
CBEAM: E�cient Authenticated Encryption
from Feebly One-Way φ Functions

Author: Markku-Juhani O. Saarinen

Presented by: Jean-Philippe Aumasson

CT-RSA '14, San Francisco, USA
26 February 2014

1 / 19

Sponge Functions

Are based on some keyless cryptographic permutation π.

Proposed and proved by G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche for:

I Collision resistant hash algorithms [eCRYPT Hash Workshop 2007], like Keccak
[SHA3 Winner 2011].

I Pseudorandom extractors (PRFs and PRNGs) [CHES 2010].

I Authenticated Encryption (AE,AEAD) [SAC 2011].

I Keyed Message Authentication Codes (MACs) [SKEW 2011].

I Tree hashing with Sakura [IACR ePrint 2013].

.. and BLINKER two-party protocols [Next talk: Saarinen CT-RSA 2014].

2 / 19

Sponge Functions

Are based on some keyless cryptographic permutation π.

Proposed and proved by G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche for:

I Collision resistant hash algorithms [eCRYPT Hash Workshop 2007], like Keccak
[SHA3 Winner 2011].

I Pseudorandom extractors (PRFs and PRNGs) [CHES 2010].

I Authenticated Encryption (AE,AEAD) [SAC 2011].

I Keyed Message Authentication Codes (MACs) [SKEW 2011].

I Tree hashing with Sakura [IACR ePrint 2013].

.. and BLINKER two-party protocols [Next talk: Saarinen CT-RSA 2014].

2 / 19

Sponge Functions

Are based on some keyless cryptographic permutation π.

Proposed and proved by G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche for:

I Collision resistant hash algorithms [eCRYPT Hash Workshop 2007], like Keccak
[SHA3 Winner 2011].

I Pseudorandom extractors (PRFs and PRNGs) [CHES 2010].

I Authenticated Encryption (AE,AEAD) [SAC 2011].

I Keyed Message Authentication Codes (MACs) [SKEW 2011].

I Tree hashing with Sakura [IACR ePrint 2013].

.. and BLINKER two-party protocols [Next talk: Saarinen CT-RSA 2014].

2 / 19

Sponge-based Authenticated Encryption

π

Encryption.

p.. c..p0 c0 p1 c1

π

d0

π π

d..

π

Absorbtions

b

d
om

ain
b
a
rrier

h0 h..

Squeezing

πb

d
om

ain
b
a
rrier

πIV

I First the key, nonce, sequence numbers, and associated data (all represented by di)
are absorbed in state.

I Then plaintext pi is used to produce ciphertext ci (or vice versa).

I Finally a MAC or hash hi is squeezed from the state.

3 / 19

About π in Sponge Constructions

I π is computed only in one direction. . .

I Its inverse π−1 is not required for decryption or any other purpose.

I The state is of b = r + c bits, where
I r is the rate or �block size�, and determines speed
I c is the capacity and determines an upper bound for security

I For CBEAM, we have a b = 256-bit permutation with r = 64 and c = 192.

I We target Triple-DES security assuming at most 240 invocations of π (8TiB).

4 / 19

About π in Sponge Constructions

I π is computed only in one direction. . .

I Its inverse π−1 is not required for decryption or any other purpose.

I The state is of b = r + c bits, where
I r is the rate or �block size�, and determines speed
I c is the capacity and determines an upper bound for security

I For CBEAM, we have a b = 256-bit permutation with r = 64 and c = 192.

I We target Triple-DES security assuming at most 240 invocations of π (8TiB).

4 / 19

About π in Sponge Constructions

I π is computed only in one direction. . .

I Its inverse π−1 is not required for decryption or any other purpose.

I The state is of b = r + c bits, where
I r is the rate or �block size�, and determines speed
I c is the capacity and determines an upper bound for security

I For CBEAM, we have a b = 256-bit permutation with r = 64 and c = 192.

I We target Triple-DES security assuming at most 240 invocations of π (8TiB).

4 / 19

Background on φ Functions: Keccak's 5× 5 - bit χ

χ is the only nonlinear component of Keccak

Usually implemented with 64× bit-slicing SIMD.

