

Quantum Computing Risk & Post-Quantum Crypto Standards

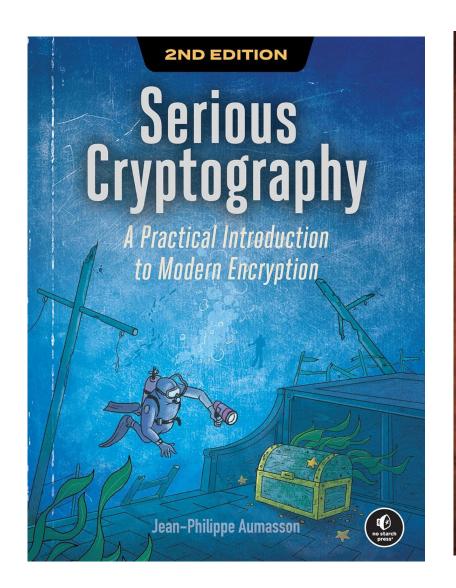
JP Aumasson https://aumasson.jp

TAURUS $\overrightarrow{}$

Background

Co-founder & chief security officer of Taurus SA

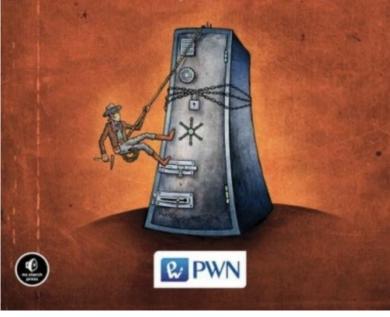
- Swiss regulated firm founded in 2018, team of 90+
- Digital asset custody tech and infrastructure
- Cool tech: HSM, MPC, k8s, etc.

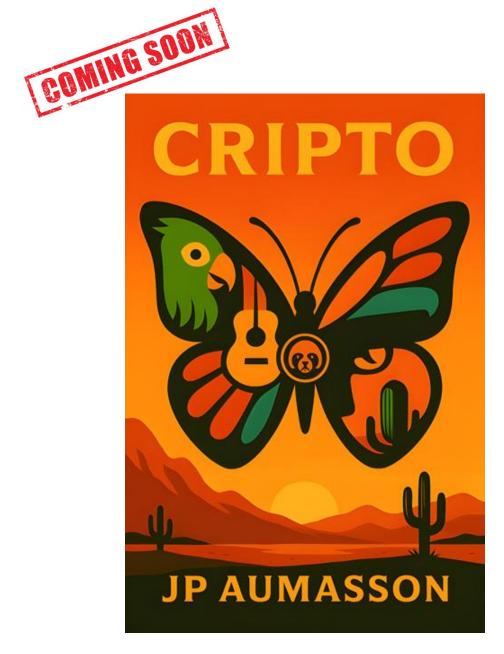

https://taurushq.com https://t-dx.com

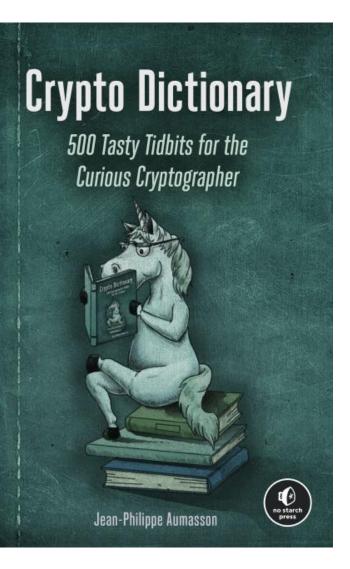
- 20 years in cryptography & security
- BLAKE2, BLAKE3, SipHash, etc.
- Cryptography books

https://aumasson.jp

urus SA


3, team of 90astructure




Nowoczesna kryptografia

Jean-Philippe Aumasson

Praktyczne wprowadzenie do szyfrowania

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

Not to break crypto..

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY SIMULATED BY A CLASSICAL COMPUTER?

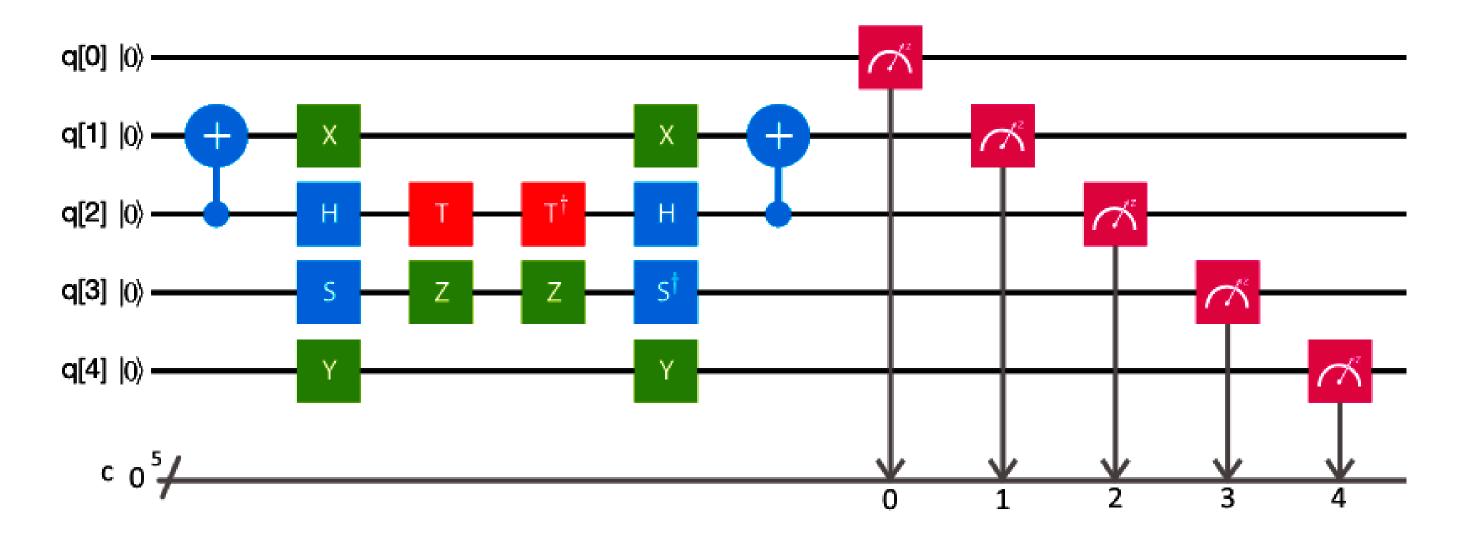
Now the next question that I would like to bring up is, of course, the interesting one, i.e., Can a quantum system be probabilistically simulated by a classical (probabilistic, I'd assume) universal computer? In other words, a computer which will give the same probabilities as the quantum system does. If you take the computer to be the classical kind I've described so far, (not the quantum kind described in the last section) and there're no changes in any laws, and there's no hocus-pocus, the answer is certainly, No! This is called the hidden-variable problem: it is impossible to represent the results of quantum mechanics with a classical universal device. To learn a little bit about it, I say let us try to put the quantum equations in a form as close as

