
cryptocoding v2
JP Aumasson (@veorq)

academic background (EPFL crypto PhD)

principal cryptographer at Kudelski Security, .ch

applied crypto research and outreach

BLAKE, BLAKE2, SipHash, NORX
Crypto Coding Standard
Password Hashing Competition
Open Crypto Audit Project board member

@veorq / http://aumasson.jp

buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

 bugs are bad
software crashes, incorrect output, etc.

crypto bugs are really bad
leak of private keys, secret documents,
past and future communications, etc.

crypto bugs are really bad
leak of private keys, secret documents,
past and future communications, etc.

(ok, not as bad as root RCE exploits...)

 threats to
individuals’ privacy, sometimes lives

organizations’ strategies, IP, etc.

Heartbleed, gotofail:
“silly bugs” by “experts”

not pure "crypto bugs", but
bugs in the crypto

missing bound check
unconditional goto

"But we have static analyzers!"

not detected
(in part due to OpenSSL's complexity)

detected
(like plenty of other unreachable code)

crypto bugs (and bugs in crypto)
vs "standard" security bugs:

less understood
fewer experts

fewer tools

everybody uses OpenSSL, Apple
sometimes, some read the code

many more bugs in code that noone reads

Agenda

1. the poster child: OpenSSL

2. secure crypto coding guidelines

3. conclusion

"OpenSSL s****"?

ASN.1 parsing, CA/CRL management
crypto: RSA, DSA, DH*, ECDH*; AES,

CAMELLIA, CAST, DES, IDEA, RC2, RC4,
RC5; MD2, MD5, RIPEMD160, SHA*; SRP,

CCM, GCM, HMAC, GOST*, PKCS*,
PRNG, password hashing, S/MIME

X.509 certificate management, timestamping
some crypto accelerators, hardware tokens
clients and servers for SSL2, SSL3, TLS1.0,

TLS1.1, TLS1.2, DTLS1.0, DTLS1.2
SNI, session tickets, etc. etc.

*nix
BeOS
DOS

HP-UX
Mac OS Classic

NetWare
OpenVMS
ULTRIX
VxWorks

Win* (including 16-bit, CE)

OpenSSL is the space shuttle of crypto
libraries. It will get you to space, provided you
have a team of people to push the ten
thousand buttons required to do so.

— Matthew Green

I promise nothing complete; because any
human thing supposed to be complete, must
not for that very reason infallibly be faulty.

— Herman Melville, in Moby Dick

OpenSSL code

buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3 + payload + padding);

payload is not the payload but its length (pl is the payload)

courtesy of @OpenSSLFact (Matt Green)

in the RNG:

/* may compete with other threads */
state[st_idx++]^=local_md[i];

(crypto/rand/md_rand.c)

https://www.peereboom.us/assl/assl/html/openssl.html

https://www.peereboom.us/assl/assl/html/openssl.html
https://www.peereboom.us/assl/assl/html/openssl.html

ranting about OpenSSL is easy

we should not blame the devs

let's try to understand..

http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html
(slide credit: Bob Beck, OpenBSD project)

http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html
http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html

OpenSSL prioritizes
speed

portability
functionalities

at the price of "best efforts" and "dirty tricks"...

/* Quick and dirty OCSP server: read in and parse input
request */

/* Quick, cheap and dirty way to discard any device and
directory

/* kind of dirty hack for Sun Studio */

#ifdef STD_ERROR_HANDLE /* what a dirty trick! */

/* Dirty trick: read in the ASN1 data into a STACK_OF
(ASN1_TYPE):

of lesser priority
usability
security

consistency
robustness

recent effort: https://www.openssl.org/about/secpolicy.html

https://www.openssl.org/about/secpolicy.html

http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html

http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html
http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html

crypto by "real programmers" often
yields cleaner code, but dubious

choices of primitives and/or broken
implementations (cf. messaging apps)

it's probably unrealistic to build a better
secure/fast/usable/consistent/certified

toolkit+lib in reasonable time

what are the alternatives?

really better? (maybe TLS itself is the problem?)

 http://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

http://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

it’s not just OpenSSL, NSS too...

let's just use closed-source code!

It’s not just OpenSSL, it’s not an open-
source thing.

— Bob Beck

open- vs. closed-source software security:
● well-known debate
● no definite answer, depends on lots of

factors; see summary on
http://en.wikipedia.org/wiki/Open-source_software_security

for crypto, OSS has a better track record
● better assurance against "backdoors"
● flaws in closed-source can often be found

in a "black-box" manner

http://en.wikipedia.org/wiki/Open-source_software_security
http://en.wikipedia.org/wiki/Open-source_software_security

http://www.libressl.org/ https://github.com/libressl-portable/

initiative of the OpenBSD community

big progress in little time

portable version and OpenBSD version

OpenSSL patches unlikely to directly apply

replacement API for OpenSSL “ressl” (WIP)

http://www.libressl.org/
https://github.com/libressl-portable/
http://www.libressl.org/

LibreSSL: still lot of work needed
Fork-unsafety on Linux in LibreSSL’s first release...

https://www.agwa.name/blog/post/libressls_prng_is_unsafe_on_linux

https://www.agwa.name/blog/post/libressls_prng_is_unsafe_on_linux
https://www.agwa.name/blog/post/libressls_prng_is_unsafe_on_linux

how to write secure crypto code?

write secure code!

http://spinroot.com/p10/

http://spinroot.com/p10/
http://spinroot.com/p10/

etc.

write secure crypto!
=

defend against algorithmic attacks,
timing attacks, "misuse" attacks, etc.