A rotation-invariant φ function:

φ(x) = y ⇒ φ(x ≪ n) = y ≪ n, ∀ n ∈ Z.

Algebraic degree 2.

Each output bit depends on 3 input bits.

5 / 19

Inverse of Keccak's 5× 5 - bit χ

Inverse not required for implementing Keccak.

As an inverse of a φ function, χ−1 is also a φ function.

Higher circuit complexity. Algebraic degree 3.

Each output bit depends all input bits.

6 / 19

Boura-Canteaut Inverse Algebraic Complexity Theorems

C. Boura and A. Canteaut: �On the In�uence of the Algebraic Degree of F−1 on the
Algebraic Degree of G ◦ F .� IEEE Transactions on Information Theory 59(1), January
2013.

These theoretical results indicate that even if the inverse π−1 is not explicitly
computed, an algebraically complex inverse makes the resulting iteration stronger.

We have discovered new φ functions with more radical computational
�asymmetry� than the χ of Keccak.

7 / 19

CBEAM's �S-Box� φ16: A 16× 16 - Bit φ Function

First de�ne a 5× 1 - bit nonlinear function φ5:

φ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4.

This is turned into a 16× 16 - bit function φ16 de�ned on V [0 · · · 15] 7→ V ′[0 · · · 15]
via convolution:

V ′[i] = φ5
(
V [i], V [(i − 1) mod 16], V [(i − 2) mod 16],

V [(i − 3) mod 16], V [(i − 4) mod 16]
)
.

Degree is of both φ5 and φ16 is clearly 4. The Algebraic Normal Form (ANF)
polynomial has 13 monomials.

8 / 19

CBEAM's �S-Box� φ16: A 16× 16 - Bit φ Function

First de�ne a 5× 1 - bit nonlinear function φ5:

φ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4.

This is turned into a 16× 16 - bit function φ16 de�ned on V [0 · · · 15] 7→ V ′[0 · · · 15]
via convolution:

V ′[i] = φ5
(
V [i], V [(i − 1) mod 16], V [(i − 2) mod 16],

V [(i − 3) mod 16], V [(i − 4) mod 16]
)
.

Degree is of both φ5 and φ16 is clearly 4. The Algebraic Normal Form (ANF)
polynomial has 13 monomials.

8 / 19

What about it's inverse φ−116 ?

I First of all, there is an inverse, which is by no means obvious.

I We tested all 232 5-input Boolean functions to �nd φ5.

I φ−116 has degree 11 for each output bit and 13465 monomials in its ANF

I Each output bit depends on all input bits (only 5
n
in case of φn.)

I The degree of φ−1n grows linearly with n and the number of ANF monomials
exponentially.

9 / 19

What about it's inverse φ−116 ?

I First of all, there is an inverse, which is by no means obvious.

I We tested all 232 5-input Boolean functions to �nd φ5.

I φ−116 has degree 11 for each output bit and 13465 monomials in its ANF

I Each output bit depends on all input bits (only 5
n
in case of φn.)

I The degree of φ−1n grows linearly with n and the number of ANF monomials
exponentially.

9 / 19

Implementation Technique 1: 16-Cycle Hardware

φ5

0123456789101112131415 x

16 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

Two cyclic shift registers x and y and a single nonlinear φ5 function.
The direction of shift does not matter.

After 16 cycles, y = φ16(x). The hardware area is very small (≈ 100 GE).

10 / 19

Implementation Technique 1: 16-Cycle Hardware

φ5

0123456789101112131415 x

16 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

Two cyclic shift registers x and y and a single nonlinear φ5 function.
The direction of shift does not matter.

After 16 cycles, y = φ16(x). The hardware area is very small (≈ 100 GE).

10 / 19

Implementation Technique 2: 8-Cycle Hardware

φ5

0123456789101112131415 x

8 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

φ5

Again two cyclic shift registers x and y but two nonlinear φ5 functions.

After 8 cycles, y = φ16(x). The number of GE is is increased somewhat.