... but simulate quantum physics

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM SIMULATORS

The first branch, one you might call a side-remark, is, Can you do it with a new kind of computer—a quantum computer? (I'll come back to the other branch in a moment.) Now it turns out, as far as I can tell, that you can simulate this with a quantum system, with quantum computer elements. It's not a Turing machine, but a machine of a different kind. If we disregard the continuity of space and make it discrete, and so on, as an approximation (the same way as we allowed ourselves in the classical case), it does seem to

Quantum bits (qubits)

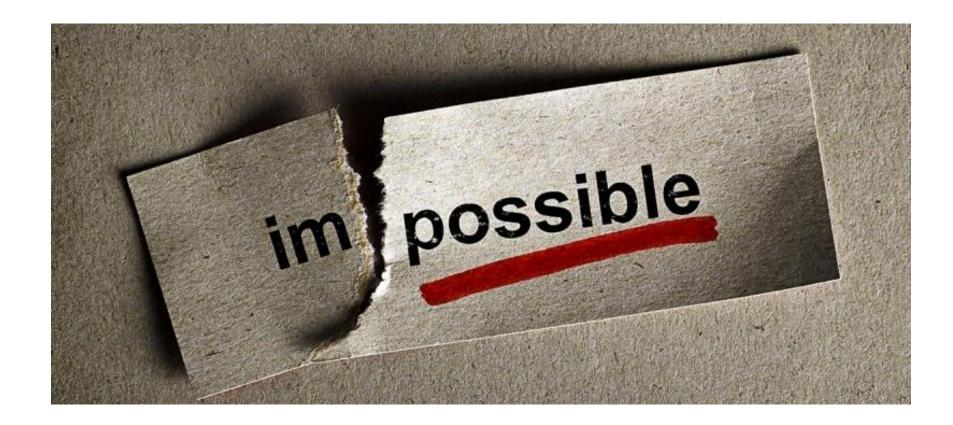

Superposition state

0 with probability $|\alpha|^2$ DEAD $\alpha |0\rangle + \beta |1\rangle$ Observation, random outcome 1 with probability $|\beta|^2$ α, β are "probabilities" called **amplitudes** (can be complex, and negative numbers)

Once observed, a qubit stays 0 or 1 forever

Quantum algorithms

Can be simulated with basic linear algebra but does no scale, exponential cost: **Quantum state** = vector of 2^{N} amplitudes for N qubits


- **Quantum gates** = matrix multiplications, with $O(2^{3N})$ complexity

Circuits of quantum gates, transforming a quantum state, ending with an observation

Quantum speedup

When quantum computers can solve a problem faster than classical computers

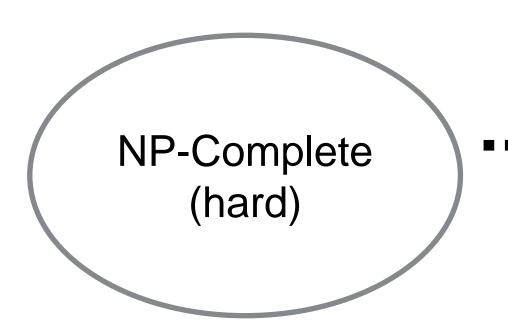
Most interesting: **Superpolynomial** quantum speedup ("exponential" boost)

List of problems on the Quantum Zoo: <u>http://math.nist.gov/quantum/zoo/</u>

Quantum parallelism

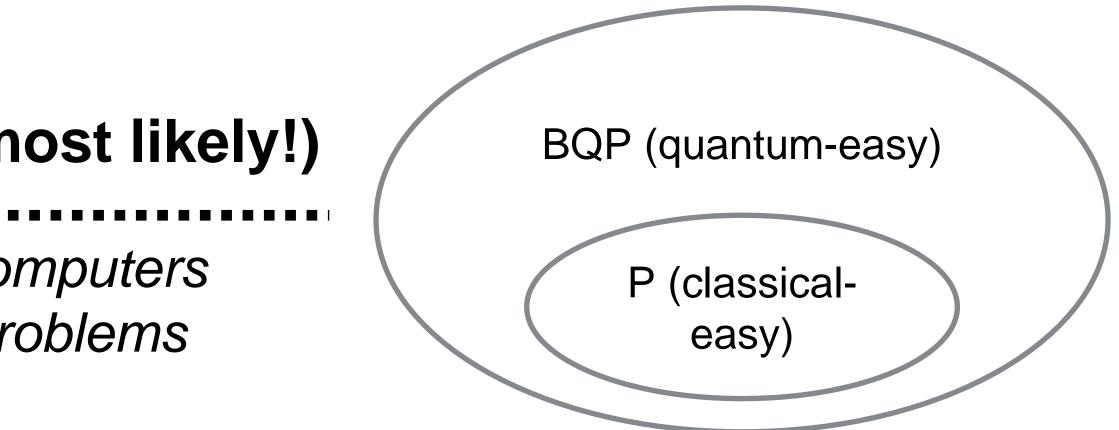
Quantum computers "work" on all values simultaneously, via superposition

