
crypto coding (bis)
JP Aumasson

buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload); /* pl length never checked */
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

in RFC 6520 “TLS/DTLS Heartbeat Extension“:

“TLS is based on reliable protocols, but there is not necessarily a
feature available to keep the connection alive without continuous
data transfer.

The Heartbeat Extension as described in this document overcomes
these limitations. The user can use the new HeartbeatRequest
message, which has to be answered by the peer with a
HeartbeatResponse immediately.”

in RFC 6520 “TLS/DTLS Heartbeat Extension“:

“The Heartbeat protocol messages consist of their type and an
 arbitrary payload and padding.

The total length of a HeartbeatMessage MUST NOT exceed 2^14 or
max_fragment_length when negotiated as defined in [RFC6066].”

“arbitrary” => freedom to choose payload content and length
 => larger attack surface

(2^14 limit not enforced by OpenSSL… 2^16 is the actual bound)

buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
/* bp (buffer+3) will contain data from local memory! */
memcpy(bp, pl, payload);
/* buffer with potentially local secrets is sent back */
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

patch

+ /* Read type and payload length first */
+ if (1 + 2 + 16 > s->s3->rrec.length)
+ return 0; /* silently discard */
+ hbtype = *p++;
+ n2s(p, payload);
+ if (1 + 2 + payload + 16 > s->s3->rrec.length)
+ return 0; /* silently discard per RFC 6520 sec. 4 */
+ pl = p;
+

the “fail” label is actually not a fail:
it checks err, and fails iff err != 0

sslRawVerify() being bypassed by the goto,
“verification” always succeeds

Heartbleed, gotofail:
“silly bugs” by “experts”

not pure "crypto bugs", but
bugs in the crypto

missing bound check
unconditional goto

"But we have static analyzers!"

not detected
(in part due to OpenSSL's complexity)

detected
(like plenty of other unreachable code)

crypto bugs (and bugs in crypto)
vs "standard" security bugs:

less understood
fewer experts

fewer tools

everybody uses OpenSSL, Apple
sometimes, some read the code

many more bugs in code that noone reads

Agenda

1. OpenSSL

2. guidelines for secure crypto coding

3. conclusion

"OpenSSL s****"?

ASN.1 parsing, CA/CRL management
crypto: RSA, DSA, DH*, ECDH*; AES,

CAMELLIA, CAST, DES, IDEA, RC2, RC4,
RC5; MD2, MD5, RIPEMD160, SHA*; SRP,

GCM, HMAC, GOST*, PKCS*; etc.),
PRNG, password hashing, S/MIME

X.509 certificate management, timestamping
some crypto accelerators, hardware tokens
clients and servers for SSL2, SSL3, TLS1.0,

TLS1.1, TLS1.2, DTLS1.0, DTLS1.2
SNI, session tickets, etc. etc.

*nix
BeOS
DOS

HP-UX
Mac OS Classic

NetWare
OpenVMS
ULTRIX
VxWorks

Win* (including 16-bit, CE)

OpenSSL is the space shuttle of crypto
libraries. It will get you to space, provided you
have a team of people to push the ten
thousand buttons required to do so.

— Matthew Green

I promise nothing complete; because any
human thing supposed to be complete, must
not for that very reason infallibly be faulty.

— Herman Melville, in Moby Dick

OpenSSL code

buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

payload is not the payload but its length (pl is the payload)

#ifdef _OSD_POSIX
 /* In the BS2000-OSD POSIX subsystem, the compiler
generates
 * path names in the form "*POSIX(/etc/passwd)".
 * This dirty hack strips them to something sensible.
 * @@@ We shouldn't modify a const string, though.
 */

(crypto/err/err.c)

in the thread-unsafe RNG:

/* may compete with other threads */
state[st_idx++]^=local_md[i];

(crypto/rand/md_rand.c)

https://www.peereboom.us/assl/assl/html/openssl.html

https://www.peereboom.us/assl/assl/html/openssl.html
https://www.peereboom.us/assl/assl/html/openssl.html

ranting about OpenSSL is easy

don't blame the devs

let's try to understand

http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html
(slide credit: Bob Beck, OpenBSD project)

http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html
http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html

OpenSSL prioritizes
speed

portability
functionalities

at the price of "best efforts" and "dirty tricks"...

