a cryptography coding standard

?

because even experts make mistakes

= C | B nttps;//code.google.com/p/keyczar/source/diff?spec=svn065963bf98dcdleb85dl6e3efbebde7Sdeedf52c&r=065963b698dcdOeb85d1helefbebde75deel 5. @, O LQ“: [-]

LZJ LITLLIIYIT /) ; LZ% LITLLIIYIT /) ;

126 } 125 }

127 126

128 public void sign(ByteBuffer output) { 127 public void sign(ByteBuffer output) {

129 output.put(hmac.doFinal()); 128 output.put(hmac.doFinal());

130 } 129 }

131 130

132 public void updateSign(ByteBuffer input) { 131 public void updateSign(ByteBuffer input) {

133 hmac.update(input); 132 hmac.update(input);

134 } 133 }

135 134

136 public void updateVerify(ByteBuffer input) { 135 public void updateVerify(ByteBuffer input) {

137 updateSign(input); 136 updateSign(input);

138 } 137 }

139 138

140 public boolean verify(ByteBuffer signature) { 139 public boolean verify(ByteBuffer signature) {

141 byte[] sigBytes = new 140 byte[] sigBytes = new
bytel[signature.remaining()]; byte[signature.remaining()];

142 signature.get(sigBytes); 141 signature.get(sigBytes);

143 142

144 return Arrays.equals(hmac.doFinal(), sigBytes); 143 return Util.safeArrayEquals(hmac.doFinal(),

sigBytes);
145 } 144 }
146 } 145 }

147 } 146 }

because even experts make mistakes

If the encoding operation outputs “message too long,” output “message too long”
and stop. If the encoding operation outputs “intended encoded message length too
short,” output “RSA modulus too short™ and stop.

PKCS#1
are the same, output “valid signature”; otherwise, output “invalid signature.” recommendation

. Compare the encoded message EM and the second encoded message EM'. If they

int RSA_padding_check_PKC51_type_l{unsigned char #to, int tlen,
const unsigned char =from, int flen, int num)
{

int 1,3;
const unsigned char =p;

p=1rom;
if ({num != (flen+l)) || (={p++) 1= @1}))

{
HS#ErrEHS?_F_HSl_FlDDIHG_CHECK_PKESI_TYPE_I,HS#_R_BLUEK_TYPE_IS_HOT_GI];
return{=-1});

}

f= scan over padding data =/
j=flen=1; /= one for type. =/
for (i=0; i<j; i++)

{

if (=p != @x{f) /= should decrypt to @xif =/

{
if (wp == @)

{ p++; break; }
else i
RSAerr{RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_R_BAD_FINXED_HEADER_DECRYPT);

return{=1);
¥
pri+;
}
it {1 == j)
{

RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_R_NULL_BEFORE_BLOCK_MISSING) ;

return{=1);

OpenSSL v1.0.1c

lots of mistakes

(SANS top 25 software errors)
Porous Defenses

The weaknesses in this category are related to defensive techniques that are often misused, abused, or just plain ignored.

CWEID Name
CWE-306 Missing Authentication for Critical Function
CWE-862 Missing Authorization
CWE-798 Use of Hard-coded Credentials
CWE-311 Missing Encryption of Sensitive Data
CWE-807 Reliance on Untrusted Inputs in a Security Decision
CWE-250 Execution with Unnecessary Privileges
CWE-863 Incorrect Authorization
CWE-732 Incorrect Permission Assignment for Critical Resource
CWE-327 Use of a Broken or Risky Cryptographic Algorithm
CWE-307 Improper Restriction of Excessive Authentication Attempts
CWE-759 Use of a One-Way Hash without a Salt

we need some rules

checklists are simple and effective

AREA DEPARTURE/CLIMB
PROFILE

1. 160 KIAS TO 10,000 FT

2. 140 KIAS 10,000 - 20,000 FT
3. 130 KIAS 20,000 - 25,000 FT
4. 120 KIAS 25,000 - 35,000 FT

CRUISE e
1. ACCELERATE TO LI u
CRUISE SPEED 1. ACCELERATE TO

2. SET CRUISE POWER 160 KIAS
3. COMPLETE CRUISE 2. LANDINGITAXI
——1 CHECKLIST — LIGHTS —OUT
3. COMPLETE CLIMB
CHECKLIST
TAKEOFF

1. ROTATE ATV, TO /

APPROX 7" NOSE UP

2. ESTABLISH POSITIVE
RATE OF CLIMB H

/ 3. LANDING GEAR — UP
_ Vyor OR ABOVE

TAKEOFF ROLL

1. RECHECK TORQUENTT 1. FLAPS — UP

2. ANNUNCIATORS — CHECK | — ﬂ 2. YAW DAMPER — ON
-~ ,‘ 3. CLIMB POWER — SET
-
IN POSITION \ ‘_.-"" ~—7 o
1. HOLD BRAKES ’/ C:::‘_'_j