But they do not "try every answer in parallel and pick the best"


You can only **observe one "value"** that results from the interference of all, as a projection from the Hilbert space where qubits "live" to some basis

NP-complete problems

- Solution hard to find, but easy to verify Includes constraint satisfaction problems (SAT, TSP, knapsacks, etc.)
- Sometimes leveraged in crypto (lattice problems in post-quantum schemes)


CanNOT be solved faster with quantum computers!

NP is not in BQP (most likely!)

Therefore quantum computers can't solve NP-hard problems

BQP = bounded-error quantum polynomial time, what QC can solve efficiently

Recommended reading

QUANTUM COMPUTING SINCE DEMOCRITUS

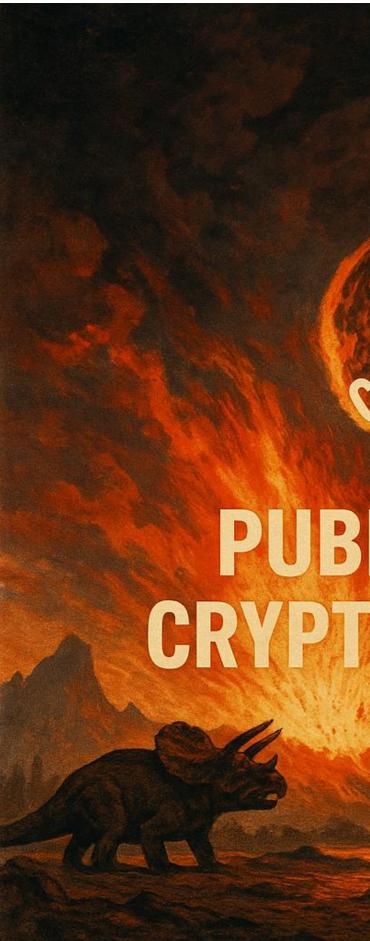
SCOTT AARONSON

Contents

Preface Acknowledgments 1. Atoms and the void 2. Sets 3. Gödel, Turing, and friends 4. Minds and machines 5. Paleocomplexity 6. P, NP, and friends 7. Randomness 8. Crypto 9. Quantum 10. Quantum computing 11. Penrose 12. Decoherence and hidden variable 13. Proofs

e en der and per bes ein generation of

TINTIARD, I IS


	150
	100
5	160
	186

VIII CONTENTS

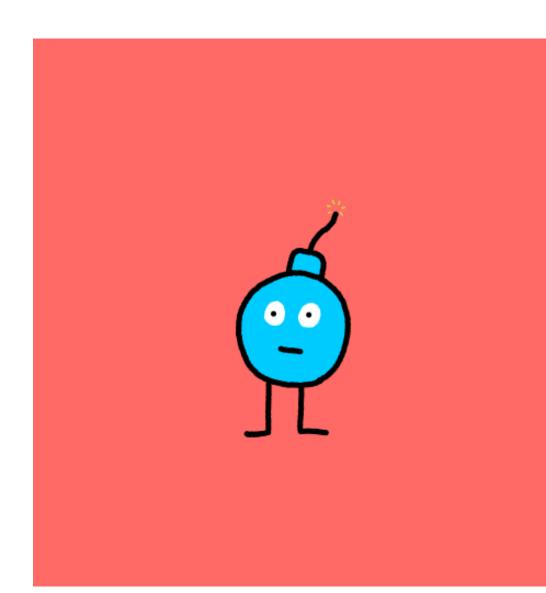
14. How big are quantum states?	200
15. Skepticism of quantum computing	-00
-or onepticism of quantum computing	217
16. Learning	
0	228
17. Interactive proofs, circuit lower bounds, and mor	0
xixx	243
18. Fun with the Anthropic Principle	266
I biov add ba	100 C
19. Free will	290
8	2.500
20. Time travel	307
luning, and friends	
21. Cosmology and complexity	325
22. Ask me anything	4 Minds a
44 s	343
Index	2/2
54	363
and friends	
71	
erson .	
93	
201	
to a second s	
130	

٦

Impact on cryptography

NTUMS **PUBLIC-KEY CRYPTOGRAPHY**

Shor's quantum algorithm


Polynomial-time algorithm for the following problems:

- Computes **p** given $\mathbf{n} = \mathbf{pq}$
- Computes d given $\mathbf{y} = \mathbf{x}^d \mod \mathbf{p} \longrightarrow \text{ECC/DH}$ dead

Practically impossible on a classical machine

#QuantumSpeedup

- \rightarrow RSA dead

How bad for crypto?

