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Cryptography

“Science of secret”

Historical application: encryption

Need to know the secret key to encrypt/decrypt

4 / 49



Crypto in practice
The Enigma machine (1920’s)

Used by German army during WWII. . .
. . . broken by British intelligence

Modern crypto: different machines, more applications. . .
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Secure communication

Goals
I Message privacy
I Sender & recipient authentication
I Non-repudiation

Tools
I Symmetric crypto
I Public-key crypto
I Key-agreement protocols
I Digital signatures
I Certificates
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Digital money

Goals
I Anonymity
I Fairness
I Untraceability
I Transferability
I etc.

Tools
I Number theory mathematics
I Zero-knowledge protocols
I Secure hardware tokens
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Conditional access TV

Goals
I Broadcast operation (satellite, etc.)
I Message privacy
I Selective reception

Tools
I Symmetric crypto
I Public-key crypto
I Secure hardware
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Ciphers

Transform a plaintext to a ciphertext

Key K necessary to encrypt and to decrypt

MESSAGE
EncryptK−−−−−−−→ LSJFSDH

LSJFSDH
DecryptK−−−−−−−→ MESSAGE

“meaningful text”
EncryptK−−−−−−−→ “unreadable text”
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Cipher by substitution
Replace A by D, B by E, C by F, etc. Ex: EPFL −→ HSIO

Used by Julius Caesar in -50. . .

. . . and Sicilian Mafia bosses in 2000’s

(with less success)
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Modern cryptography

I Uses computers, not pencil-and-paper

I Operates on bits, not on letters

I Is hard to break (in general)
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Perfect cipher

Plaintext: 0111011· · · 0101011
⊕

Key: 1101011· · · 1001101
=

Ciphertext: 1010000· · · 1100110

“XOR” operation on bits

1⊕ 1 = 0 0⊕ 0 = 0 1⊕ 0 = 1 0⊕ 1 = 1

Used during the cold war to encrypt the
Moscow-Washington telescripter liaison

Problem: the key must be as long as the plaintext
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Solution: stream ciphers

Generate a long string of bits from a short key

Plaintext: 0111011· · · 0101011
⊕

Key: 101011 −→ Keystream: 1101011· · · 1001101
=

Ciphertext: 1010000· · · 1100110

Expands a short bit string to a long one

If the key of 128 bits, there are 2128 possible keystreams
⇒ ideally, an attack makes 2128 trials
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Hash functions

Compresses a long bit string to a short one

−→

Message: 0100· · · 1101 −→ Hash: 110101

x −→ H(x)

Main application: digital signatures
(signing short documents is cheaper than long ones)
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Hash functions security: preimage resistance

Given a hash y , it should be difficult to find x such that

H(x) = y

16 / 49



Hash functions security: collision resistance

It should be difficult to find x1 and x2 such that

H(x1) = H(x2), x1 6= x2
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Hash functions security: randomness

The hashes should look like random values
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What is an attack?

Any mathematical method that finds either. . .
I the secret key (stream ciphers)
I preimages or collisions (hash functions)
I non-randomness

in less time than ideally expected

Bruteforce: works against any cipher or hash function
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What is an attack?

128-bit keys are typical: finding the secret key should
require 2128 operations

2128 ≈ 1038
= 100 000 000 000 000 000 000 000 000 000 000 000 000

Using 7 000 000 000 computers at 4 GHz in parallel:

It would take 1011.6 years to find the key
≈ 28 times the age of the universe

Suppose we find an attack in 2120 only
It would only take 1 billion years!

The cipher is considered broken
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This thesis
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Context: crypto public competitions

1. Cryptographers submit algorithms
2. They try to destroy competitors
3. The organizer picks a design that survived
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Context: crypto public competitions

eSTREAM (2005-08)

I European Network of Excellence (EPFL, CNRS, etc.)
I New stream ciphers: Salsa20, Grain, etc.