2. PROPS — 2,000 RFM =
(ON GOVERNORS)
3. RELEASE BRAKES ==

4. 5ET TORQUE

BEFORE TAKEOFF

1. CHECKLIST — COMFLETE
2. RECHECK V1 AND V2

Figure GEN-1. Normal Takeoff and Departure

and familiar to programmers

C' [spinroot.com/pl0/

The Power of Ten
10 Rules for Writing Safety Critical Code

1 Restrict to simple control flow constructs. (details)
2 Give all loops a fixed upper-bound. (details)
3 Do not use dynamic memory allocation after initialization. (details)
4 Limit functions to no more than 60 lines of text. (details)
5 Use minimally two assertions per function on average. (details)
6 Declare data objects at the smallest possible level of scope. (details)
7 ggfacrﬁé?:rsr?turn value of non-void functions, and check the validity of function details
8 Limit the use of the preprocessor to file inclusion and simple macros. (details)
9 Limit the'_, use of pointers. Use no more than two levels of dereferencing per details
expression. R

10 Compile with all warnings enabled, and use one or more source code analyzers. (details)

Based on: "The Power of Ten -- Rules for Developing Safety Critical Code," IEEE Computer, June 2006, pp. 93-95 (PDF).

and familiar to programmers

JPL DO

1D D-60411

Rule Summary

1 Language Compliance

1 | Do not stray outside the language definition.
2 | Compile with all warnings enabled; use static source code analyzers.
2 Predictable Execution
3 | Use verifiable loop bounds for all loops meant to be terminating.
4 | Do not use direct or indirect recursion.
9 | Do not use dynamic memory allocation after task initialization.
*6 | Use IPC messages for task communication.
| Do not use task delays for task synchronization.
*8 | Explicitly transfer write-permission (ownership) for shared data objects.
9 | Place restrictions on the use of semaphores and locks.
10 | Use memory protection, safety margins, barrier patterns.
11 | Do not use goto, setjmp or longjmp.
12 | Do not use selective value assignments to elements of an enum list.

3 Defensive Coding

1.3 | Declare data objects at smallest possible level of scope.
14 | Check the return value of non-void functions, or explicitly cast to (void).
15 | Check the validity of values passed to functions.
16 | Use static and dynamic assertions as sanity checks.
*17 | Use U32, 116, etc instead of predefined C data types such as int, short, etc.
18 | Make the order of evaluation in compound expressions explicit.
19 | Do not use expressions with side effects.
4 Code Clarity
20 | Make only very limited use of the C pre-processor.
21 | Do not define macros within a function or a block.
22 | Do not undefine or redefine macros.
23 | Place #else, #elif, and #endif in the same file as the matching #if or #ifdef.
*24 | Place no more than one statement or declaration per line of text.

*25

Use short functions with a limited number of parameters.

and familiar to programmers

Secure Coding Guidelines for the Java Programming
Language, Version 4.0
= Introduction

« ([Fundamentals

= 1 Denial of Service

= 2 Confidential Information

« JlInjection and Inclusion

« 4 Accessibility and Extensibility
= 5 Input Validation

= 6 Mutability

« 7 Object Construction

= 8 Serialization and Deserialization
= 9 Access Control

= Conclusion

» References

and familiar to programmers

Security > Home > Writing Secure Code

Writing Secure Code

One of the key things that developers can do to help secure their systems is to write code that can withstand
attack and use security features properly. This page contains links to best practices and how-to articles on
writing secure code.

Getting Started

The Security Development Lifecycle Process

10 Security Tips: Defend Your Code with Top Ten Security Tips Every Developer Must Know
Lessons Learned from Five Years of Building More Secure Software

Security Compliance as an Engineering Discipline

An Overview of Security in the .NET Framework

Web Application Security Fundamentals

plenty of resources

Go L)gl(i‘ defensive programming

Web Images Shopping More ~ Search tools

About 6,310,000 results (0.25 seconds)

but much less for crypto

JP Aumasson

where can I find the coding rules of
OpenSSL (if any)?

4 Reply i Delete Wy Favorite

Shhhhhhh
7 aumasson Rule #1 of the OpenSSL coding rules: you
B & don'ttalk about the OpenSSL coding rules.

Adam Langley
aumasson | just make it look like the surrounding code. |

dream someday that we can run indent over it.

the closest | found

L] nacl.cryp.to/internals.ntm
I O Cdll UST TIHINSs OLUICT - [I4 511 ., T OW CATL 5PIL VOUT COUC dUT05%5 SEVETdL 1SS 7 O UEIINTE VATTOWS dUANTETY TUTICTIOTES, LK
compiled together. You can use external names prefixed by the implementation name: for example, crypto hash/sha512/c
crypto hash sha5l12 core2 iv, crypto hash sha5l12 core2 expand, etc.