/* Quick and dirty OCSP server: read in and parse input
request */

/* Quick, cheap and dirty way to discard any device and
directory

/* kind of dirty hack for Sun Studio */

#ifdef STD_ERROR_HANDLE /* what a dirty trick! */

/* Dirty trick: read in the ASN1 data into a STACK_OF
(ASN1_TYPE):

of lesser priority
usability
security

consistency
robustness

http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html

http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html
http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html

crypto by "real programmers" often
yields cleaner code, but dubious

choices of primitives and/or broken
implementations (cf. messaging apps)

it's probably unrealistic to build a better
secure/fast/usable/consistent/certified

toolkit+lib in reasonable time

what are the alternatives?

Really better? (maybe TLS itself is the problem?)

 http://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

http://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

let's just use closed-source code!

It’s not just OpenSSL, it’s not an open-
source thing.

— Bob Beck

open- vs. closed-source software security:
● well-known debate
● no definite answer, depends on lots of

factors; see summary on
http://en.wikipedia.org/wiki/Open-source_software_security

for crypto, OSS has a better track record
● better assurance against "backdoors"
● flaws in closed-source can often be found

in a "black-box" manner

http://en.wikipedia.org/wiki/Open-source_software_security
http://en.wikipedia.org/wiki/Open-source_software_security

http://www.libressl.org/

initiative of the OpenBSD community

big progress in little time (lot of code deleted)

adoption unclear if it remains BSD-centric
ports expected, but won't leverage BSD security features

OpenSSL patches unlikely to directly apply

http://www.libressl.org/
http://www.libressl.org/

how to write secure crypto code?

write secure code!

http://spinroot.com/p10/

http://spinroot.com/p10/
http://spinroot.com/p10/

etc.

write secure crypto!
=

defend against algorithmic attacks,
timing attacks, "misuse" attacks, etc.

?

the best list I found: in NaCl [salt]

http://nacl.cr.yp.to/internals.html

http://nacl.cr.yp.to/internals.html
http://nacl.cr.yp.to/internals.html

so we tried to help

https://cryptocoding.net

with help from Tanja Lange, Nick Mathewson,
Samuel Neves, Diego F. Aranha, etc.

https://cryptocoding.net
https://cryptocoding.net

we tried to make the rules simple,
in a do-vs.-don’t style

secrets should be kept secret
=

do not leak information on the secrets
(timing, memory accesses, etc.)

compare strings in constant time

Microsoft C runtime library memcmp implementation:

EXTERN_C int __cdecl memcmp(const void *Ptr1, const void *Ptr2, size_t
Count) {
 INT v = 0;
 BYTE *p1 = (BYTE *)Ptr1;
 BYTE *p2 = (BYTE *)Ptr2;

 while(Count-- > 0 && v == 0) {
 v = *(p1++) - *(p2++);
 /* execution time leaks the position of the first difference */

/* may be exploited to forge MACs (cf. Google Keyczar’s bug) */
 }

 return v;
}

compare strings in constant time

Constant-time comparison function

int util_cmp_const(const void * a, const void *b, const size_t size) {
 const unsigned char *_a = (const unsigned char *) a;
 const unsigned char *_b = (const unsigned char *) b;
 unsigned char result = 0;
 size_t i;

 for (i = 0; i < size; i++)
 result |= _a[i] ^ _b[i];

 /* returns 0 if equal, nonzero otherwise */
 return result;
}

compare strings in constant time

counter-examples in CAESAR candidates
(collected by Samuel Neves)

Ascon

 // return -1 if verification fails
 for (i = 0; i < klen; ++i)
 if (c[clen - klen + i] != S[rate + klen + i])
 return -1;

Julius

for(cur = reg_index; cur < reg_index + BLK_SIZE + pres;
cur++){

if(pad[cur] != 0){
return -1;

}
}

PAEQ

for(unsigned i=0; i<CRYPTO_ABYTES; ++i) {
if(c[(*mlen)+i] != Tag[i]) {

for(unsigned j=0; j< (*mlen); ++j)//Erasing decryption
result

m[j]=0;
return -1; //Invalid

}
}

Enchilada

/* see if we have a match */
if(memcmp((void *) accum, (void *) ptr, AUTH_BYTES) !=
0)

return -2;

Joltik

/* If the tag does not match, return error */
if(0!=memcmp(Final, ciphertext+c_len-8, 8)) return -1;

