→ B : M3

T3 : A→ B : M1, A→ B : M3, B → A : M2

These three exchanges have precisely the same valid representation on the two
channels when sent over IPSEC, TLS, SSL, or SSH protocols.

The same authentication codes will match, etc.

4 / 19

The Synchronization Problem of Two-Channel Protocols.

Despite individual message authentication, the interwoven order of the sequence of
back-and-forth messages cannot be unambiguously determined and authenticated with
legacy protocols.

This is why transaction records are often authenticated on the application level as
well, adding an another layer of complexity.

Issue also affects basic end-user interactive security as portions of server messaging
can be maliciously delayed, encouraging the user to react to partial information.

Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: “Security Protocols and Evidence: Where Many
Payment Systems Fail.” Financial Cryptography and Data Security 2014, 3 – 7 March
2014, Barbados.

5 / 19

The Synchronization Problem of Two-Channel Protocols.

Despite individual message authentication, the interwoven order of the sequence of
back-and-forth messages cannot be unambiguously determined and authenticated with
legacy protocols.

This is why transaction records are often authenticated on the application level as
well, adding an another layer of complexity.

Issue also affects basic end-user interactive security as portions of server messaging
can be maliciously delayed, encouraging the user to react to partial information.

Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: “Security Protocols and Evidence: Where Many
Payment Systems Fail.” Financial Cryptography and Data Security 2014, 3 – 7 March
2014, Barbados.

5 / 19

The Synchronization Problem of Two-Channel Protocols.

Despite individual message authentication, the interwoven order of the sequence of
back-and-forth messages cannot be unambiguously determined and authenticated with
legacy protocols.

This is why transaction records are often authenticated on the application level as
well, adding an another layer of complexity.

Issue also affects basic end-user interactive security as portions of server messaging
can be maliciously delayed, encouraging the user to react to partial information.

Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: “Security Protocols and Evidence: Where Many
Payment Systems Fail.” Financial Cryptography and Data Security 2014, 3 – 7 March
2014, Barbados.

5 / 19

Recap: Sponge-based Authenticated Encryption

π π π π π π π

r

c

IV

d0 d··· p1 c1 p··· c··· h0 h···p0 c0

squeezing phaseencryption phaseabsorbtion phase

1. Absorption. Key, nonce, and associated data (di) are mixed into the state.
2. Encryption. Plaintext pi is used to produce ciphertext ci (or vice versa).
3. Squeezing. Message Authentication Tag hi is squeezed from the state.
4. Why not use that final state as IV for reply and go straight to Step 2 ?

6 / 19

Recap: Sponge-based Authenticated Encryption

π π π π π π π

r

c

IV

d0 d··· p1 c1 p··· c··· h0 h···p0 c0

squeezing phaseencryption phaseabsorbtion phase

1. Absorption. Key, nonce, and associated data (di) are mixed into the state.
2. Encryption. Plaintext pi is used to produce ciphertext ci (or vice versa).
3. Squeezing. Message Authentication Tag hi is squeezed from the state.
4. Why not use that final state as IV for reply and go straight to Step 2 ?

6 / 19

Simplification
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Simplification
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Simplification
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Simplification
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Solution: Just continue to use the state in reply!

Initial state: S0 Initial state: S0

A B

enc(S0,M1) = (S1, C1)

dec(S0, C1) = (S1,M1)

enc(S1,M2) = (S2, C2)

A → B : C1

dec(S1, C2) = (S2,M2)

enc(S2,M3) = (S3, C3)

B → A : C2

A → B : C3

dec(S2, C3) = (S3,M3)

Final state: S3 Final state: S3

Simplified interchange of three messages whose plaintext equivalents are A→ B : M1,
B → A : M2, A→ B : M3, utilizing a synchronized secret state variables Si .

The order of messages cannot be modified and hence this exchange is sync-secure !

9 / 19

So .. it’s Half-Duplex ?

Half-duplex links may not seem ubiquitous to developers due to the use of the socket
programming paradigm. Full-duplex illusion is often achieved by time-division duplexing.

I Half-duplex is physically prevalent on sensor networks, IoT and last-hop radio links:
Bluetooth and IEEE 802.15.4 ZigBee are half-duplex.

I In addition to wireless last-hop transports, most RFID, smart card [ISO 7816-4,
ISO 18000-63], and industrial control [MODBUS] communications are
implemented under a query-response model and are therefore effectively
half-duplex.

I Half-duplex links can be established wirelessly with unpaired frequencies (same
frequency in both directions), or with (twisted-wire / single contact) serial links.
These are a typical scenarios in lightweight time-divide communications, our
specific targets.