?

the best list I found: in NaCl [salt]

http://nacl.cr.yp.to/internals.html

http://nacl.cr.yp.to/internals.html
http://nacl.cr.yp.to/internals.html

so we tried to help

https://cryptocoding.net

with help from Tanja Lange, Nick Mathewson,
Samuel Neves, Diego F. Aranha, etc.

https://cryptocoding.net
https://cryptocoding.net

we tried to make the rules simple,
in a do-vs.-don’t style

secrets should be kept secret
=

do not leak information on the secrets
(timing, memory accesses, etc.)

compare strings in constant time

Microsoft C runtime library memcmp implementation:

EXTERN_C int __cdecl memcmp(const void *Ptr1, const void *Ptr2, size_t
Count) {
 INT v = 0;
 BYTE *p1 = (BYTE *)Ptr1;
 BYTE *p2 = (BYTE *)Ptr2;

 while(Count-- > 0 && v == 0) {
 v = *(p1++) - *(p2++);
 /* execution time leaks the position of the first difference */

/* may be exploited to forge MACs (cf. Google Keyczar’s bug) */
 }

 return v;
}

compare strings in constant time

Constant-time comparison function

int util_cmp_const(const void * a, const void *b, const size_t size) {
 const unsigned char *_a = (const unsigned char *) a;
 const unsigned char *_b = (const unsigned char *) b;
 unsigned char result = 0;
 size_t i;

 for (i = 0; i < size; i++)
 result |= _a[i] ^ _b[i];

 /* returns 0 if equal, nonzero otherwise */
 return result;
}

avoid other potential timing leaks

make
● branchings
● loop bounds
● table lookups
● memory allocations
independent of secrets or user-supplied value
(private key, password, heartbeat payload, etc.)

prevent compiler interference with
security-critical operations

Tor vs MS Visual C++ 2010 optimizations

int
crypto_pk_private_sign_digest(...)
{
 char digest[DIGEST_LEN];
 (...) /* operations involving secret digest */
 memset(digest, 0, sizeof(digest));
 return r;
}

a solution: C11’s memset_s()

clean memory of secret data
(keys, round keys, internal states, etc.)

Data in stack or heap may leak through crash
dumps, memory reuse, hibernate files, etc.

Windows’ SecureZeroMemory()
OpenSSL’s OPENSSL_cleanse()

void burn(void *v, size_t n)
{
 volatile unsigned char *p = (volatile unsigned char *)v;
 while(n--) *p++ = 0;
}

last but not least

Randomness everywhere
key generation and key agreement
symmetric encryption (CBC, etc.)
RSA OAEP, El Gamal, (EC)DSA

side-channel defenses
etc. etc.

Netscape, 1996: ~ 47-bit security thanks to

RNG_GenerateRandomBytes() {
 return (..) /* something that depends only on

● microseconds time
● PID and PPID */

}

Mediawiki, 2012: 32-bit Mersenne Twister seed

*nix: /dev/urandom

example: get a random 32-bit integer

 int randint, bytes_read;
 int fd = open("/dev/urandom", O_RDONLY);
 if (fd != -1) {
 bytes_read = read(fd, &randint, sizeof(randint));
 if (bytes_read != sizeof(randint)) return -1;
 }
 else { return -2; }
 printf("%08x\n", randint);
 close(fd);
 return 0;

more checks needed to ensure sanity of urandom...
(see LibreSSL’s getentropy_urandom)

“but /dev/random is better! it blocks!”

/dev/random may do more harm than good
to your application, since

● blockings may be mishandled
● /dev/urandom is safe on reasonable OS’

Linux is introducing a syscall..

http://lists.openwall.net/linux-kernel/2014/07/17/235

http://lists.openwall.net/linux-kernel/2014/07/17/235
http://lists.openwall.net/linux-kernel/2014/07/17/235

Win*: CryptGenRandom

int randombytes(unsigned char *out, size_t outlen) {
 static HCRYPTPROV handle = 0;
 if(!handle) {
 if(!CryptAcquireContext(&handle, 0, 0, PROV_RSA_FULL,
 CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
 return -1;
 }
 while(outlen > 0) {
 const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
 if(!CryptGenRandom(handle, len, out)) { return -2; }
 out += len;
 outlen -= len;
 }
 return 0;
}

it’s possible to fail in many ways, and
appear to succeed in many ways

non-uniform sampling
no forward secrecy
randomness reuse

poor testing
etc.

Thou shalt:
1. compare secret strings in constant time
2. avoid branchings controlled by secret data
3. avoid table look-ups indexed by secret data
4. avoid secret-dependent loop bounds
5. prevent compiler interference with security-critical

operations
6. prevent confusion between secure and insecure APIs
7. avoid mixing security and abstraction levels of

cryptographic primitives in the same API layer
8. use unsigned bytes to represent binary data
9. use separate types for secret and non-secret

information
10. use separate types for different types of information
11. clean memory of secret data
12. use strong randomness

Learn the rules like a pro, so you can
break them like an artist.

— Pablo Picasso

conclusion

let’s stop the blame game
(OpenSSL, “developers”, “academics”, etc.)

cryptographers (and scientists, etc.)
● acknowledge that you suck at coding
● get help from real programmers

programmers
● acknowledge that you suck at crypto
● get help from real cryptographers

in any case: get third-party reviews/audits!

спасибо !