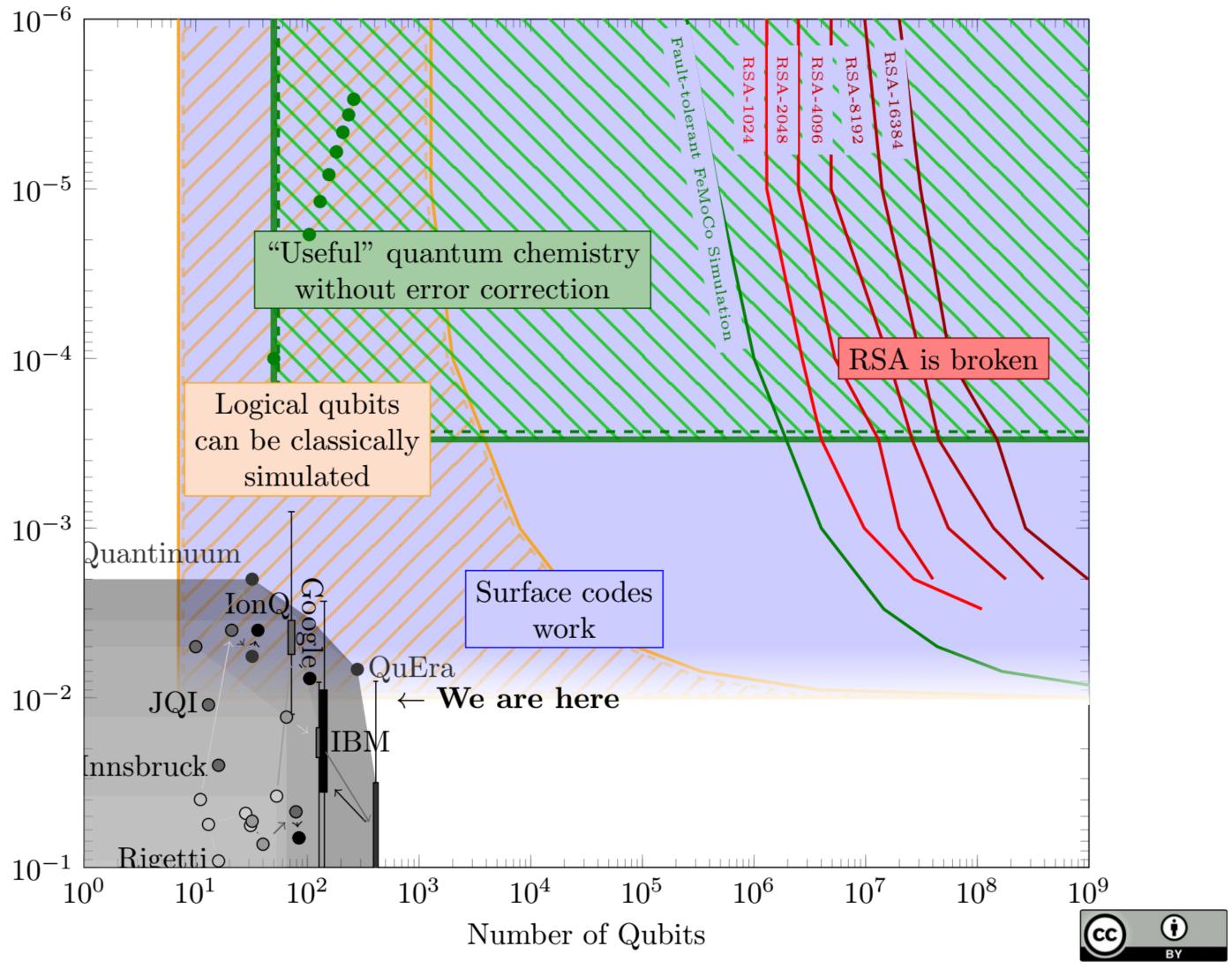
Mild: <u>Signatures</u> (ECDSA, Ed25519, etc.)

Broken sigs can be reissued with a post-quantum algorithm Applications: PKI certificates, code signing, blockchains

Bad: <u>Key agreement</u> (Diffie-Hellman, ECDH, etc.) Partially mitigated by secret internal states and reseeding Applications: TLS, end-to-end messaging

Terrible: Encryption (RSA encryption, ECIES, etc.) Encrypted messages compromised forever Applications: Key encapsulation, secure enclaves

Worse


Not there yet

Millions of qubits to break RSA, to implement error correction

QC in its infancy, only research prototypes useless in practice

Google and IBM leading

- 2 main dimensions:
- Error rate
- Qubits number (physical, logical)

https://sam-jaques.appspot.com/quantum_landscape_2024

Error Rate

Beware PR BS

Speculative, exaggerated, misleading claims from QC companies, amplified in clickbait media

S JD Supra

Quantum Leap: Google Claims Its New Quantum Computer Provides Evidence That We Live in a Multiverse

Google's latest refinement to its quantum computer, Willow, may represent such a moment. By achieving computational feats once thought to be confined to ...

8 Jan 2025


PCMag

Google's Quantum Chip Can Do in 5 Minutes What Would **Take Other Computers 10 Septillion Years**

Google's quantum computing division unveiled a new chip, dubbed Willow, that the tech giant says makes it infinitely faster and better than existing...

10 Dec 2024

Google makes a quantum leap that suggests we may live in a multiverse.

Google's Quantum Chip Can Do in 5 Minutes What Would Take Other Computers 10 Septillion Years

By Kate Irwin Dec 10, 2024

Harnessing a new type of material

All of today's announcements build on our team's recent breakthrough: the world's first topoconductor. This revolutionary class of materials enables us to create topological superconductivity, a new state of matter that previously existed only in theory. The advance stems from Microsoft's innovations in the design and fabrication of gatedefined devices that combine indium arsenide (a semiconductor) and aluminum (a superconductor). When cooled to near absolute zero and tuned with magnetic fields,

Quantum supremacy?

Google thinks it's close to "quantum supremacy." Here's what that really means.

It's not the number of qubits; it's what you do with them that counts.