10 / 19

So .. it’s Half-Duplex ?

Half-duplex links may not seem ubiquitous to developers due to the use of the socket
programming paradigm. Full-duplex illusion is often achieved by time-division duplexing.

I Half-duplex is physically prevalent on sensor networks, IoT and last-hop radio links:
Bluetooth and IEEE 802.15.4 ZigBee are half-duplex.

I In addition to wireless last-hop transports, most RFID, smart card [ISO 7816-4,
ISO 18000-63], and industrial control [MODBUS] communications are
implemented under a query-response model and are therefore effectively
half-duplex.

I Half-duplex links can be established wirelessly with unpaired frequencies (same
frequency in both directions), or with (twisted-wire / single contact) serial links.
These are a typical scenarios in lightweight time-divide communications, our
specific targets.

10 / 19

So .. it’s Half-Duplex ?

Half-duplex links may not seem ubiquitous to developers due to the use of the socket
programming paradigm. Full-duplex illusion is often achieved by time-division duplexing.

I Half-duplex is physically prevalent on sensor networks, IoT and last-hop radio links:
Bluetooth and IEEE 802.15.4 ZigBee are half-duplex.

I In addition to wireless last-hop transports, most RFID, smart card [ISO 7816-4,
ISO 18000-63], and industrial control [MODBUS] communications are
implemented under a query-response model and are therefore effectively
half-duplex.

I Half-duplex links can be established wirelessly with unpaired frequencies (same
frequency in both directions), or with (twisted-wire / single contact) serial links.
These are a typical scenarios in lightweight time-divide communications, our
specific targets.

10 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via different rates r , not
via padding or IV; different hardware for different hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.
I Keccak-160/256/512 are distinguished from each other via different rates r , not

via padding or IV; different hardware for different hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.
I Keccak-160/256/512 are distinguished from each other via different rates r , not

via padding or IV; different hardware for different hash sizes?!
I SpongeWrap extended this to domain separation with frame bits between key

material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.
I Keccak-160/256/512 are distinguished from each other via different rates r , not

via padding or IV; different hardware for different hash sizes?!
I SpongeWrap extended this to domain separation with frame bits between key

material, payload data, and message authentication tag.
I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.
I Keccak-160/256/512 are distinguished from each other via different rates r , not

via padding or IV; different hardware for different hash sizes?!
I SpongeWrap extended this to domain separation with frame bits between key

material, payload data, and message authentication tag.
I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.
I Keccak-160/256/512 are distinguished from each other via different rates r , not

via padding or IV; different hardware for different hash sizes?!
I SpongeWrap extended this to domain separation with frame bits between key

material, payload data, and message authentication tag.
I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Multiplexing the Sponge

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc ′) with
c ′ = c − d . The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(S r
i ⊕Mi || Sd

i ⊕ Di || Sc ′
i).

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕ Di || Sc ′

i).

In BLINKER, d = 16 bits. We estimate that the capacity suffers only by few bits.

Even hash and MAC outputs are padded (length padding + domain separation).
This protects against length-extension.

12 / 19

Multiplexing the Sponge

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc ′) with
c ′ = c − d . The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(S r
i ⊕Mi || Sd

i ⊕ Di || Sc ′
i).

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕ Di || Sc ′

i).

In BLINKER, d = 16 bits. We estimate that the capacity suffers only by few bits.

Even hash and MAC outputs are padded (length padding + domain separation).
This protects against length-extension.

12 / 19

Multiplexing the Sponge

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc ′) with
c ′ = c − d . The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(S r
i ⊕Mi || Sd

i ⊕ Di || Sc ′
i).

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕ Di || Sc ′

i).

In BLINKER, d = 16 bits. We estimate that the capacity suffers only by few bits.

Even hash and MAC outputs are padded (length padding + domain separation).
This protects against length-extension.

12 / 19

Multiplex Word
Depending on protocol state and the intended usage of message block, multiple bits are
set simultaneously. Here’s an example set:

Bit Mask When set
0 0x0001 This is a full input or output block (r bits).
1 0x0002 This is the final block of this data element.
4 0x0004 Block is an input to sponge (“absorption”).
3 0x0008 Block is output from sponge (“squeezing”).
4 0x0010 Associated Authenticated Data (in).
5 0x0020 Secret key (in).
6 0x0040 Nonce or sequence number (in).
7 0x0080 Encryption / Decryption (in and out).
8 0x0100 Hash block (out).
9 0x0200 Keyed Message Authentication Code (MAC) (out).
10 0x0400 Block for state storage or reloading (in or out).
11 0x0800 Pseudo Random Number Generator (PRNG) (feed or out).
12 0x1000 Originating from Alice – client / slave.
13 0x2000 Originating from Bob – server / master.
14 0x4000 Tree chaining Node.
15 0x8000 Tree final Node.