This way we can have speed/area trade-o�s for 1, 2, 4, 8, 16 cycles.

11 / 19

Implementation Technique 3: Rotational Bit-Slicing

0123456789101112131415

01234567891011121314

012345678910111213

0123456789101112

01234567891011

15

1415

131415

12131415

0123456789101112131415

φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5φ5 φ5

Bitslicing Software Implementation (x, x≪ 1, · · · , x≪ 4 in different registers)

≪ 1

≪ 2

≪ 3

≪ 4

x

y

R0

R1

R2

R3

R4

Get cyclic rotations of input word xi = x ≪ i for 0 ≤ i ≤ 4 into �ve 16-bit registers Ri:
R0, R1, R2, R3, R4. Then compute 16× φ5 in parallel using bitwise logic.

12 / 19

Implementation Technique 4: Massive Parallelism

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Intel Haswell AVX2 (Gen. 4 Core) arch. has 256-bit YMM registers and instructions.
Most new PCs sold this year have AVX2. Older PCs have at least SSE2, which has
128-bit XMMs.

AVX2 allows 256× of φ5 to be computed with just eight instructions (can be as low as
8 cycles). We have an implementation that computes 16× φ16 in one go.

Massive improvement over traditional S-Box lookups of similar size in both low-end and
high-end software and hardware.

13 / 19

Implementation Technique 4: Massive Parallelism

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Intel Haswell AVX2 (Gen. 4 Core) arch. has 256-bit YMM registers and instructions.
Most new PCs sold this year have AVX2. Older PCs have at least SSE2, which has
128-bit XMMs.

AVX2 allows 256× of φ5 to be computed with just eight instructions (can be as low as
8 cycles). We have an implementation that computes 16× φ16 in one go.

Massive improvement over traditional S-Box lookups of similar size in both low-end and
high-end software and hardware.

13 / 19

Implementation Technique 4: Massive Parallelism

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Intel Haswell AVX2 (Gen. 4 Core) arch. has 256-bit YMM registers and instructions.
Most new PCs sold this year have AVX2. Older PCs have at least SSE2, which has
128-bit XMMs.

AVX2 allows 256× of φ5 to be computed with just eight instructions (can be as low as
8 cycles). We have an implementation that computes 16× φ16 in one go.

Massive improvement over traditional S-Box lookups of similar size in both low-end and
high-end software and hardware.

13 / 19

TI MSP430 (16-bit) and Intel AVX2 (256-bit)
TI MSP430 assembly for 16× φ5
with 9 instructions on 16-bit regs:

// r14 = Phi5(r15, .. ,r11)

bic r12, r11

inv r13

and r13, r12

and r11, r13

xor r12, r11

and r11, r15

bis r12, r14

bic r15, r14

xor r13, r14

AVX2 C intrinsics for 256× φ5 with 8
instructions on 256-bit regs:

// t0 = Phi5(x0,x1,x2,x3,x4)

t0 = _mm256_andnot_si256(x3,x4);

t1 = _mm256_andnot_si256(x2,x3);

t2 = _mm256_andnot_si256(x2,t0);

t3 = _mm256_or_si256(x1,t1);

t0 = _mm256_xor_si256(t0,t1);

t1 = _mm256_and_si256(x0,t0);

t0 = _mm256_andnot_si256(t1,t3);

t0 = _mm256_xor_si256(t0,t2);

This is optimal: Eight instructions required in 3-operand architectures (x86 SIMD,
ARM, PPC, MIPS) and nine in sensible 2-operand architectures (MSP430).