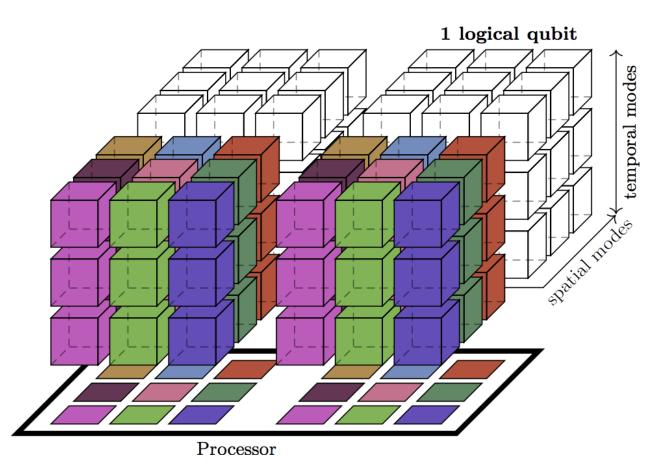
by Martin Giles and Will Knight March 9, 2018

with 72 quantum bits, or qubits—the fundamental units of computation

eventy-two may not be a large number, but in quantum computing terms, it's massive. This week

Google unveiled Bristlecone, a new quantum computing chip

When it Looks too Good to be True..


Factoring 2048 RSA integers in 177 days with 13436 qubits and a multimode memory

Élie Gouzien^{*} and Nicolas Sangouard[†] Université Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91 191 Gif-sur-Yvette, France (Dated: March 11, 2021)

We analyze the performance of a quantum computer architecture combining a small processor and a storage unit. By focusing on integer factorization, we show a reduction by several orders of magnitude of the number of processing qubits compared to a standard architecture using a planar grid of qubits with nearest-neighbor connectivity. This is achieved by taking benefit of a temporally and spatially multiplexed memory to store the qubit states between processing steps. Concretely, for a characteristic physical gate error rate of 10^{-3} , a processor cycle time of 1 microsecond, factoring a 2048 bits RSA integer is shown possible in 177 days with a processor made with 13 436 physical qubits and a multimode memory with 2 hours storage time. By inserting additional error-correction steps, storage times of 1 second are shown to be sufficient at the cost of increasing the runtime by about 23%. Shorter runtimes (and storage times) are achievable by increasing the number of qubits in the processing unit. We suggest realizing such an architecture using a microwave interface between a processor made with superconducting qubits and a multiplexed memory using the principle of photon echo in solids doped with rare-earth ions.

Introduction — Superconducting qubits form the building blocks of one of the most advanced platforms for realizing quantum computers [1]. The standard architecture consists in laying superconducting qubits in a 2D grid and making the computation using only neighboring interactions. Recent estimations showed however that fault-tolerant realizations of various quantum algorithms with this architecture would require millions physical qubits [2–4]. These performance analyses naturally raise the question of an architecture better exploiting the potential of superconducting qubits.

In developing a quantum computer architecture we

quant-ph] 10 Mar 2021

Sam Jaques @sejaques

Replying to @veorq

Very important caveat: it needs 430 million "memory qubits"

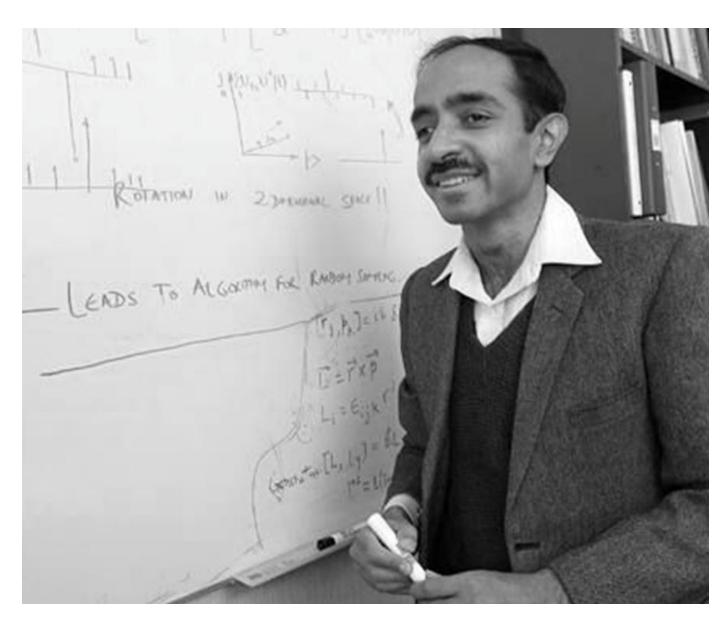
😪 Craig Gidney @CraigGidney · Mar 15

Replying to @quantumVerd @KikeSolanoPhys and 4 others

The paper uses a cost model where quantum memory is comparatively cheap. I'd have included the mem qubit count in the title (at n=2048 there's 13K compute qubits and 430M mem qubits) but don't see anything wrong with considering a world where mem ends up cheaper than cpu.

Quantum search

Grover's algorithm (1996)


Searches in N items in \sqrt{N} queries!

- AES-128 broken in $\sqrt{(2^{128})} = 2^{64}$ operations?
- Applications in machine learning models

Caveats:

- Constant factor in $O(\sqrt{N})$ may be huge
- Doesn't parallelize as classical search does

Quantum-searching AES keys

	#ga	ites	de	pth	#qubits
k	T	Clifford	T	overall	
128	$1.19\cdot 2^{86}$	$1.55\cdot 2^{86}$	$1.06\cdot 2^{80}$	$1.16\cdot 2^{81}$	2,953
192	$1.81\cdot2^{118}$	$1.17\cdot2^{119}$	$1.21\cdot2^{112}$	$1.33\cdot2^{113}$	4,449
256	$1.41\cdot2^{151}$	$1.83\cdot2^{151}$	$1.44\cdot2^{144}$	$1.57\cdot2^{145}$	6,681