13 / 19

Example: Authentication and Record Protocol Flow (1)

We first absorb and transmit the identities Ia and Ib of Alice and Bob into the state.
These are not encrypted as S0 is the Initialization Vector.
We recommend identifiers Ia and Ibto be random strings of sufficient size (at least 128
bits).

This is an optional step that helps both parties select the correct shared secret K .

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K , 0x3024) | no transmission

K may be derived with a lightweight asymmetric key exchange method such as
Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to produce S3 from S2.

14 / 19

Example: Authentication and Record Protocol Flow (1)

We first absorb and transmit the identities Ia and Ib of Alice and Bob into the state.
These are not encrypted as S0 is the Initialization Vector.
We recommend identifiers Ia and Ibto be random strings of sufficient size (at least 128
bits).

This is an optional step that helps both parties select the correct shared secret K .

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K , 0x3024) | no transmission

K may be derived with a lightweight asymmetric key exchange method such as
Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to produce S3 from S2.

14 / 19

Example: Authentication and Record Protocol Flow (1)

We first absorb and transmit the identities Ia and Ib of Alice and Bob into the state.
These are not encrypted as S0 is the Initialization Vector.
We recommend identifiers Ia and Ibto be random strings of sufficient size (at least 128
bits).

This is an optional step that helps both parties select the correct shared secret K .

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K , 0x3024) | no transmission

K may be derived with a lightweight asymmetric key exchange method such as
Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to produce S3 from S2.

14 / 19

Example: Authentication and Record Protocol Flow (2)

Two random nonces Ra and Rb are required for challenge-response authentication
and to make the session unique.

(S4,M3) = enc(S3,Ra, 0x10CC) | A→ B : M3

(S5,M4) = enc(S4,Rb, 0x20CC) | B → A : M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0t , 0x1208) | A→ B : M5

(S7,M6) = enc(S6, 0t , 0x2208) | B → A : M6

Checking M5 and M6 completes mutual authentication. By an inductive process we see
that the session secret S7 is now dependent upon randomizers from both parties and
the original shared secret is not leaked if the sponge satisfies our security axioms.

15 / 19

Example: Authentication and Record Protocol Flow (2)

Two random nonces Ra and Rb are required for challenge-response authentication
and to make the session unique.

(S4,M3) = enc(S3,Ra, 0x10CC) | A→ B : M3

(S5,M4) = enc(S4,Rb, 0x20CC) | B → A : M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0t , 0x1208) | A→ B : M5

(S7,M6) = enc(S6, 0t , 0x2208) | B → A : M6

Checking M5 and M6 completes mutual authentication. By an inductive process we see
that the session secret S7 is now dependent upon randomizers from both parties and
the original shared secret is not leaked if the sponge satisfies our security axioms.

15 / 19

Example: Authentication and Record Protocol Flow (3)

After this, plaintexts Pa (for A→ B) and Pb (for B → A) can be encrypted,
transmitted and authenticated by repeating the following exchange:

(Si+1,Ma) = enc(Si ,Pa, 0x108C) | A→ B : Ma

(Si+2,Ta) = enc(Si+1, 0t , 0x1208) | A→ B : Ta

(Si+3,Mb) = enc(Si+2,Pb, 0x208C) | B → A : Mb

(Si+4,Tb) = enc(Si+3, 0t , 0x2208) | B → A : Tb

Due to explicit padding it is easy to show inductively that the entire message flow is
authenticated if appropriate checks are made.

16 / 19

Semi-Autonomous Hardware and Lightweight Demo Software

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

If we incorporate K management in the comms hardware session secrets never have to
leave (and cannot leave) a specific hardware component and are inaccessible to
MCU/CPU app.

Such separation is very difficult (and costly) to achieve with SSL and other legacy
protocols which generally require CPU/MCU interaction to create encryption and
authentication keys from session secrets.

17 / 19

Semi-Autonomous Hardware and Lightweight Demo Software

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

If we incorporate K management in the comms hardware session secrets never have to
leave (and cannot leave) a specific hardware component and are inaccessible to
MCU/CPU app.

Such separation is very difficult (and costly) to achieve with SSL and other legacy
protocols which generally require CPU/MCU interaction to create encryption and
authentication keys from session secrets.

17 / 19

18 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Significantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: final “state hash” proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Significantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: final “state hash” proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Significantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: final “state hash” proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Significantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: final “state hash” proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Significantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: final “state hash” proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