14 / 19

TI MSP430 (16-bit) and Intel AVX2 (256-bit)
TI MSP430 assembly for 16× φ5
with 9 instructions on 16-bit regs:

// r14 = Phi5(r15, .. ,r11)

bic r12, r11

inv r13

and r13, r12

and r11, r13

xor r12, r11

and r11, r15

bis r12, r14

bic r15, r14

xor r13, r14

AVX2 C intrinsics for 256× φ5 with 8
instructions on 256-bit regs:

// t0 = Phi5(x0,x1,x2,x3,x4)

t0 = _mm256_andnot_si256(x3,x4);

t1 = _mm256_andnot_si256(x2,x3);

t2 = _mm256_andnot_si256(x2,t0);

t3 = _mm256_or_si256(x1,t1);

t0 = _mm256_xor_si256(t0,t1);

t1 = _mm256_and_si256(x0,t0);

t0 = _mm256_andnot_si256(t1,t3);

t0 = _mm256_xor_si256(t0,t2);

This is optimal: Eight instructions required in 3-operand architectures (x86 SIMD,
ARM, PPC, MIPS) and nine in sensible 2-operand architectures (MSP430).

14 / 19

TI MSP430 (16-bit) and Intel AVX2 (256-bit)
TI MSP430 assembly for 16× φ5
with 9 instructions on 16-bit regs:

// r14 = Phi5(r15, .. ,r11)

bic r12, r11

inv r13

and r13, r12

and r11, r13

xor r12, r11

and r11, r15

bis r12, r14

bic r15, r14

xor r13, r14

AVX2 C intrinsics for 256× φ5 with 8
instructions on 256-bit regs:

// t0 = Phi5(x0,x1,x2,x3,x4)

t0 = _mm256_andnot_si256(x3,x4);

t1 = _mm256_andnot_si256(x2,x3);

t2 = _mm256_andnot_si256(x2,t0);

t3 = _mm256_or_si256(x1,t1);

t0 = _mm256_xor_si256(t0,t1);

t1 = _mm256_and_si256(x0,t0);

t0 = _mm256_andnot_si256(t1,t3);

t0 = _mm256_xor_si256(t0,t2);

This is optimal: Eight instructions required in 3-operand architectures (x86 SIMD,
ARM, PPC, MIPS) and nine in sensible 2-operand architectures (MSP430).

14 / 19

Putting it together: Mixing Function mx

Six rounds of mx make up mx6 = π, the core CBEAM permutation.

mx is composed of addition of a round constant rcr , bit matrix transpose, linear mixing
λ, and nonlinear 256-bit mixing φ:

mxr (s) = (φ ◦ λ)(s⊕ rcr)T .

·T Transpose of the 16× 16 - bit state makes mixing e�cient.

λ Parity operation on 4-bit nibbles.

φ Is just 16 independent invocations of nonlinear φ16.

Due to transpose, mx is usually implemented as double rounds mx2 (�vertical� and
�horizontal� round) in software.

15 / 19

Putting it together: Mixing Function mx

Six rounds of mx make up mx6 = π, the core CBEAM permutation.

mx is composed of addition of a round constant rcr , bit matrix transpose, linear mixing
λ, and nonlinear 256-bit mixing φ:

mxr (s) = (φ ◦ λ)(s⊕ rcr)T .

·T Transpose of the 16× 16 - bit state makes mixing e�cient.

λ Parity operation on 4-bit nibbles.

φ Is just 16 independent invocations of nonlinear φ16.

Due to transpose, mx is usually implemented as double rounds mx2 (�vertical� and
�horizontal� round) in software.

15 / 19

Putting it together: Mixing Function mx

Six rounds of mx make up mx6 = π, the core CBEAM permutation.

mx is composed of addition of a round constant rcr , bit matrix transpose, linear mixing
λ, and nonlinear 256-bit mixing φ:

mxr (s) = (φ ◦ λ)(s⊕ rcr)T .

·T Transpose of the 16× 16 - bit state makes mixing e�cient.

λ Parity operation on 4-bit nibbles.

φ Is just 16 independent invocations of nonlinear φ16.

Due to transpose, mx is usually implemented as double rounds mx2 (�vertical� and
�horizontal� round) in software.

15 / 19

Speed on 64-bit x86

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled the
full hardware AES for fairness.

Implementation Throughput Cycles/Byte

CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

Here r = 64 and therefore 8 bytes are processed per each π invocation. Approximately
same speed for CBEAM holds for encryption, decryption, hashing, etc.

CBEAM implementation is much more compact and is not vulnerable to cache timing
attacks as it is only straight-line code.