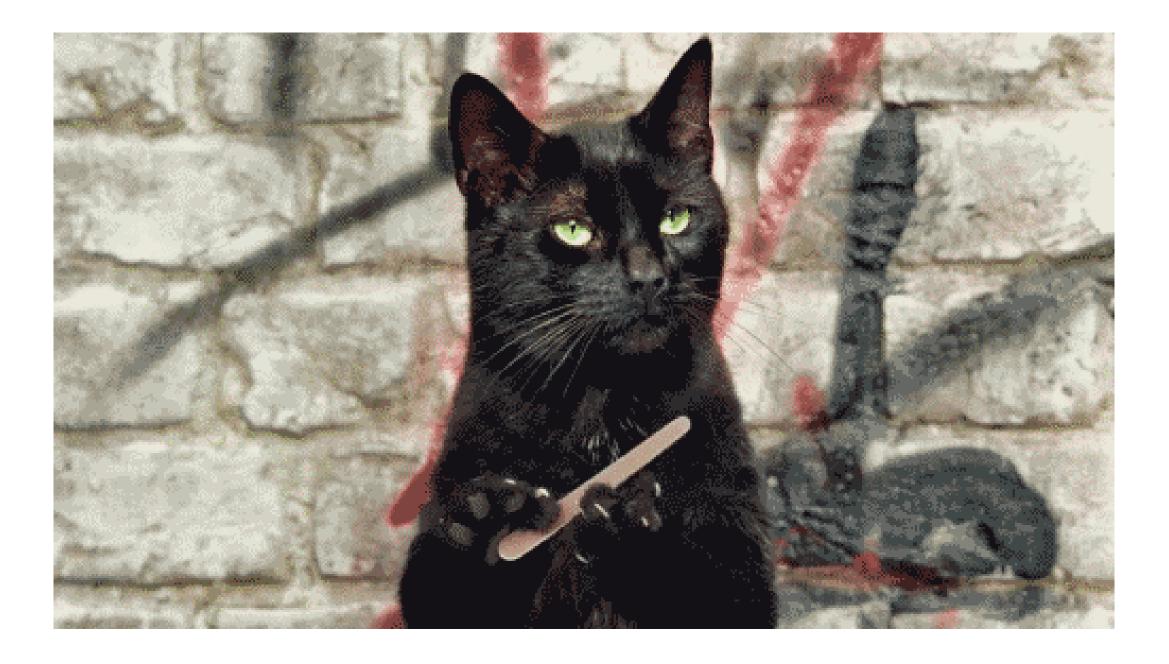
Table 5. Quantum resource estimates for Grover's algorithm to attack AES-k, where $k \in \{128, 192, 256\}$.

https://arxiv.org/pdf/1512.04965v1.pdf

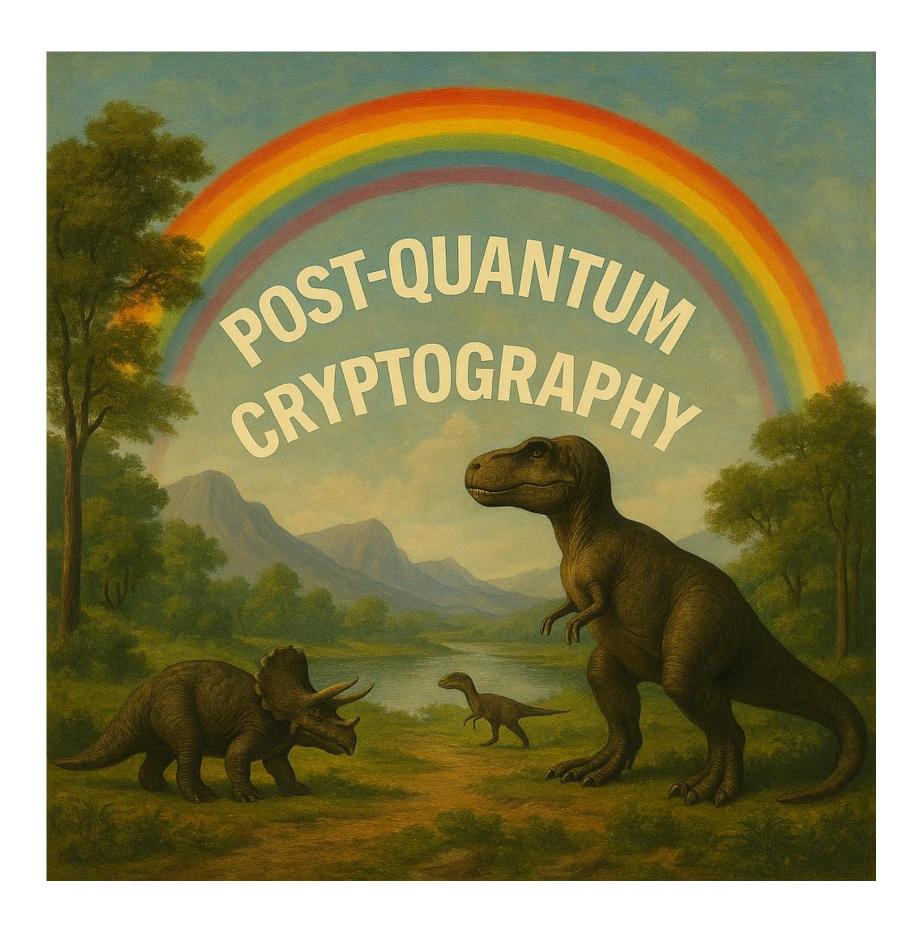
If gates are the size of a hydrogen atom (12pm) this depth is the **diameter of the** solar system (~ 10^{13} m), yet less than 5 grams

No doubt more efficient circuits will be designed...