SHA-3 Competition (2008-12)

I US Institute of Standards (NIST)
I Future hash function standard SHA-3
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The stream cipher Salsa20

Operations on 32-bit words:

I XOR: words viewed as strings of bits

0101 · · · 0101⊕ 1010 · · · 1010 = 1111 · · · 1111

I Rotation: words viewed as strings of bits

1000 · · · 0000 ≪ 1 = 0000 · · · 0001

I Integer addition: words viewed as integer numbers

1000 + 1 ≡ 1001 mod 232

(232 − 1) + 1 ≡ 0 mod 232
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The stream cipher Salsa20
1. Initialize a table of 32-bit words with 256 key bits

0BB@
x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

1CCA
2. Repeat 10 times (rounds)

x4 ⊕ = (x0 + x12) ≪ 7 ; x9 ⊕ = (x5 + x1 ) ≪ 7 ; x14⊕ = (x10 + x6 ) ≪ 7 ; x3 ⊕ = (x15 + x11) ≪ 7

x8 ⊕ = (x4 + x0 ) ≪ 9 ; x13⊕ = (x9 + x5 ) ≪ 9 ; x2 ⊕ = (x14 + x10) ≪ 9 ; x7 ⊕ = (x3 + x15) ≪ 9

x12⊕ = (x8 + x4 ) ≪ 13; x1 ⊕ = (x13 + x9 ) ≪ 13; x6 ⊕ = (x2 + x14) ≪ 13; x11⊕ = (x7 + x3 ) ≪ 13

x0 ⊕ = (x12 + x8 ) ≪ 18; x5 ⊕ = (x1 + x13) ≪ 18; x10⊕ = (x6 + x2 ) ≪ 18; x15⊕ = (x11 + x7 ) ≪ 18

x1 ⊕ = (x0 + x3 ) ≪ 7 ; x6 ⊕ = (x5 + x4 ) ≪ 7 ; x11⊕ = (x10 + x9 ) ≪ 7 ; x12⊕ = (x15 + x14) ≪ 7

x2 ⊕ = (x1 + x0 ) ≪ 9 ; x7 ⊕ = (x6 + x5 ) ≪ 9 ; x8 ⊕ = (x11 + x10) ≪ 9 ; x13⊕ = (x12 + x15) ≪ 9

x3 ⊕ = (x2 + x1 ) ≪ 13; x4 ⊕ = (x7 + x6 ) ≪ 13; x9 ⊕ = (x8 + x11) ≪ 13; x14⊕ = (x13 + x12) ≪ 13

x0 ⊕ = (x3 + x2 ) ≪ 18; x5 ⊕ = (x4 + x7 ) ≪ 18; x10⊕ = (x9 + x8 ) ≪ 18; x15⊕ = (x14 + x13) ≪ 18

3. Add the initial table to the final table
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Attack strategy for 4 rounds
Structure permut(K )⊕ K , with K a 256-bit key

2 rounds 2 rounds

biased differential inverted to detect ⊕K
discovered the bias

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⊕K
←−−−−−−−−−−−−−−− ⊕K ′

Invert 2 rounds to observe the bias, based on partial
knowledge of the key

Can be used to verify the correctness of 220 key bits

⇒ can find the key 64 times faster than ideally
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Summary and impact

We developed the best known attacks on the stream
cipher Salsa20

Contributes to increase the confidence in the cipher

Salsa20 chosen as
I Cowinner of the eSTREAM competition
I Alternative to AES by programmers
I Basis for a new hash function. . .
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New differential attacks
Differential equations play an important role in. . .

I Quantum mechanics (evolution of a quantum state)

i~∂t |ψ〉 = H|ψ〉

I Image processing (PDE-based techniques)

∂I
∂t

= div (c(x , y , t)∇I) = ∇c · ∇I + c(x , y , t)∆I

I Economics (evolution of stock prices)

dSt = µSt dt + σSt dWt

I Cryptography (differential attacks)

Êk (m)⊕ Êk (m ⊕ ∆̂in) = ∆̂out
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New attacks: cube testers

View the cipher as a black-box

Differentiate its implicit Boolean equations

2n−1⊕
i=0

fk(vi)