16 / 19

Speed on 64-bit x86

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled the
full hardware AES for fairness.

Implementation Throughput Cycles/Byte

CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

Here r = 64 and therefore 8 bytes are processed per each π invocation. Approximately
same speed for CBEAM holds for encryption, decryption, hashing, etc.

CBEAM implementation is much more compact and is not vulnerable to cache timing
attacks as it is only straight-line code.

16 / 19

Speed on 64-bit x86

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled the
full hardware AES for fairness.

Implementation Throughput Cycles/Byte

CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

Here r = 64 and therefore 8 bytes are processed per each π invocation. Approximately
same speed for CBEAM holds for encryption, decryption, hashing, etc.

CBEAM implementation is much more compact and is not vulnerable to cache timing
attacks as it is only straight-line code.

16 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

Security Theorems

For MonkeyWrap and BLINKER modes with t-bit authentication tags, N invocations of
π, k-bit key, and max q queries:

Adv
priv
enc (A) < q2−k +

N(N + 1)

2c+1
(1)

Adv
auth
enc (A) < q2−k + 2−t +

N(N + 1)

2c+1
(2)

against any single adversary A if K
$← {0, 1}k .

We claim security equivalent or better than Triple-DES with t = 128, k ≥ 128, q ≤ 232

and N ≤ 240.

Security against Di�erential, Linear, and especially Algebraic cryptanalysis. We
recommend the MonkeDuplex-like single-use nonce modes for additional security.

18 / 19

Security Theorems

For MonkeyWrap and BLINKER modes with t-bit authentication tags, N invocations of
π, k-bit key, and max q queries:

Adv
priv
enc (A) < q2−k +

N(N + 1)

2c+1
(1)

Adv
auth
enc (A) < q2−k + 2−t +

N(N + 1)

2c+1
(2)

against any single adversary A if K
$← {0, 1}k .

We claim security equivalent or better than Triple-DES with t = 128, k ≥ 128, q ≤ 232

and N ≤ 240.

Security against Di�erential, Linear, and especially Algebraic cryptanalysis. We
recommend the MonkeDuplex-like single-use nonce modes for additional security.

18 / 19

Conclusions

I Rotation-invariant φ functions are excellent alternatives to traditional SPNs,
especially in sponge constructions where π−1 is not needed.

I Modern SIMD architectures allow fast, parallel computation of φ functions with
�rotational bit-slicing�. Much faster than S-Box lookups.

I Compact straight-line code, hence no cache timing attacks as in AES. Highly
�exible implementations in high- and low-performance platforms.

I Hardware-friendly, can sacri�ce cycles for gates. Suitable especially for
lightweight applications due to small implementation footprint.

I Further research: discovery of surprising features of φ functions, re�ned
quanti�cation of security from feedble one-wayness.

19 / 19

Conclusions

I Rotation-invariant φ functions are excellent alternatives to traditional SPNs,
especially in sponge constructions where π−1 is not needed.

I Modern SIMD architectures allow fast, parallel computation of φ functions with
�rotational bit-slicing�. Much faster than S-Box lookups.

I Compact straight-line code, hence no cache timing attacks as in AES. Highly
�exible implementations in high- and low-performance platforms.

I Hardware-friendly, can sacri�ce cycles for gates. Suitable especially for
lightweight applications due to small implementation footprint.

I Further research: discovery of surprising features of φ functions, re�ned
quanti�cation of security from feedble one-wayness.

19 / 19

Conclusions

I Rotation-invariant φ functions are excellent alternatives to traditional SPNs,
especially in sponge constructions where π−1 is not needed.

I Modern SIMD architectures allow fast, parallel computation of φ functions with
�rotational bit-slicing�. Much faster than S-Box lookups.

I Compact straight-line code, hence no cache timing attacks as in AES. Highly
�exible implementations in high- and low-performance platforms.

I Hardware-friendly, can sacri�ce cycles for gates. Suitable especially for
lightweight applications due to small implementation footprint.

I Further research: discovery of surprising features of φ functions, re�ned
quanti�cation of security from feedble one-wayness.

19 / 19