Quantum-searching AES keys


From February 2020, better circuits found

Implementing Grover oracles for quantum key search on **AES and LowMC**


Samuel Jaques^{1*†}, Michael Naehrig², Martin Roetteler³, and Fernando Virdia^{4†‡}

scheme	r	#Clifford	#T	#M	$T ext{-depth}$	full depth	width	$G ext{-}\mathrm{cost}$	DW-cost	$p_{ m s}$
AES-128	1	$1.13\cdot2^{82}$	$1.32\cdot2^{79}$	$1.32\cdot 2^{77}$	$1.48\cdot 2^{70}$	$1.08\cdot2^{75}$	1665	$1.33\cdot2^{82}$	$1.76\cdot2^{85}$	1/e
AES-128	2	$1.13\cdot2^{83}$	$1.32\cdot2^{80}$	$1.32\cdot2^{78}$	$1.48\cdot 2^{70}$	$1.08\cdot 2^{75}$	3329	$1.34\cdot2^{83}$	$1.75\cdot2^{86}$	1
AES-192	2	$1.27\cdot 2^{115}$	$1.47\cdot 2^{112}$	$1.47\cdot2^{110}$	$1.47\cdot2^{102}$	$1.14\cdot2^{107}$	3969	$1.50\cdot2^{115}$	$1.11\cdot2^{119}$	1
AES-256	2	$1.56\cdot2^{147}$	$1.81\cdot2^{144}$	$1.81\cdot2^{142}$	$1.55\cdot2^{134}$	$1.29\cdot2^{139}$	4609	$1.84\cdot2^{147}$	$1.45\cdot2^{151}$	1/e
AES-256	3	$1.17\cdot2^{148}$	$1.36\cdot 2^{145}$	$1.36\cdot 2^{143}$	$1.55\cdot2^{134}$	$1.28\cdot2^{139}$	6913	$1.38\cdot2^{148}$	$1.08\cdot2^{152}$	1

Eliminating the Problem: 256-bit Keys

Defeating Quantum Algorithms

A.k.a. "quantum-safe", "quantum-resilient" ; must not rely on factoring or discrete log

Why bother?

Insurance against QC threat:

- "QC has a probability p work in year X and the impact would be \$N for us"
- "I'd like to eliminate this risk and I'm ready to spend \$M for it"

Supposedly the motivation of USG/NSA:

future." — NSA in CNSS advisory 02-2015

- "we anticipate a need to shift to quantum-resistant cryptography in the near

NSA's Take (Aug 2021)

Q: Is NSA worried about the threat posed by a potential quantum computer because a CRQC exists? A: NSA does not know when or even if a quantum computer of sufficient size and power to exploit public key cryptography (a CRQC) will exist.

Q: Why does NSA care about quantum computing today? Isn't quantum computing a long way off? A: The cryptographic systems that NSA produces, certifies, and supports often have very long lifecycles. NSA has to produce requirements today for systems that will be used for many decades in the future, and data protected by these systems will still require cryptographic protection for decades after these solutions are replaced. There is growing research in the area of quantum computing, and global interest in its pursuit have provoked NSA to ensure the enduring protection of NSS by encouraging the development of post-quantum cryptographic standards and planning for an eventual transition.

Q: What are the timeframes in NSS for deployment of new algorithms, use of equipment, and national security information intelligence value?

A: New cryptography can take 20 years or more to be fully deployed to all National Security Systems. NSS equipment is often used for decades after deployment. National security information intelligence value varies depending on classification, sensitivity, and subject, but it can require protection for many decades.

https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/Quantum_FAQs_20210804.pdf

The NIST competition

CSRC HOME > GROUPS > CT > POST-QUANTUM CRYPTOGRAPHY PROJECT

POST-QUANTUM CRYPTO PROJECT

NEWS -- August 2, 2016: The National Institute of Standards and Technology (NIST) is requesting comments on a new process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Please see the Post-Quantum Cryptography Standardization menu at left.

Fall 2016	Formal Call for Proposals
Nov 2017	Deadline for submissions
Early 2018	Workshop - Submitter's Presentations
3-5 years	Analysis Phase - NIST will report findings 1-2 workshops during this phase
2 years later	Draft Standards ready

NIST standards and round 4

Standards announced in 2022:

- Encryption/KEM: **Kyber** (ML-KEM, FIPS 203)
- Signature:
 - **Dilithium** (ML-DSA, FIPS 204)
 - Falcon (TBD)
 - SPHINCS+ (SLH-DSA, FIPS 205)

All *latticed-based* except SPHINCS+

Round 4 only for encryption/KEM, all code-based: BIKE, Classic McEliece, HQC selected as the winner in 2025

FIPS 205

Federal Information Processing Standards Publication

Stateless Hash-Based Digital Signature Standard

Category: Computer Security

Subcategory: Cryptography

Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.205

Published: August 13, 2024

Lattice-based crypto intuition

Based on problems such as **learning with errors** (LWE):

S a secret vector of numbers

The attacker receives pairs of vectors (A, B)

- $A = (A_0, ..., A_{n-1})$ is a vector of uniformly random numbers
- $\mathbf{B} = \langle \mathbf{S}, \mathbf{A} \rangle + \mathbf{E}$, a vector of $\mathbf{B}_i = \mathbf{S}_i^* \mathbf{A}_i + \mathbf{E}_i$
- $E = (E_0, ..., E_{n-1})$ is an **unknown** vector or *normal*-random numbers

Attacker's goal: find **S** given many pairs (**A**, **B**)

Lattice-based crypto intuition

Based on problems such as learning with errors (LWE):

S a secret vector of numbers

The attacker receives pairs of vectors (A, B)

- $A = (A_0, ..., A_{n-1})$ is a vector of uniformly random numbers
- $\mathbf{B} = \langle \mathbf{S}, \mathbf{A} \rangle + \mathbf{E}$, a vector of $\mathbf{B}_i = \mathbf{S}_i^* \mathbf{A}_i + \mathbf{E}_i$
- $E = (E_0, ..., E_{n-1})$ is an **unknown** vector or *normal*-random numbers

Attacker's goal: find **S** given many pairs (**A**, **B**)

Without the errors E: trivial to solve (just a linear systems of equations)

With the errors E: NP-hard

PQC performance: pretty good!