Try to detect a structure in the differential equations

Ex: vs.
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Application of cube testers

Goal: attacking the stream cipher Grain-128

30 / 49



Application of cube testers

Implementation in programmable hardware
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Application of cube testers
Optimize parameters with evolutionary methods

for(i=0;i<NUMBER GENERATIONS;++i) {

for(j=0;j<CHILDREN;++j) reproduction( rand()%POPULATION, rand()%POPULATION, j );

for(j=0;j<POPULATION+CHILDREN;++j) perf[j] = (evaluate( j )<<8)̂j;

for(j=0;j<POPULATION+CHILDREN;++j)

for(k=0;k<CUBE SIZE;++k) buffer[j][k] = population[j][k];

qsort( perf, POPULATION+CHILDREN, sizeof(int), compare );

for(j=0;j<POPULATION;++j)

for(k=0;k<CUBE SIZE;++k) population[ j ][ k ] = buffer[ perf[j]&0xFF ][k];

}
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Summary and impact

We showed that Grain-128 can be broken
I in time 277 (1h30 with 7 000 000 000 computers)
I instead of 2128 (28 universe lifetimes)

Unexpected result!

Grain-128 should not be used (anymore)

33 / 49



Attacks on hash functions

Given the algorithm of H()

Preimage attack

Given y ,
find x such that H(x) = y

Collision attack

Find x1, x2

such that H(x1) = H(x2)
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Preimage attacks on reduced MD5

MD5

THE most ever studied hash function

Internet standard, designed in 1992

Collision attacks found in 2005

No preimage attack known
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Attack strategy: birthday paradox

In a group of at least 23 random people, there is more
than 50% probability that some pair of them will have the
same birthday

Idea: (23× 22)/2 = 253 possible pairs. . .
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Summary and impact
First preimage attacks on (reduced) MD5

Introduce new cryptanalysis techniques
I Neutral words
I Local collisions

Techniques generalized and refined to attack full MD5
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Other attacks found
Hash name Type of attack Broken

CHI collision

Codefish preimage

Dynamic SHA2 collision

ESSENCE collision
Hamsi dist.

HAVAL preimage

MCSSHA preimage
Shabal dist.
Skein dist.

Vortex collision
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Details on the SHA-hash competition

I 64 designs submitted (academia, Intel, IBM, etc.)
I 51 selected for the “first round” (Dec 08)
I 14 selected for the “second round” (Jul 09)
I 5 finalists (2010)

The winner will be. . .
I A worldwide standard
I Implemented in all computers
I Supported for decades (ideally)
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Our candidate: BLAKE

Design started in 2007, with as goals
I As simple as possible, but not simpler
I Stand on the shoulders of previous cryptographers
I Fast in software and hardware
I Secure against classical and quantum attacks

⇒ need good tradeoff speed/security
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BLAKE’s core algorithm

a += mi ⊕ ki

a += b
d = (a ⊕ d) ≫ 16
c += d
b = (b ⊕ c) ≫ 12
a += mj ⊕ kj

a += b
d = (a ⊕ d) ≫ 8
c += d
b = (b ⊕ c) ≫ 7
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BLAKE’s performance
Simple to implement, and fast on all platforms

I 450 Mb/sec in a PC
I 20 Gb/sec in integrated circuits
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BLAKE in the SHA-3 competition

One of the 14 second round candidates

Researchers from Austria, Canada, Germany, Japan,
Netherlands, and Portugal worked on efficient
implementation of BLAKE (HW & SW)

Researchers from all over the world tried to attack BLAKE
(without success so far)

“The best results against BLAKE (. . . ) appear to pose no
threat to the design” (NIST)

Final decision: 2012
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Conclusion
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Summary of contributions

New cryptanalytic techniques

Attacks on several ciphers and hash functions

Design of second round SHA-3 hash function candidate

Better understanding of symmetric crypto algorithms?

Dissemination of research results:
I Peer-reviewed articles
I Contributed talks in conferences
I Invited talks in seminars
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Thanks to my co-authors from. . .
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Thanks for your attention!

Questions?
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