Etc. etc.

avoid branchings
(or make them constant-time)

standard square-and-multiply exponentiation:

several attacks in the 1998 paper by Dhem et al.
http://users.belgacom.net/dhem/papers/CG1998_1.pdf

http://users.belgacom.net/dhem/papers/CG1998_1.pdf
http://users.belgacom.net/dhem/papers/CG1998_1.pdf

avoid table look-ups

fast AES implementations use large LUTs…

solutions for AES: NIs, bitslicing, SIMD ops,
etc.

avoid potential timing leaks

make
● branchings
● loop bounds
● table lookups
● memory allocations
independent of secrets or user-supplied value
(private key, password, heartbeat payload, etc.)

prevent compiler interference with
security-critical operations

Tor vs MS Visual C++ 2010 optimizations

int
crypto_pk_private_sign_digest(...)
{
 char digest[DIGEST_LEN];
 (...) /* operations involving secret digest */
 memset(digest, 0, sizeof(digest));
 return r;
}

a solution: C11’s memset_s()

clean memory of secret data
(keys, round keys, internal states, etc.)

Data in stack or heap may leak through crash
dumps, memory reuse, hibernate files, etc.

Windows’ SecureZeroMemory()
OpenSSL’s OPENSSL_cleanse()

void burn(void *v, size_t n)
{
 volatile unsigned char *p = (volatile unsigned char *)v;
 while(n--) *p++ = 0;
}

last but not least

Randomness everywhere
key generation and key agreement
symmetric encryption (CBC, etc.)
RSA OAEP, El Gamal, (EC)DSA

side-channel defenses
etc. etc.

Netscape, 1996: ~ 47-bit security thanks to

RNG_GenerateRandomBytes() {
 return (..) /* something that depends only on

● microseconds time
● PID and PPID */

}

Mediawiki, 2012: 32-bit Mersenne Twister seed

*nix: /dev/urandom

example: get a random 32-bit integer

 int randint, bytes_read;
 int fd = open("/dev/urandom", O_RDONLY);
 if (fd != -1) {
 bytes_read = read(fd, &randint, sizeof(randint));
 if (bytes_read != sizeof(randint)) return -1;
 }
 else { return -2; }
 printf("%08x\n", randint);
 close(fd);
 return 0;

(ideally, there should be a syscall for this)

what is /dev/urandom?

device file probing analog sources to gather
entropy and generate random bytes

implemented differently on different OS’
(Linux, FreeBSD, OpenBSD, etc.)

/dev/urandom in Linux

entropy from keyboard/mouse/interrupts/disk
4kB entropy pool, linear internal mixing
postprocessing using SHA-1

“but /dev/random is better! it blocks!”

/dev/random may do more harm than good
to your application, since

● blockings may be mishandled
● /dev/urandom is safe on reasonable OS’

Win*: CryptGenRandom
(based on the CTR_DRBG of NIST SP 800-90)

int randombytes(unsigned char *out, size_t outlen) {
 static HCRYPTPROV handle = 0;
 if(!handle) {
 if(!CryptAcquireContext(&handle, 0, 0, PROV_RSA_FULL,
 CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
 return -1;
 }
 while(outlen > 0) {
 const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
 if(!CryptGenRandom(handle, len, out)) { return -2; }
 out += len;
 outlen -= len;
 }
 return 0;
}

it’s possible to fail in many ways, and
appear to succeed in many ways

non-uniform sampling
no forward secrecy
randomness reuse

poor testing
etc.

Thou shalt:
1. compare secret strings in constant time
2. avoid branchings controlled by secret data
3. avoid table look-ups indexed by secret data
4. avoid secret-dependent loop bounds
5. prevent compiler interference with security-critical

operations
6. prevent confusion between secure and insecure APIs
7. avoid mixing security and abstraction levels of

cryptographic primitives in the same API layer
8. use unsigned bytes to represent binary data
9. use separate types for secret and non-secret

information
10. use separate types for different types of information
11. clean memory of secret data
12. use strong randomness

Learn the rules like a pro, so you can
break them like an artist.

— Pablo Picasso

conclusion

let’s stop the blame game
(OpenSSL, “developers”, “academics”, etc.)

researchers
add disclaimers to experimental code

(or it may be copypasted to a production code base)

try to learn secure (crypto) coding practices

publish your code! (GitHub etc.)