Branches

Do not use secret data to control a branch. In particular, do not use the memcmp function to compare secrets. Instead use crypt
crypto verify 32, etc., which perform constant-time string comparisons.

Even on architectures that support fast constant-time conditional-move mstructions, always assume that a comparison in C 1s com
conditional move. Compilers can be remarkably stupid.

Array lookups

Do not use secret data as an array index.

Early plans for NaCl would have allowed exceptions to this rule inside primitives specifically labelled vulnerable, in particular
crypto stream aesl28vulnerable, but subsequent research showed that this compromise was unnecessary.

Dynamic memory allocation

Do not use heap allocators (malloc. calloc, sbrk, etc.) or variable-size stack allocators (21loca, int x[n].etc.)in C?

Thread safety

Do not use global variables (1.e.. static variables or variables defined outside functions) m C NaCl.

Alignment

Do not assume that the input arrays or output arrays have any particular alignment. If yvou want to use, e.g., an aligned 16-byte lo

starting this project after | had to write
my own crypto coding rules..

C | www.pentest-standard.org/index.php/Main_Page

Mavigation

Main page

FTES Technical Guideline
In the Media

FAQ

Toolbox

What links here
Related changes
Special pages
Printable version
Fermanent link

inspiration: PTES

Page Read View source View history

Main Page

Welcome to the Penetration Testing Execution Standard homepage. This will be the ultimate home for the penetrati
For more information on what this standard is, please visit:

e The Penefration Testing Execution Standard: FAQ

High Level Organization of the Standard

= MNote: This is the BETA RELEASE. We have had TONS of interest from many members of the security communi
where we were at. This effort has been going on since November 2010 and has had over 1800 revisions. The lir
we are at today.

What we are looking for out of this release:

-zain help from people who understand the direction of the map and will be willing to document the methods used tc
branches

-Take feedback and comments form the community on improvements
-ldentify the next phase in terms of defining "levels" for each of the sections.
-Create teams to tackle writing our the formal standard

-Create tools to address the gaps identified during the creation of the Standard

-And most of all, put an end to the poorly defined term Penetration Test!

checklists by experienced professionals

Threat Modeling

This phase details the elements that are part of the threat modelling (based on the intelligence gathered and the pre-engagement information)
Following is an image depicting the main branches of the corresponding mindmag:

This goes beyond PIl, PHI and
Credit Cards

Define and bound
Organizational Intelectual

Property
Trade Secrets
Research & Development
Marketing Plans
Corporate Banking/Credit Accounts
Business asset analysis Customer Data
Supplier Data
Keys To Kingdom Executives

Middle Managers
Admins
Critical Employees Engineers
Technicians
HR
Executive Assistants
Technical infrastructure used
) Threat modelling Business process analysis Human infrastructure

3rd party usage

similar motivations

Q: Is this going to be a formal standard?

A: We are aiming to create an actual standard so that businesses can have a
baseline of what is needed when they get a pentest as well as an
understanding of what type of testing they require or would provide value to
their business. The lack of standardization now is only hurting the industry as
businesses are getting low-quality work done, and practitioners lack guidance
In terms of what is needed to provide quality service.

how should this look like for crypto?

CONTiny

This is the page for the research retreat Internet crypto by the VAMPIRE lab of ECRYPT. The meeting starts on Monday, Jan 21, 2013 at 14:00
afternoon of Tuesday, Jan 22, 2013 (when the main event takes over). The meeting is public, registration for the main conference, Crvpto for 2020

€« C' | [hyperelliptic.org/internetcrypto/

Internet crypto

Early registration ends January 8, 2013. The fees are 225 EUR for early registration and 325 EUR for late registration. This should encourage eve
early! There are some stipends available to students trom Europe, for details, conditions, and deadlines see the registration page of the main even

This event is a research retreat, this means it's not the time to read vour email or do other normal work, this is high-quality collaboration time. Yo
nicest islands that Europe has to offer and your task is nothing but to work with the other people who come for the same meeting.

To give this some framework we've invited a nice list of active people who care about security-relevant software on the internet and who will pr
approaches to fix the Internet - or some parts thereot - and asked them to outline in 30 min what would be a useful that this research retreat (and fc
do. We might also hear some horror stories of completely broken parts.

So, bring your laptops and a lot of motivation. Here is the list of invited participants who will give short presentations (which most likely define
meeting):

Jean-Philippe Aumasson
Matthew Green

Nick Mathewson

Peter Schwabe

Zooko Wilcox-O'Hearn

. & & & @