Algorithm	Public key (bytes)	Ciphertext (bytes)	Key gen. (ms)	Encaps. (ms)	Decaps. (ms)	
ECDH NIST P-256	64	64	0.072	0.072	0.072	Elliptic curves (not post-quantum)
SIKE p434	330	346	13.763	22.120	23.734	Isogeny-based
Kyber512-90s	800	736	0.007	0.009	0.006	Lattice beend
FrodoKEM-640-AES	9,616	9,720	1.929^{-1}	1.048	1.064	Lattice-based

Table 1: Key exchange algorithm communication size and runtime

Algorithm	Public key (bytes)	Signature (bytes)	$\frac{\mathbf{Sign}}{(\mathrm{ms})}$	$\begin{array}{c} \mathbf{Verify} \\ (\mathrm{ms}) \end{array}$
ECDSA NIST P-256	64	64	0.031	0.096
Dilithium2	$1,\!184$	$2,\!044$	0.050	0.036
qTESLA-P-I	$14,\!880$	$2,\!592$	1.055	0.312
Picnic-L1-FS	33	34,036	3.429	2.584

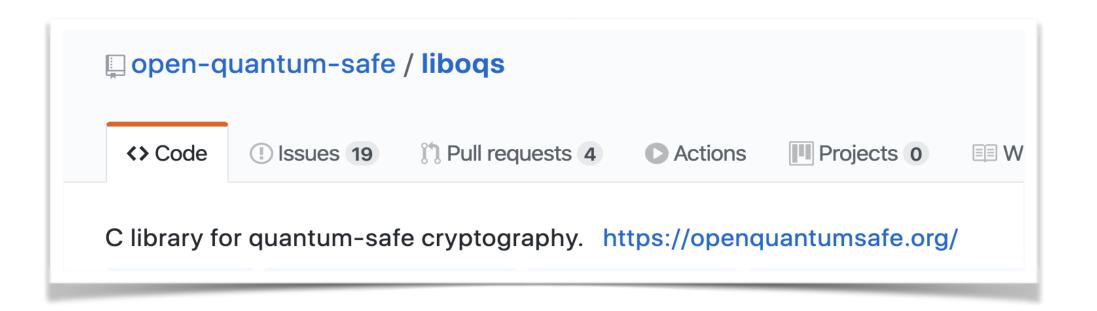
Table 2: Signature scheme communication size and runtime

From "Benchmarking Post-Quantum Cryptography in TLS" <u>https://eprint.iacr.org/2019/1447</u>

Using PQC today

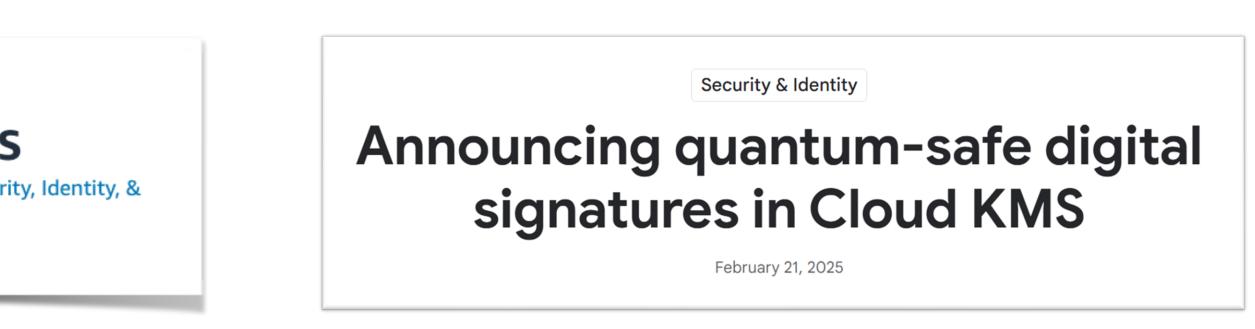
Integrated by most **hyperscalers**

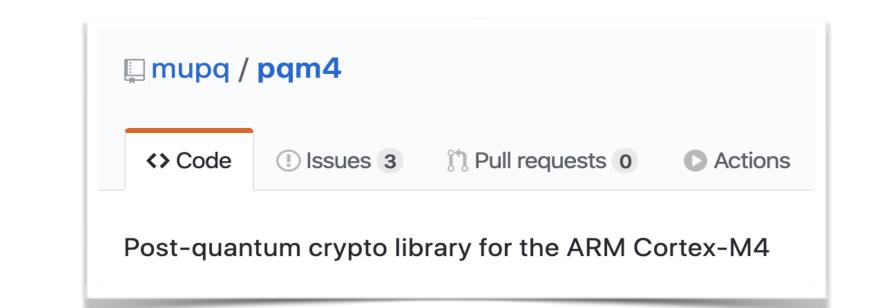
AWS Security Blog


Post-quantum TLS now supported in AWS KMS

by Andrew Hopkins | on 04 NOV 2019 | in Advanced (300), AWS Key Management Service, Security, Identity, & Compliance | Permalink | 🗩 Comments | 🏞 Share

Software libraries


OpenSSL 3.5.0 now contains post-quantum procedures


With the new LTS version 3.5.0, OpenSSL adds the post-quantum methods ML-KEM, ML-DSA and SLH-DSA to its library.

Cloudflare now uses postquantum cryptography to talk to your origin server

2023-09-29

More about post-quantum crypto

- https://github.com/veorq/awesome-post-quantum
- <u>https://github.com/qosf/awesome-quantum-software</u>
- <u>https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization</u>
- IETF RFC 8391 (XMSS), RFC 8554 (LM)
- May 2023 articles on https://blog.taurushq.com/

TECHNOLOGY

Quantum doomsday planning (2/2): The post-quantum technology landscape

ДЯКУЮ!

jp@taurushq.com